k

High-dimensional Gaussian graphical models on network-linked data

Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.




k

GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning

When the data is distributed across multiple servers, lowering the communication cost between the servers (or workers) while solving the distributed learning problem is an important problem and is the focus of this paper. In particular, we propose a fast, and communication-efficient decentralized framework to solve the distributed machine learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM) framework. The key novelty in GADMM is that it solves the problem in a decentralized topology where at most half of the workers are competing for the limited communication resources at any given time. Moreover, each worker exchanges the locally trained model only with two neighboring workers, thereby training a global model with a lower amount of communication overhead in each exchange. We prove that GADMM converges to the optimal solution for convex loss functions, and numerically show that it converges faster and more communication-efficient than the state-of-the-art communication-efficient algorithms such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM (D-GADMM), a variant of GADMM, and prove its convergence under the time-varying network topology of the workers.




k

It's only rock’n’roll… but I like it

Collecting contemporary music from New South Wales is a developing priority for the Library.




k

Top books to read at home

Looking for a new book to read while staying safely at home? The Library has expanded its ebook collection to over 6000 




k

Cook commemoration sparks 1970 protest

In 1970, celebrations and commemorations were held across the nation for the 200th anniversary of the Endeavour’s visit




k

Branching random walks with uncountably many extinction probability vectors

Daniela Bertacchi, Fabio Zucca.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 426--438.

Abstract:
Given a branching random walk on a set $X$, we study its extinction probability vectors $mathbf{q}(cdot,A)$. Their components are the probability that the process goes extinct in a fixed $Asubseteq X$, when starting from a vertex $xin X$. The set of extinction probability vectors (obtained letting $A$ vary among all subsets of $X$) is a subset of the set of the fixed points of the generating function of the branching random walk. In particular here we are interested in the cardinality of the set of extinction probability vectors. We prove results which allow to understand whether the probability of extinction in a set $A$ is different from the one of extinction in another set $B$. In many cases there are only two possible extinction probability vectors and so far, in more complicated examples, only a finite number of distinct extinction probability vectors had been explicitly found. Whether a branching random walk could have an infinite number of distinct extinction probability vectors was not known. We apply our results to construct examples of branching random walks with uncountably many distinct extinction probability vectors.




k

Multivariate normal approximation of the maximum likelihood estimator via the delta method

Andreas Anastasiou, Robert E. Gaunt.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.

Abstract:
We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance.




k

A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences

Natalia Shenkman.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 127--135.

Abstract:
While derivations of the characterization of the $d$-variate exchangeable Marshall–Olkin copula via $d$-monotone sequences relying on basic knowledge in probability theory exist in the literature, they contain a myriad of unnecessary relatively complicated computations. We revisit this issue and provide proofs where all undesired artefacts are removed, thereby exposing the simplicity of the characterization. In particular, we give an insightful analytical derivation of the monotonicity conditions based on the monotonicity properties of the survival probabilities.




k

Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach

Lucas Pereira Lopes, Vicente Garibay Cancho, Francisco Louzada.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 801--825.

Abstract:
Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy.




k

Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models

Sylvia Frühwirth-Schnatter.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.

Abstract:
Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities.




k

Unions of random walk and percolation on infinite graphs

Kazuki Okamura.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 586--637.

Abstract:
We consider a random object that is associated with both random walks and random media, specifically, the superposition of a configuration of subcritical Bernoulli percolation on an infinite connected graph and the trace of the simple random walk on the same graph. We investigate asymptotics for the number of vertices of the enlargement of the trace of the walk until a fixed time, when the time tends to infinity. This process is more highly self-interacting than the range of random walk, which yields difficulties. We show a law of large numbers on vertex-transitive transient graphs. We compare the process on a vertex-transitive graph with the process on a finitely modified graph of the original vertex-transitive graph and show their behaviors are similar. We show that the process fluctuates almost surely on a certain non-vertex-transitive graph. On the two-dimensional integer lattice, by investigating the size of the boundary of the trace, we give an estimate for variances of the process implying a law of large numbers. We give an example of a graph with unbounded degrees on which the process behaves in a singular manner. As by-products, some results for the range and the boundary, which will be of independent interest, are obtained.




k

Fake uniformity in a shape inversion formula

Christian Rau.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 549--557.

Abstract:
We revisit a shape inversion formula derived by Panaretos in the context of a particle density estimation problem with unknown rotation of the particle. A distribution is presented which imitates, or “fakes”, the uniformity or Haar distribution that is part of that formula.




k

A Jackson network under general regime

Yair Y. Shaki.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 532--548.

Abstract:
We consider a Jackson network in a general heavy traffic diffusion regime with the $alpha$-parametrization . We also assume that each customer may abandon the system while waiting. We show that in this regime the queue-length process converges to a multi-dimensional regulated Ornstein–Uhlenbeck process.




k

Spatially adaptive Bayesian image reconstruction through locally-modulated Markov random field models

Salem M. Al-Gezeri, Robert G. Aykroyd.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 498--519.

Abstract:
The use of Markov random field (MRF) models has proven to be a fruitful approach in a wide range of image processing applications. It allows local texture information to be incorporated in a systematic and unified way and allows statistical inference theory to be applied giving rise to novel output summaries and enhanced image interpretation. A great advantage of such low-level approaches is that they lead to flexible models, which can be applied to a wide range of imaging problems without the need for significant modification. This paper proposes and explores the use of conditional MRF models for situations where multiple images are to be processed simultaneously, or where only a single image is to be reconstructed and a sequential approach is taken. Although the coupling of image intensity values is a special case of our approach, the main extension over previous proposals is to allow the direct coupling of other properties, such as smoothness or texture. This is achieved using a local modulating function which adjusts the influence of global smoothing without the need for a fully inhomogeneous prior model. Several modulating functions are considered and a detailed simulation study, motivated by remote sensing applications in archaeological geophysics, of conditional reconstruction is presented. The results demonstrate that a substantial improvement in the quality of the image reconstruction, in terms of errors and residuals, can be achieved using this approach, especially at locations with rapid changes in the underlying intensity.




k

Fractional backward stochastic variational inequalities with non-Lipschitz coefficient

Katarzyna Jańczak-Borkowska.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 480--497.

Abstract:
We prove the existence and uniqueness of the solution of backward stochastic variational inequalities with respect to fractional Brownian motion and with non-Lipschitz coefficient. We assume that $H>1/2$.




k

A rank-based Cramér–von-Mises-type test for two samples

Jamye Curry, Xin Dang, Hailin Sang.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 425--454.

Abstract:
We study a rank based univariate two-sample distribution-free test. The test statistic is the difference between the average of between-group rank distances and the average of within-group rank distances. This test statistic is closely related to the two-sample Cramér–von Mises criterion. They are different empirical versions of a same quantity for testing the equality of two population distributions. Although they may be different for finite samples, they share the same expected value, variance and asymptotic properties. The advantage of the new rank based test over the classical one is its ease to generalize to the multivariate case. Rather than using the empirical process approach, we provide a different easier proof, bringing in a different perspective and insight. In particular, we apply the Hájek projection and orthogonal decomposition technique in deriving the asymptotics of the proposed rank based statistic. A numerical study compares power performance of the rank formulation test with other commonly-used nonparametric tests and recommendations on those tests are provided. Lastly, we propose a multivariate extension of the test based on the spatial rank.




k

Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk

Bastien Mallein.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 356--373.

Abstract:
Consider a supercritical branching random walk on the real line. The consistent maximal displacement is the smallest of the distances between the trajectories followed by individuals at the $n$th generation and the boundary of the process. Fang and Zeitouni, and Faraud, Hu and Shi proved that under some integrability conditions, the consistent maximal displacement grows almost surely at rate $lambda^{*}n^{1/3}$ for some explicit constant $lambda^{*}$. We obtain here a necessary and sufficient condition for this asymptotic behaviour to hold.




k

Modified information criterion for testing changes in skew normal model

Khamis K. Said, Wei Ning, Yubin Tian.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 280--300.

Abstract:
In this paper, we study the change point problem for the skew normal distribution model from the view of model selection problem. The detection procedure based on the modified information criterion (MIC) for change problem is proposed. Such a procedure has advantage in detecting the changes in early and late stage of a data comparing to the one based on the traditional Schwarz information criterion which is well known as Bayesian information criterion (BIC) by considering the complexity of the models. Due to the difficulty in deriving the analytic asymptotic distribution of the test statistic based on the MIC procedure, the bootstrap simulation is provided to obtain the critical values at the different significance levels. Simulations are conducted to illustrate the comparisons of performance between MIC, BIC and likelihood ratio test (LRT). Such an approach is applied on two stock market data sets to indicate the detection procedure.




k

Unlikeness is us : fourteen from the Exeter book

Exeter book. Selections. English
9781554471751 (softcover)




k

Any waking morning

Soutar-Hynes, Mary Lou, author.
9781771336413 (softcover)




k

The Grand River watershed : a folk ecology : poems

Houle, Karen, author.
9781554471843 paperback




k

A review of dynamic network models with latent variables

Bomin Kim, Kevin H. Lee, Lingzhou Xue, Xiaoyue Niu.

Source: Statistics Surveys, Volume 12, 105--135.

Abstract:
We present a selective review of statistical modeling of dynamic networks. We focus on models with latent variables, specifically, the latent space models and the latent class models (or stochastic blockmodels), which investigate both the observed features and the unobserved structure of networks. We begin with an overview of the static models, and then we introduce the dynamic extensions. For each dynamic model, we also discuss its applications that have been studied in the literature, with the data source listed in Appendix. Based on the review, we summarize a list of open problems and challenges in dynamic network modeling with latent variables.




k

An approximate likelihood perspective on ABC methods

George Karabatsos, Fabrizio Leisen.

Source: Statistics Surveys, Volume 12, 66--104.

Abstract:
We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods for performing statistical inferences with Bayesian models defined by intractable likelihood functions. The vastity of the literature on ABC methods created a need to review and relate all ABC approaches so that scientists can more readily understand and apply them for their own work. This article provides a unifying review, general representation, and classification of all ABC methods from the view of approximate likelihood theory. This clarifies how ABC methods can be characterized, related, combined, improved, and applied for future research. Possible future research in ABC is then outlined.




k

Basic models and questions in statistical network analysis

Miklós Z. Rácz, Sébastien Bubeck.

Source: Statistics Surveys, Volume 11, 1--47.

Abstract:
Extracting information from large graphs has become an important statistical problem since network data is now common in various fields. In this minicourse we will investigate the most natural statistical questions for three canonical probabilistic models of networks: (i) community detection in the stochastic block model, (ii) finding the embedding of a random geometric graph, and (iii) finding the original vertex in a preferential attachment tree. Along the way we will cover many interesting topics in probability theory such as Pólya urns, large deviation theory, concentration of measure in high dimension, entropic central limit theorems, and more.




k

Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain

Sean L. Simpson, F. DuBois Bowman, Paul J. Laurienti

Source: Statist. Surv., Volume 7, 1--36.

Abstract:
Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function.




k

The theory and application of penalized methods or Reproducing Kernel Hilbert Spaces made easy

Nancy Heckman

Source: Statist. Surv., Volume 6, 113--141.

Abstract:
The popular cubic smoothing spline estimate of a regression function arises as the minimizer of the penalized sum of squares $sum_{j}(Y_{j}-mu(t_{j}))^{2}+lambda int_{a}^{b}[mu''(t)]^{2},dt$, where the data are $t_{j},Y_{j}$, $j=1,ldots,n$. The minimization is taken over an infinite-dimensional function space, the space of all functions with square integrable second derivatives. But the calculations can be carried out in a finite-dimensional space. The reduction from minimizing over an infinite dimensional space to minimizing over a finite dimensional space occurs for more general objective functions: the data may be related to the function $mu$ in another way, the sum of squares may be replaced by a more suitable expression, or the penalty, $int_{a}^{b}[mu''(t)]^{2},dt$, might take a different form. This paper reviews the Reproducing Kernel Hilbert Space structure that provides a finite-dimensional solution for a general minimization problem. Particular attention is paid to the construction and study of the Reproducing Kernel Hilbert Space corresponding to a penalty based on a linear differential operator. In this case, one can often calculate the minimizer explicitly, using Green’s functions.




k

Statistical inference for disordered sphere packings

Jeffrey Picka

Source: Statist. Surv., Volume 6, 74--112.

Abstract:
This paper gives an overview of statistical inference for disordered sphere packing processes. These processes are used extensively in physics and engineering in order to represent the internal structure of composite materials, packed bed reactors, and powders at rest, and are used as initial arrangements of grains in the study of avalanches and other problems involving powders in motion. Packing processes are spatial processes which are neither stationary nor ergodic. Classical spatial statistical models and procedures cannot be applied to these processes, but alternative models and procedures can be developed based on ideas from statistical physics. Most of the development of models and statistics for sphere packings has been undertaken by scientists and engineers. This review summarizes their results from an inferential perspective.




k

Primal and dual model representations in kernel-based learning

Johan A.K. Suykens, Carlos Alzate, Kristiaan Pelckmans

Source: Statist. Surv., Volume 4, 148--183.

Abstract:
This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization.




k

100 Books Bop




k

100 Books Bop




k

Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. (arXiv:2005.02589v2 [cs.LG] UPDATED)

Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.




k

Can a powerful neural network be a teacher for a weaker neural network?. (arXiv:2005.00393v2 [cs.LG] UPDATED)

The transfer learning technique is widely used to learning in one context and applying it to another, i.e. the capacity to apply acquired knowledge and skills to new situations. But is it possible to transfer the learning from a deep neural network to a weaker neural network? Is it possible to improve the performance of a weak neural network using the knowledge acquired by a more powerful neural network? In this work, during the training process of a weak network, we add a loss function that minimizes the distance between the features previously learned from a strong neural network with the features that the weak network must try to learn. To demonstrate the effectiveness and robustness of our approach, we conducted a large number of experiments using three known datasets and demonstrated that a weak neural network can increase its performance if its learning process is driven by a more powerful neural network.




k

A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED)

Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.




k

Capturing and Explaining Trajectory Singularities using Composite Signal Neural Networks. (arXiv:2003.10810v2 [cs.LG] UPDATED)

Spatial trajectories are ubiquitous and complex signals. Their analysis is crucial in many research fields, from urban planning to neuroscience. Several approaches have been proposed to cluster trajectories. They rely on hand-crafted features, which struggle to capture the spatio-temporal complexity of the signal, or on Artificial Neural Networks (ANNs) which can be more efficient but less interpretable. In this paper we present a novel ANN architecture designed to capture the spatio-temporal patterns characteristic of a set of trajectories, while taking into account the demographics of the navigators. Hence, our model extracts markers linked to both behaviour and demographics. We propose a composite signal analyser (CompSNN) combining three simple ANN modules. Each of these modules uses different signal representations of the trajectory while remaining interpretable. Our CompSNN performs significantly better than its modules taken in isolation and allows to visualise which parts of the signal were most useful to discriminate the trajectories.




k

Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. (arXiv:2003.02157v2 [physics.soc-ph] UPDATED)

In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for energy demand estimations. As an energy supplier, a microgrid can facilitate seamless energy supply. However, the risk associated with energy supply is also increased due to unpredictable energy generation from renewable and non-renewable sources. Especially, the risk of energy shortfall is involved with uncertainties in both energy consumption and generation. In this paper, we study a risk-aware energy scheduling problem for a microgrid-powered MEC network. First, we formulate an optimization problem considering the conditional value-at-risk (CVaR) measurement for both energy consumption and generation, where the objective is to minimize the loss of energy shortfall of the MEC networks and we show this problem is an NP-hard problem. Second, we analyze our formulated problem using a multi-agent stochastic game that ensures the joint policy Nash equilibrium, and show the convergence of the proposed model. Third, we derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous advantage actor-critic (A3C) algorithm with shared neural networks. This method mitigates the curse of dimensionality of the state space and chooses the best policy among the agents for the proposed problem. Finally, the experimental results establish a significant performance gain by considering CVaR for high accuracy energy scheduling of the proposed model than both the single and random agent models.




k

Restricting the Flow: Information Bottlenecks for Attribution. (arXiv:2001.00396v3 [stat.ML] UPDATED)

Attribution methods provide insights into the decision-making of machine learning models like artificial neural networks. For a given input sample, they assign a relevance score to each individual input variable, such as the pixels of an image. In this work we adapt the information bottleneck concept for attribution. By adding noise to intermediate feature maps we restrict the flow of information and can quantify (in bits) how much information image regions provide. We compare our method against ten baselines using three different metrics on VGG-16 and ResNet-50, and find that our methods outperform all baselines in five out of six settings. The method's information-theoretic foundation provides an absolute frame of reference for attribution values (bits) and a guarantee that regions scored close to zero are not necessary for the network's decision. For reviews: https://openreview.net/forum?id=S1xWh1rYwB For code: https://github.com/BioroboticsLab/IBA




k

A priori generalization error for two-layer ReLU neural network through minimum norm solution. (arXiv:1912.03011v3 [cs.LG] UPDATED)

We focus on estimating emph{a priori} generalization error of two-layer ReLU neural networks (NNs) trained by mean squared error, which only depends on initial parameters and the target function, through the following research line. We first estimate emph{a priori} generalization error of finite-width two-layer ReLU NN with constraint of minimal norm solution, which is proved by cite{zhang2019type} to be an equivalent solution of a linearized (w.r.t. parameter) finite-width two-layer NN. As the width goes to infinity, the linearized NN converges to the NN in Neural Tangent Kernel (NTK) regime citep{jacot2018neural}. Thus, we can derive the emph{a priori} generalization error of two-layer ReLU NN in NTK regime. The distance between NN in a NTK regime and a finite-width NN with gradient training is estimated by cite{arora2019exact}. Based on the results in cite{arora2019exact}, our work proves an emph{a priori} generalization error bound of two-layer ReLU NNs. This estimate uses the intrinsic implicit bias of the minimum norm solution without requiring extra regularity in the loss function. This emph{a priori} estimate also implies that NN does not suffer from curse of dimensionality, and a small generalization error can be achieved without requiring exponentially large number of neurons. In addition the research line proposed in this paper can also be used to study other properties of the finite-width network, such as the posterior generalization error.




k

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




k

Differentiable Sparsification for Deep Neural Networks. (arXiv:1910.03201v2 [cs.LG] UPDATED)

A deep neural network has relieved the burden of feature engineering by human experts, but comparable efforts are instead required to determine an effective architecture. On the other hands, as the size of a network has over-grown, a lot of resources are also invested to reduce its size. These problems can be addressed by sparsification of an over-complete model, which removes redundant parameters or connections by pruning them away after training or encouraging them to become zero during training. In general, however, these approaches are not fully differentiable and interrupt an end-to-end training process with the stochastic gradient descent in that they require either a parameter selection or a soft-thresholding step. In this paper, we propose a fully differentiable sparsification method for deep neural networks, which allows parameters to be exactly zero during training, and thus can learn the sparsified structure and the weights of networks simultaneously using the stochastic gradient descent. We apply the proposed method to various popular models in order to show its effectiveness.




k

Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. (arXiv:1909.06155v2 [math.PR] UPDATED)

We study the problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $dX_t=(mu+ heta X_t)dt+dG_t, tgeq0$ with unknown parameters $ heta>0$ and $muinR$, where $G$ is a Gaussian process. We provide least square-type estimators $widetilde{ heta}_T$ and $widetilde{mu}_T$ respectively for the drift parameters $ heta$ and $mu$ based on continuous-time observations ${X_t, tin[0,T]}$ as $T ightarrowinfty$.

Our aim is to derive some sufficient conditions on the driving Gaussian process $G$ in order to ensure that $widetilde{ heta}_T$ and $widetilde{mu}_T$ are strongly consistent, the limit distribution of $widetilde{ heta}_T$ is a Cauchy-type distribution and $widetilde{mu}_T$ is asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. In addition, this work extends the result of cite{EEO} studied in the case where $mu=0$.




k

An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED)

The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms.




k

FNNC: Achieving Fairness through Neural Networks. (arXiv:1811.00247v3 [cs.LG] UPDATED)

In classification models fairness can be ensured by solving a constrained optimization problem. We focus on fairness constraints like Disparate Impact, Demographic Parity, and Equalized Odds, which are non-decomposable and non-convex. Researchers define convex surrogates of the constraints and then apply convex optimization frameworks to obtain fair classifiers. Surrogates serve only as an upper bound to the actual constraints, and convexifying fairness constraints might be challenging.

We propose a neural network-based framework, emph{FNNC}, to achieve fairness while maintaining high accuracy in classification. The above fairness constraints are included in the loss using Lagrangian multipliers. We prove bounds on generalization errors for the constrained losses which asymptotically go to zero. The network is optimized using two-step mini-batch stochastic gradient descent. Our experiments show that FNNC performs as good as the state of the art, if not better. The experimental evidence supplements our theoretical guarantees. In summary, we have an automated solution to achieve fairness in classification, which is easily extendable to many fairness constraints.




k

Multi-scale analysis of lead-lag relationships in high-frequency financial markets. (arXiv:1708.03992v3 [stat.ME] UPDATED)

We propose a novel estimation procedure for scale-by-scale lead-lag relationships of financial assets observed at high-frequency in a non-synchronous manner. The proposed estimation procedure does not require any interpolation processing of original datasets and is applicable to those with highest time resolution available. Consistency of the proposed estimators is shown under the continuous-time framework that has been developed in our previous work Hayashi and Koike (2018). An empirical application to a quote dataset of the NASDAQ-100 assets identifies two types of lead-lag relationships at different time scales.




k

Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. (arXiv:1212.4137v2 [stat.ML] UPDATED)

Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector; these are obtained by combining the following factors: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via a natural alternating maximization (AM) method. We show the the AM method is nontrivially equivalent to GPower (Journ'{e}e et al; JMLR 11:517--553, 2010) for all our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big data problems (our cluster code is able to solve a 357 GB problem in about a minute).




k

COVID-19 transmission risk factors. (arXiv:2005.03651v1 [q-bio.QM])

We analyze risk factors correlated with the initial transmission growth rate of the COVID-19 pandemic. The number of cases follows an early exponential expansion; we chose as a starting point in each country the first day with 30 cases and used 12 days. We looked for linear correlations of the exponents with other variables, using 126 countries. We find a positive correlation with high C.L. with the following variables, with respective $p$-value: low Temperature ($4cdot10^{-7}$), high ratio of old vs.~working-age people ($3cdot10^{-6}$), life expectancy ($8cdot10^{-6}$), number of international tourists ($1cdot10^{-5}$), earlier epidemic starting date ($2cdot10^{-5}$), high level of contact in greeting habits ($6 cdot 10^{-5}$), lung cancer ($6 cdot 10^{-5}$), obesity in males ($1 cdot 10^{-4}$), urbanization ($2cdot10^{-4}$), cancer prevalence ($3 cdot 10^{-4}$), alcohol consumption ($0.0019$), daily smoking prevalence ($0.0036$), UV index ($0.004$, smaller sample, 73 countries), low Vitamin D levels ($p$-value $0.002-0.006$, smaller sample, $sim 50$ countries). There is highly significant correlation also with blood type: positive correlation with RH- ($2cdot10^{-5}$) and A+ ($2cdot10^{-3}$), negative correlation with B+ ($2cdot10^{-4}$). We also find positive correlation with moderate C.L. ($p$-value of $0.02sim0.03$) with: CO$_2$ emissions, type-1 diabetes, low vaccination coverage for Tuberculosis (BCG). Several such variables are correlated with each other and so they likely have common interpretations. We also analyzed the possible existence of a bias: countries with low GDP-per capita, typically located in warm regions, might have less intense testing and we discuss correlation with the above variables.




k

Visualisation and knowledge discovery from interpretable models. (arXiv:2005.03632v1 [cs.LG])

Increasing number of sectors which affect human lives, are using Machine Learning (ML) tools. Hence the need for understanding their working mechanism and evaluating their fairness in decision-making, are becoming paramount, ushering in the era of Explainable AI (XAI). In this contribution we introduced a few intrinsically interpretable models which are also capable of dealing with missing values, in addition to extracting knowledge from the dataset and about the problem. These models are also capable of visualisation of the classifier and decision boundaries: they are the angle based variants of Learning Vector Quantization. We have demonstrated the algorithms on a synthetic dataset and a real-world one (heart disease dataset from the UCI repository). The newly developed classifiers helped in investigating the complexities of the UCI dataset as a multiclass problem. The performance of the developed classifiers were comparable to those reported in literature for this dataset, with additional value of interpretability, when the dataset was treated as a binary class problem.




k

Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST])

The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model.




k

Know Your Clients' behaviours: a cluster analysis of financial transactions. (arXiv:2005.03625v1 [econ.EM])

In Canada, financial advisors and dealers by provincial securities commissions, and those self-regulatory organizations charged with direct regulation over investment dealers and mutual fund dealers, respectively to collect and maintain Know Your Client (KYC) information, such as their age or risk tolerance, for investor accounts. With this information, investors, under their advisor's guidance, make decisions on their investments which are presumed to be beneficial to their investment goals. Our unique dataset is provided by a financial investment dealer with over 50,000 accounts for over 23,000 clients. We use a modified behavioural finance recency, frequency, monetary model for engineering features that quantify investor behaviours, and machine learning clustering algorithms to find groups of investors that behave similarly. We show that the KYC information collected does not explain client behaviours, whereas trade and transaction frequency and volume are most informative. We believe the results shown herein encourage financial regulators and advisors to use more advanced metrics to better understand and predict investor behaviours.




k

Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG])

We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems.




k

Estimating customer impatience in a service system with balking. (arXiv:2005.03576v1 [math.PR])

This paper studies a service system in which arriving customers are provided with information about the delay they will experience. Based on this information they decide to wait for service or to leave the system. The main objective is to estimate the customers' patience-level distribution and the corresponding potential arrival rate, using knowledge of the actual workload process only. We cast the system as a queueing model, so as to evaluate the corresponding likelihood function. Estimating the unknown parameters relying on a maximum likelihood procedure, we prove strong consistency and derive the asymptotic distribution of the estimation error. Several applications and extensions of the method are discussed. In particular, we indicate how our method generalizes to a multi-server setting. The performance of our approach is assessed through a series of numerical experiments. By fitting parameters of hyperexponential and generalized-hyperexponential distributions our method provides a robust estimation framework for any continuous patience-level distribution.