oni

Deep Sequencing Uncovers Caste-Associated Diversity of Symbionts in the Social Ant Camponotus japonicus

ABSTRACT

Symbiotic microorganisms can have a profound impact on the host physiology and behavior, and novel relationships between symbionts and their hosts are continually discovered. A colony of social ants consists of various castes that exhibit distinct lifestyles and is, thus, a unique model for investigating how symbionts may be involved in host eusociality. Yet our knowledge of social ant-symbiont dynamics has remained rudimentary. Through 16S rRNA gene deep sequencing of the carpenter ant Camponotus japonicus symbiont community across various castes, we here report caste-dependent diversity of commensal gut microbiota and lineage divergence of "Candidatus Blochmannia," an obligate endosymbiont. While most prevalent gut-associated bacterial populations are found across all castes (Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria), we also discovered uncultured populations that are found only in males (belonging to Corynebacteriales, Alkanindiges, and Burkholderia). Most of those populations are not detected in laboratory-maintained queens and workers, suggesting that they are facultative gut symbionts introduced via environmental acquisition. Further inspection of "Ca. Blochmannia" endosymbionts reveals that two populations are dominant in all individuals across all castes but that males preferentially contain two different sublineages that are diversified from others. Clearly, each caste has distinct symbiont communities, suggesting an overlooked biological aspect of host-symbiont interaction in social insects.

IMPORTANCE Social animals, such as primates and some insects, have been shown to exchange symbiotic microbes among individuals through sharing diet or habitats, resulting in increased consistency of microbiota among social partners. The ant is a representative of social insects exhibiting various castes within a colony; queens, males, and nonreproductive females (so-called workers) show distinct morphologies, physiologies, and behaviors but tightly interact with each other in the nest. However, how this social context affects their gut microbiota has remained unclear. In this study, we deeply sequenced the gut symbiont community across various castes of the carpenter ant Camponotus japonicus. We report caste-dependent diversity of commensal gut microbial community and lineage divergence of the mutualistic endosymbiont "Candidatus Blochmannia." This report sheds light on the hidden diversity in microbial populations and community structure associated with guts of males in social ants.




oni

Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism

ABSTRACT

Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity.

IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair.




oni

A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance

A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems.




oni

The South Kintyre Basin: its role in the stratigraphical and structural evolution of the Firth of Clyde region during the Devonian-Carboniferous transition

Late Devonian–Early Carboniferous rocks at the southern end of the Kintyre Peninsula closely resemble those of the Kinnesswood and Clyde Sandstone formations in more easterly portions of the Firth of Clyde. For example, a previously unrecognized thick marlstone with pedogenic calcretes is present in the Kinnesswood Formation at the south tip of the peninsula and, on the west coast, south of Machrihanish, a striking cliffed exposure includes massive phreatic calcretes developed from cross-bedded sandstones and red mudstones closely resembling those of the Clyde Sandstone on Great Cumbrae. A similar phreatic calcrete unit is present in the lower part of the Ballagan Formation in south Bute. The presence of vadose and phreatic calcrete provides valuable information concerning palaeoclimatic conditions in southwestern Scotland during the Devonian–Carboniferous transition. Overlying thick volcanic rocks are correlative with the Clyde Plateau Volcanic Formation. The sediments accumulated in the South Kintyre Basin on the west side of the Highland Boundary Fault (HBF). Formation of this basin, and the North East Arran and Cumbraes basins in the northeastern part of the Firth of Clyde, is interpreted as a response to development of a ‘locked zone’ in the HBF during an episode of sinistral faulting.




oni

A large Taenidium burrow from the Upper Carboniferous of Corrie, Isle of Arran, and remarks on the association of Taenidium burrows and Diplichnites trails

Large un-walled backfilled burrows of the Taenidium type are known from Paleozoic deltaic marine environments worldwide where they are often associated with Diplichnites trackways. The latter are generally attributed to arthropleurid myriapods and it may be that the burrows were also made by these animals. Here we describe a Taenidium burrow from the Limestone Coal Formation of the Isle of Arran, a formation that also hosts a well-known example of Diplichnites, supporting the association of the two types of trace fossil and extending their known co-occurrence upward into the Upper Carboniferous.




oni

OsNAR2.1 Interaction with OsNIT1 and OsNIT2 Functions in Root-growth Responses to Nitrate and Ammonium

The nitrate transport accessory protein OsNAR2 plays a critical role in root-growth responses to nitrate and nitrate acquisition in rice (Oryza sativa). In this study, a pull-down assay combined with yeast two-hybrid and coimmunoprecipitation analyses revealed that OsNAR2.1 interacts with OsNIT1 and OsNIT2. Moreover, an in vitro nitrilase activity assay indicated that indole-3-acetonitrile (IAN) is hydrolyzed to indole-3-acetic acid (IAA) by OsNIT1, the activity of which was enhanced 3- to 4-fold by OsNIT2 and in excess of 5- to 8-fold by OsNAR2.1. Knockout (KO) of OsNAR2.1 was accompanied by repressed expression of both OsNIT1 and OsNIT2, whereas KO of OsNIT1 and OsNIT2 in the osnit1 and osnit2 mutant lines did not affect expression of OsNAR2.1 or the root nitrate acquisition rate. osnit1 and osnit2 displayed decreased primary root length and lateral root density. Double KO of OsNAR2.1 and OsNIT2 caused further decreases in lateral root density under nitrate supply. Ammonium supply repressed OsNAR2.1 expression whereas it upregulated OsNIT1 and OsNIT2 expression. Both osnit1 and osnit2 showed root growth hypersensitivity to external ammonium; however, less root growth sensitivity to external IAN, higher expression of three IAA-amido synthetase genes, and a lower rate of 3H-IAA movement toward the roots were observed. Taken together, we conclude that the interaction of OsNIT1 and OsNIT2 activated by OsNAR2.1 and nitrogen supply is essential for maintaining root growth possibly via altering the IAA ratio of free to conjugate forms and facilitating its transportation.




oni

NIT Proteins Regulate Rice Root Plasticity in Response to Nitrate and Ammonium




oni

Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study

The aim of this study was to identify factors associated with the death of patients with COVID-19 pneumonia caused by the novel coronavirus SARS-CoV-2.

All clinical and laboratory parameters were collected prospectively from a cohort of patients with COVID-19 pneumonia who were hospitalised to Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between 25 December 2019 and 7 February 2020. Univariate and multivariate logistic regression was performed to investigate the relationship between each variable and the risk of death of COVID-19 pneumonia patients.

In total, 179 patients with COVID-19 pneumonia (97 male and 82 female) were included in the present prospective study, of whom 21 died. Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.146-17.394; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 0.755-8.044; p=0.007), CD3+CD8+ T-cells ≤75 cells·μL–1 (OR 3.982, 95% CI 1.132-14.006; p<0.001) and cardiac troponin I ≥0.05 ng·mL–1 (OR 4.077, 95% CI 1.166-14.253; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia. In a sex-, age- and comorbid illness-matched case–control study, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1 remained as predictors for high mortality from COVID-19 pneumonia.

We identified four risk factors: age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1. The latter two factors, especially, were predictors for mortality of COVID-19 pneumonia patients.




oni

Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin

The World Health Organization (WHO) has listed moxifloxacin and linezolid among the preferred "group A" drugs in the treatment of multidrug-resistant (MDR)-tuberculosis (TB) [1]. Therapeutic drug monitoring (TDM) could potentially optimise MDR-TB therapy, since moxifloxacin and linezolid show large pharmacokinetic variability [1–4]. TDM of moxifloxacin focuses on identifying patients with low drug exposure who are at risk of treatment failure and acquired fluoroquinolone resistance [5, 6]. Alternatively, TDM of linezolid strives to reduce toxicity while ensuring an adequate drug exposure because of its narrow therapeutic index [1, 3, 7].




oni

Ataxic-hypotonic cerebral palsy in a cerebral palsy registry: Insights into a distinct subtype

Objective

To specifically report on ataxic-hypotonic cerebral palsy (CP) using registry data and to directly compare its features with other CP subtypes.

Methods

Data on prenatal, perinatal, and neonatal characteristics and gross motor function (Gross Motor Function Classification System [GMFCS]) and comorbidities in 35 children with ataxic-hypotonic CP were extracted from the Canadian Cerebral Palsy Registry and compared with 1,804 patients with other subtypes of CP.

Results

Perinatal adversity was detected significantly more frequently in other subtypes of CP (odds ratio [OR] 4.3, 95% confidence interval [CI] 1.5–11.7). The gestational age at birth was higher in ataxic-hypotonic CP (median 39.0 weeks vs 37.0 weeks, p = 0.027). Children with ataxic-hypotonic CP displayed more intrauterine growth restriction (OR 2.6, 95% CI 1.0–6.8) and congenital malformation (OR 2.4, 95% CI 1.2–4.8). MRI was more likely to be either normal (OR 3.8, 95% CI 1.4–10.5) or to show a cerebral malformation (OR 4.2, 95% CI 1.5–11.9) in ataxic-hypotonic CP. There was no significant difference in terms of GMFCS or the presence of comorbidities, except for more frequent communication impairment in ataxic-hypotonic CP (OR 4.2, 95% CI 1.5–11.6).

Conclusions

Our results suggest a predominantly genetic or prenatal etiology for ataxic-hypotonic CP and imply that a diagnosis of ataxic-hypotonic CP does not impart a worse prognosis with respect to comorbidities or functional impairment. This study contributes toward a better understanding of ataxic-hypotonic CP as a distinct nosologic entity within the spectrum of CP with its own pathogenesis, risk factors, clinical profile, and prognosis compared with other CP subtypes.




oni

Exploring Early Childhood Factors as an Avenue to Address Chronic Peer Victimization




oni

Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression [TRANSPLANTATION]

Key Points

  • Islets are engineered with SA-PDL1 protein without impacting viability/function.

  • SA-PDL1–engineered islets show indefinite survival in allogeneic hosts.

  • Survival is associated with elevated intragraft Th2, Treg, and M2 transcripts.




    oni

    Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B-Dependent Activation of the Aryl Hydrocarbon Receptor [INNATE IMMUNITY AND INFLAMMATION]

    Key Points

  • 5-HT2B agonists stimulate AhR transcriptional activation in human macrophages.

  • Serotonin-induced expression of AhR target genes is 5-HT2B dependent in macrophages.




    oni

    Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile [Host Response and Inflammation]

    Mycoplasma gallisepticum is the primary etiological agent of chronic respiratory disease in chickens. Live attenuated vaccines are most commonly used in the field to control the disease, but current vaccines have some limitations. Vaxsafe MG (strain ts-304) is a new vaccine candidate that is efficacious at a lower dose than the current commercial vaccine strain ts-11, from which it is derived. In this study, the transcriptional profiles of the trachea of unvaccinated chickens and chickens vaccinated with strain ts-304 were compared 2 weeks after challenge with M. gallisepticum strain Ap3AS during the chronic stage of infection. After challenge, genes, gene ontologies, pathways, and protein classes involved in inflammation, cytokine production and signaling, and cell proliferation were upregulated, while those involved in formation and motor movement of cilia, formation of intercellular junctional complexes, and formation of the cytoskeleton were downregulated in the unvaccinated birds compared to the vaccinated birds, reflecting immune dysregulation and the pathological changes induced in the trachea by infection with M. gallisepticum. Vaccination appears to protect the structural and functional integrity of the tracheal mucosa 2 weeks after infection with M. gallisepticum.




    oni

    Identification and Cloning of a New Western Epstein-Barr Virus Strain That Efficiently Replicates in Primary B Cells [Genome Replication and Regulation of Viral Gene Expression]

    The Epstein-Barr virus (EBV) causes human cancers, and epidemiological studies have shown that lytic replication is a risk factor for some of these tumors. This fits with the observation that EBV M81, which was isolated from a Chinese patient with nasopharyngeal carcinoma, induces potent virus production and increases the risk of genetic instability in infected B cells. To find out whether this property extends to viruses found in other parts of the world, we investigated 22 viruses isolated from Western patients. While one-third of the viruses hardly replicated, the remaining viruses showed variable levels of replication, with three isolates replicating at levels close to that of M81 in B cells. We cloned one strongly replicating virus into a bacterial artificial chromosome (BAC); the resulting recombinant virus (MSHJ) retained the properties of its nonrecombinant counterpart and showed similarities to M81, undergoing lytic replication in vitro and in vivo after 3 weeks of latency. In contrast, B cells infected with the nonreplicating Western B95-8 virus showed early but abortive replication accompanied by cytoplasmic BZLF1 expression. Sequencing confirmed that rMSHJ is a Western virus, being genetically much closer to B95-8 than to M81. Spontaneous replication in rM81- and rMSHJ-infected B cells was dependent on phosphorylated Btk and was inhibited by exposure to ibrutinib, opening the way to clinical intervention in patients with abnormal EBV replication. As rMSHJ contains the complete EBV genome and induces lytic replication in infected B cells, it is ideal to perform genetic analyses of all viral functions in Western strains and their associated diseases.

    IMPORTANCE The Epstein-Barr virus (EBV) infects the majority of the world population but causes different diseases in different countries. Evidence that lytic replication, the process that leads to new virus progeny, is linked to cancer development is accumulating. Indeed, viruses such as M81 that were isolated from Far Eastern nasopharyngeal carcinomas replicate strongly in B cells. We show here that some viruses isolated from Western patients, including the MSHJ strain, share this property. Moreover, replication of both M81 and of MSHJ was sensitive to ibrutinib, a commonly used drug, thereby opening an opportunity for therapeutic intervention. Sequencing of MSHJ showed that this virus is quite distant from M81 and is much closer to nonreplicating Western viruses. We conclude that Western EBV strains are heterogeneous, with some viruses being able to replicate more strongly and therefore being potentially more pathogenic than others, and that the virus sequence information alone cannot predict this property.




    oni

    Detecting electronic coherences by time-domain high-harmonic spectroscopy [Physics]

    Ultrafast spectroscopy is capable of monitoring electronic and vibrational states. For electronic states a few eV apart, an X-ray laser source is required. We propose an alternative method based on the time-domain high-order harmonic spectroscopy where a coherent superposition of the electronic states is first prepared by the strong optical...




    oni

    Reversal of hyperactive subthalamic circuits differentially mitigates pain hypersensitivity phenotypes in parkinsonian mice [Neuroscience]

    Although pain is a prevalent nonmotor symptom in Parkinson’s disease (PD), it is undertreated, in part because of our limited understanding of the underlying mechanisms. Considering that the basal ganglia are implicated in pain sensation, and that their synaptic outputs are controlled by the subthalamic nucleus (STN), we hypothesized that...




    oni

    Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain [Neuroscience]

    Chronic pain is a highly prevalent disease with poorly understood pathophysiology. In particular, the brain mechanisms mediating the transition from acute to chronic pain remain largely unknown. Here, we identify a subcortical signature of back pain. Specifically, subacute back pain patients who are at risk for developing chronic pain exhibit...




    oni

    Ammonia emission abatement does not fully control reduced forms of nitrogen deposition [Environmental Sciences]

    Human activities and population growth have increased the natural burden of reactive nitrogen (N) in the environment. Excessive N deposition on Earth’s surface leads to adverse feedbacks on ecosystems and humans. Similar to that of air pollution, emission control is recognized as an efficient means to control acid deposition. Control...




    oni

    Inhaled Corticosteroid Treatment in Chronic Obstructive Pulmonary Disease (COPD): Boon or Bane?

    Inhaled corticosteroid (ICS)–based therapy is often used for patients with chronic obstructive pulmonary disease (COPD). However, this approach is under scrutiny because of ICS overuse in patients for whom it is not recommended and because of concerns about adverse events, particularly pneumonia, with long-term ICS use. Evidence suggests ICS may be beneficial in specific patients, namely, those with high blood eosinophil counts (eg, ≥300 cells/µL) or who are at a high risk of exacerbations. According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2020 ABCD assessment tool, these patients belong in group D. For these patients, recommended initial treatment includes ICS in combination with long-acting β2-agonists (LABAs) when blood eosinophil counts are ≥300 cells/µL or LABA + long-acting muscarinic antagonist (LAMA) when patients are highly symptomatic, that is, with greater dyspnea and/or exercise limitation. Follow-up treatments for patients with persistent dyspnea and/or exacerbations may include LABA + ICS, LABA + LAMA, or LABA + LAMA + ICS, with use of ICS being guided by blood eosinophil counts. In this review, differences in the inflammatory mechanism underlying COPD and asthma and the role of ICS treatment in COPD are summarized. Furthermore, findings from recent clinical trials where use of ICS-based dual or triple therapy in COPD was compared with LABA + LAMA therapy and trials in which ICS withdrawal was evaluated in patients with COPD are reviewed. Finally, a step-by-step guide for ICS withdrawal in patients who are unlikely to benefit from this treatment is proposed. A video of the author discussing the overall takeaway of the review article could be downloaded from the link provided: https://www.youtube.com/watch?v=Uq7Sr5jqPDI.




    oni

    Forest protects Heliconius butterflies from climate extremes [INSIDE JEB]

    Kathryn Knight




    oni

    Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle [RESEARCH ARTICLE]

    Rohini Singh and Timothy A. Linksvayer

    Wolbachia is a widespread group of maternally-transmitted endosymbiotic bacteria that often manipulates the reproductive strategy and life history of its hosts to favor its own transmission. Wolbachia mediated phenotypic effects are well characterized in solitary hosts, but effects in social hosts are unclear. The invasive pharaoh ant, Monomorium pharaonis, shows natural variation in Wolbachia infection between colonies and can be readily bred under laboratory conditions. We previously showed that Wolbachia-infected pharaoh ant colonies had more queen-biased sex ratios than uninfected colonies, which is expected to favor the spread of maternally-transmitted Wolbachia. Here, we further characterize the effects of Wolbachia on the short- and longer-term reproductive and life history traits of pharaoh ant colonies. First, we characterized the reproductive differences between naturally infected and uninfected colonies at three discrete time points and found that infected colonies had higher reproductive investment (i.e. infected colonies produced more new queens), particularly when existing colony queens were three months old. Next, we compared the long-term growth and reproduction dynamics of infected and uninfected colonies across their whole life cycle. Infected colonies had increased colony-level growth and early colony reproduction, resulting in a shorter colony life cycle, when compared to uninfected colonies.




    oni

    Chitotriosidase as a Novel Biomarker for Therapeutic Monitoring of Nephropathic Cystinosis

    Background

    Nephropathic cystinosis, a hereditary lysosomal storage disorder caused by dysfunction of the lysosomal cotransporter cystinosin, leads to cystine accumulation and cellular damage in various organs, particularly in the kidney. Close therapeutic monitoring of cysteamine, the only available disease-modifying treatment, is recommended. White blood cell cystine concentration is the current gold standard for therapeutic monitoring, but the assay is technically demanding and is available only on a limited basis. Because macrophage-mediated inflammation plays an important role in the pathogenesis of cystinosis, biomarkers of macrophage activation could have potential for the therapeutic monitoring of cystinosis.

    Methods

    We conducted a 2-year prospective, longitudinal study in which 61 patients with cystinosis who were receiving cysteamine therapy were recruited from three European reference centers. Each regular care visit included measuring four biomarkers of macrophage activation: IL-1β, IL-6, IL-18, and chitotriosidase enzyme activity.

    Results

    A multivariate linear regression analysis of the longitudinal data for 57 analyzable patients found chitotriosidase enzyme activity and IL-6 to be significant independent predictors for white blood cell cystine levels in patients of all ages with cystinosis; a receiver operating characteristic analysis ranked chitotriosidase as superior to IL-6 in distinguishing good from poor therapeutic control (on the basis of white blood cell cystine levels of <2 nmol 1/2 cystine/mg protein or ≥2 nmol 1/2 cystine/mg protein, respectively). Moreover, in patients with at least one extrarenal complication, chitotriosidase significantly correlated with the number of extrarenal complications and was superior to white blood cell cystine levels in predicting the presence of multiple extrarenal complications.

    Conclusions

    Chitotriosidase enzyme activity holds promise as a biomarker for use in therapeutic monitoring of nephropathic cystinosis.




    oni

    The Role of Noninvasive Ventilation in Cystic Fibrosis: A Cochrane Review Summary With Commentary




    oni

    Post-Breast Cancer Radiotherapy Bronchiolitis Obliterans Organizing Pneumonia

    BACKGROUND:Radiotherapy for breast cancer has been implicated in the development of bronchiolitis obliterans organizing pneumonia (BOOP). Patients may be asymptomatic or may have pulmonary and constitutional symptoms that are moderate or severe. Postradiotherapy BOOP usually develops during the 12 months after completion of radiotherapy and is characterized by ground-glass opacities in the radiation-exposed lung and frequently in the non-irradiated lung.METHODS:An updated literature search and review was performed to update the systematic review we conducted in 2014. Ten new publications were identified: 2 Japanese epidemiological studies, 1 Japanese case series study, 6 case reports, and 1 review article.RESULTS:The incidence of postradiotherapy BOOP was 1.4% in both Japanese epidemiological studies. Risk factors included increasing age, cigarette smoking, and increasing central lung distance. The case reports included 7 women who had breast cancer postradiation BOOP and 1 woman who had an ataxia telangiectasia mutated (ATM) gene mutation, which may increase radiation sensitivity.CONCLUSION:Postradiotherapy BOOP in women with breast cancer occurs at a rate of 1.0–3.0% and may occur in women with immune system dysfunction and genetic mutations.




    oni

    Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials

    BACKGROUND:Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation. We conducted a meta-analysis of published randomized controlled trials to evaluate the efficacy and safety of probiotics for VAP prevention in patients who received mechanical ventilation.METHODS:We searched a number of medical literature databases to identify randomized controlled trials that compared probiotics with controls for VAP prevention. The results were expressed as odds ratios (OR) or mean differences with accompanying 95% CIs. Study-level data were pooled by using a random-effects model. Data syntheses were accomplished by using statistical software.RESULTS:Fourteen studies that involved 1,975 subjects met our inclusion criteria. Probiotic administration was associated with a reduction in VAP incidence among all 13 studies included in the meta-analysis (OR 0.62, 95% CI 0.45–0.85; P = .003; I2 = 43%) but not among the 6 double-blinded studies (OR 0.72, 95% CI 0.44–1.19; P = .20; I2 = 55%). We found a shorter duration of antibiotic use for VAP (mean difference −1.44, 95% CI −2.88 to −0.01; P = .048, I2 = 30%) in the probiotics group than in the control group, and the finding comes from just 2 studies. No statistically significant differences were found between the groups in terms of ICU mortality (OR 0.95, 95% CI 0.67–1.34; P = .77; I2 = 0%), ICU stay (mean difference –0.77, 95% CI –2.58 to 1.04; P = .40; I2 = 43%), duration of mechanical ventilation (mean difference –0.91, 95% CI –2.20 to 0.38; P = .17; I2 = 25%), or occurrence of diarrhea (OR 0.72, 95% CI 0.45–1.15; P = .17; I2 = 41%).CONCLUSIONS:The meta-analysis results indicated that the administration of probiotics significantly reduced the incidence of VAP. Furthermore, our findings need to be verified in large-scale, well-designed, randomized, multi-center trials.




    oni

    Small-molecule agonists of the RET receptor tyrosine kinase activate biased trophic signals that are influenced by the presence of GFRa1 co-receptors [Neurobiology]

    Glial cell line–derived neurotrophic factor (GDNF) is a growth factor that regulates the health and function of neurons and other cells. GDNF binds to GDNF family receptor α1 (GFRa1), and the resulting complex activates the RET receptor tyrosine kinase and subsequent downstream signals. This feature restricts GDNF activity to systems in which GFRa1 and RET are both present, a scenario that may constrain GDNF breadth of action. Furthermore, this co-dependence precludes the use of GDNF as a tool to study a putative functional cross-talk between GFRa1 and RET. Here, using biochemical techniques, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry in murine cells, tissues, or retinal organotypic cultures, we report that a naphthoquinone/quinolinedione family of small molecules (Q compounds) acts as RET agonists. We found that, like GDNF, signaling through the parental compound Q121 is GFRa1-dependent. Structural modifications of Q121 generated analogs that activated RET irrespective of GFRa1 expression. We used these analogs to examine RET–GFRa1 interactions and show that GFRa1 can influence RET-mediated signaling and enhance or diminish AKT Ser/Thr kinase or extracellular signal-regulated kinase signaling in a biased manner. In a genetic mutant model of retinitis pigmentosa, a lead compound, Q525, afforded sustained RET activation and prevented photoreceptor neuron loss in the retina. This work uncovers key components of the dynamic relationships between RET and its GFRa co-receptor and provides RET agonist scaffolds for drug development.




    oni

    Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias [Cell Biology]

    Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.




    oni

    A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning [Molecular Biophysics]

    Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo. Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC–treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning.




    oni

    Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease]

    The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.




    oni

    Structural constraints on Lower Carboniferous shale gas exploration in the Craven Basin, NW England

    Detailed interpretation of a 3D seismic data volume reveals the detrimental effect that post-depositional tectonic deformation has had on buried Lower Carboniferous (Dinantian–Namurian) shales and its consequences for shale gas exploration in the SW part (Fylde area) of the Craven Basin in NW England. The structural styles primarily result from Devono-Carboniferous (syn-sedimentary) extension, post-rift subsidence and Variscan inversion, a renewed phase of Permo-Triassic extension, and Cenozoic uplift and basin exhumation. In contrast to the shallow dips and bedding continuity that characterizes productive shale gas plays in other basins (e.g. in the USA and Argentina), our mapping shows that the area is affected by deformation that results in the Bowland Shale Formation targets being folded and dissected into fault-bound compartments defined by SW–NE striking (Lower Carboniferous and Variscan) reverse faults and SSW–NNE to N–S striking (Permo-Triassic) normal faults. The fault networks and the misalignment between the elongate compartments they contain and the present-day minimum horizontal stress orientation limit the length over which long lateral boreholes can remain in a productive horizon, placing an important constraint on optimal well positioning, reducing the size of the shale gas resource and affecting well productivity. Our subsurface mapping using this high-fidelity dataset provides an accurate picture of the Upper Palaeozoic structure and demonstrates that faulting is denser and more complex than apparent from geological mapping of the surface outcrop. That structural complexity has direct and significant consequences for: the location of well pads; the lateral continuity of target shale gas horizons; the evaluation of the risk of inducing seismicity on seismically resolvable (large displacement) fault planes prior to drilling; and the likelihood of faults with small throws (below seismic resolution) being present.




    oni

    Sedimentary and tectonic controls on Lower Carboniferous (Visean) mixed carbonate-siliciclastic deposition in NE England and the Southern North Sea: implications for reservoir architecture

    Discovery of the Breagh gas field in the Southern North Sea (SNS) has demonstrated the potential that the Lower Carboniferous (Visean, 346.7–330.9 Ma) Farne Group reservoirs have to contribute to the UK's future energy mix. New biostratigraphic correlations provide a basis to compare Asbian and Brigantian sedimentary cores from the Breagh Field and age-equivalent sediments exposed on the Northumberland Coast, which has proved critical in gaining an understanding of exploration and development opportunities. Thirteen facies associations characterize the mixed carbonate–siliciclastic system, grouped into: marine, delta front, delta shoreface, lower delta plain and upper delta plain gross depositional environments. The facies associations are interpreted as depositing in a mixed carbonate and siliciclastic fluvio-deltaic environment, and are arranged into coarsening- and cleaning-upward cycles (parasequences) bounded by flooding surfaces. Most cycles are characterized by mouth bars, distributary channels, interdistributary bays and common braided rivers, interpreted as river-dominated deltaic deposits. Some cycles include rare shoreface and tidally-influenced deposits, interpreted as river-dominated and wave- or tide-influenced deltaic deposits. The depositional processes that formed each cycle have important implications for the reservoir net/gross ratio (where this ratio indicates the proportion of sandstone beds in a cycle), thickness and lateral extent. The deltaic deposits were controlled by a combination of tectonic and eustatic (allocyclic) events and delta avulsion (autocyclic) processes, and are likely to reflect a changing tectonic regime, from extension within elongate fault-bounded basins (synrift) to passive regional thermal subsidence (post-rift). Deep incision by the Base Permian Unconformity across the Breagh Field has removed the Westphalian, Namurian and upper Visean, to leave the more prospective thicker clastic reservoirs within closure.

    Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf




    oni

    Structural evolution of the Breagh area: implications for carboniferous prospectivity of the Mid North Sea High, Southern North Sea

    Exploration success at Breagh demonstrates that western parts of the Mid North Sea High area are prospective despite the absence of an Upper Permian (Rotliegend Group) Leman Sandstone Formation reservoir and source rocks belonging to the Upper Carboniferous Westphalian Coal Measures Group. Detailed seismic and well interpretation shows that the Breagh trap was a long-lived footwall high, the prospectivity of which was enhanced by Variscan folding and uplift, leading to the truncation (subcrop) of Lower Carboniferous reservoirs beneath the Base Permian Unconformity. Its drape (supra-crop) by Upper Permian (Zechstein Super Group) evaporites creates the seal. The complexity of its overburden means that an accurate picture of the Breagh structure only emerges after accurate depth-conversion that takes the effects of the Mesozoic graben into account. Pronounced easterly tilting during the Cenozoic affected the area and controlled gas migration into the structure from palaeostructures lying to the east. However, evidence that Breagh is not filled to spill point (underfill) suggests that charge limitation remained an issue. The study demonstrates that a poorly-documented and under-explored Lower Carboniferous play exists in Southern North Sea, which relies upon careful structural mapping and basin modelling to be undertaken for the play to be understood and its further potential to be realized.

    Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf




    oni

    Mid-Eocene giant slope failure (sedimentary melanges) in the Ligurian accretionary wedge (NW Italy) and relationships with tectonics, global climate change and the dissociation of gas hydrates

    Upper Lutetian–Bartonian sedimentary mélanges, corresponding to ancient mud-rich submarine mass transport deposits, are widely distributed over an area c. 300 km long and tens of kilometres wide along the exhumed outer part of the External Ligurian accretionary wedge in the Northern Apennines. The occurrence of methane-derived carbonate concretions (septarians) in a specific tectonostratigraphic position below these sedimentary mélanges allows us to document the relationships among a significant period of regional-scale slope failure, climate change (the Early and Mid-Eocene Optimum stages), the dissociation of gas hydrates and accretionary tectonics during the Ligurian Tectonic Phase (early–mid-Lutetian). The distribution of septarians at the core of thrust-related anticlines suggests that the dissociation of gas hydrates was triggered by accretionary tectonics rather than climate change. The different ages of slope failure emplacement and the formation of the septarians support the view that the dissociation of gas hydrates was not the most important trigger for slope failure. The latter occurred during a tectonic quiescence stage associated with a regressive depositional trend, and probably minor residual tectonic pulses, which followed the Ligurian Tectonic Phase, favouring the dynamic re-equilibrium of the External Ligurian accretionary wedge. Our findings provide useful information for a better understanding of the factors controlling giant slope failure events in modern accretionary settings, where they may cause tsunamis.




    oni

    Polygenetic melanges: a glimpse on tectonic, sedimentary and diapiric recycling in convergent margins

    A significant part of mélanges recognized in exhumed convergent margins around the world has been recently documented to have chiefly originated from masse transport and subsurface remobilization and disruption (i.e. mélanges, from sedimentary and mud–serpentinite diapiric processes and from in situ fluidification–disruption). Tectonic and/or sedimentary processes occurring during subsequent multiple deformational events of convergent margin evolution commonly overprint and significantly rework the primary (sedimentary or diapiric) mélange fabric, forming polygenetic mélanges. This ultimately complicates their distinction from true tectonic mélanges, masking part of the recorded tectono-sedimentary evolution of the associated convergent margin. The contributions gathered in this thematic collection explore with different approaches (from field structural and stratigraphic observations to geophysical analyses) different types of polygenetic mélange, at various scales, around the world. These studies conclude that the understanding of this type of mélange may provide crucial insights for a more detailed interpretation of the evolution of ancient and modern convergent margins, and of processes and mechanisms triggering potential natural hazards (earthquakes and tsunamis). Case studies include the Apennines in the Central Mediterranean region, the Carpathians in Central Europe and the Nankai Prism in Japan.

    Thematic collection: This article is part of the ‘Polygenetic mélanges: a glimpse on tectonic sedimentary and diapiric recycling in convergent margins’ collection available at https://www.lyellcollection.org/cc/polygenetic-melanges




    oni

    Paleomagnetic and magnetic fabric data from Lower Triassic redbeds of the Central Western Carpathians: new constraints on the paleogeographic and tectonic evolution of the Carpathian region

    In the Central Western Carpathians (CWC), most published paleomagnetic results from Permo-Mesozoic rocks document extensive remagnetizations and come from thin-skinned thrust units that have undergone multistage deformation. We present results from lower Triassic redbeds from the autochthonous cover overlying the basement that carry a primary magnetization. Petromagnetic results indicate that the dominant ferromagnetic carrier is hematite, while magnetic susceptibility and its anisotropy are controlled by both ferromagnetic and paramagnetic minerals. Magnetic fabrics document weak deformation related to Late Cretaceous shortening. The directions of the high unblocking temperature remanence components pass both reversal and fold tests, attesting to their primary nature. Paleomagnetic inclinations are flatter than expected from reference datasets, suggesting small latitudinal separation between the CWC and stable Europe. Paleomagnetic declinations are mostly clustered within individual mountain massifs, implying their tectonic coherence. They show only minor differences between the massifs, indicating a lack of significant vertical-axis tectonic rotations within the studied central parts of the CWC. The paleomagnetic declinations are therefore representative of the whole of the CWC in terms of regional paleogeographic interpretations, and imply moderate counterclockwise rotations (c. 26°) of the region with respect to stable Europe since the Early Triassic.




    oni

    Development of an Extended-Specificity Multiplex Immunoassay for Detection of Streptococcus pneumoniae Serotype-Specific Antigen in Urine by Use of Human Monoclonal Antibodies [Diagnostic Laboratory Immunology]

    Current pneumococcal vaccines cover the 10 to 23 most common serotypes of the 92 presently described. However, with the increased usage of pneumococcal-serotype-based vaccines, the risk of serotype replacement and an increase in disease caused by nonvaccine serotypes remains. Serotype surveillance of pneumococcal infections relies heavily on culture techniques, which are known to be insensitive, particularly in cases of noninvasive disease. Pneumococcal-serotype-specific urine assays offer an alternative method of serotyping for both invasive and noninvasive disease. However, the assays described previously cover mainly conjugate vaccine serotypes, give little information about circulating nonvaccine serotypes, and are currently available only in one or two specialist laboratories. Our laboratory has developed a Luminex-based extended-range antigen capture assay to detect pneumococcal-serotype-specific antigens in urine samples. The assay targets 24 distinct serotypes/serogroups plus the cell wall polysaccharide (CWP) and some cross-reactive serotypes. We report that the assay is capable of detecting all the targeted serotypes and the CWP at 0.1 ng/ml, while some serotypes are detected at concentrations as low as 0.3 pg/ml. The analytical serotype specificity was determined to be 98.4% using a panel of polysaccharide-negative urine specimens spiked with nonpneumococcal bacterial antigens. We also report clinical sensitivities of 96.2% and specificities of 89.9% established using a panel of urine specimens from patients diagnosed with community-acquired pneumonia or pneumococcal disease. This assay can be extended for testing other clinical samples and has the potential to greatly improve serotype-specific surveillance in the many cases of pneumococcal disease in which a culture is never obtained.




    oni

    High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin [Clinical Immunology]

    We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538–36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.




    oni

    Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy after alemtuzumab therapy in kidney transplant recipients

    Alemtuzumab is approved for the treatment of relapsing-remitting MS and is used off-label for patients with chronic lymphocytic leukemia and as induction and antirejection therapy in kidney transplant recipients.1 Guillain-Barré syndrome (GBS) or chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) complicating alemtuzumab treatment was reported in 9 patients with hematologic malignancy or MS.1–3 The risk of GBS or CIDP in solid organ transplant recipients treated with alemtuzumab is unknown.




    oni

    Monitoring of radiologic disease activity by serum neurofilaments in MS

    Objective

    To determine whether serum neurofilament light chain (sNfL) levels are associated with recent MRI activity in patients with relapsing-remitting MS (RRMS).

    Methods

    This observational study included 163 patients (405 samples) with early RRMS from the Study of Early interferon-beta1a (IFN-β1a) Treatment (SET) cohort and 179 patients (664 samples) with more advanced RRMS from the Genome-Wide Association Study of Multiple Sclerosis (GeneMSA) cohort. Based on annual brain MRI, we assessed the ability of sNfL cutoffs to reflect the presence of combined unique active lesions, defined as new/enlarging lesion compared with MRI in the preceding year or contrast-enhancing lesion. The probability of active MRI lesions among patients with different sNfL levels was estimated with generalized estimating equations models.

    Results

    From the sNfL samples ≥90th percentile, 81.6% of the SET (OR = 3.4, 95% CI = 1.8-6.4) and 48.9% of the GeneMSA cohort samples (OR = 2.6, 95% CI = 1.7-3.9) was associated with radiological disease activity on MRI. The sNfL level between the 10th and 30th percentile was reflective of negligible MRI activity: 1.4% (SET) and 6.5% (GeneMSA) of patients developed ≥3 active lesions, 5.8% (SET) and 6.5% (GeneMSA) developed ≥2 active lesions, and 34.8% (SET) and 11.8% (GeneMSA) showed ≥1 active lesion on brain MRI. The sNfL level <10th percentile was associated with even lower MRI activity. Similar results were found in a subgroup of clinically stable patients.

    Conclusions

    Low sNfL levels (≤30th percentile) help identify patients with MS with very low probability of recent radiologic disease activity during the preceding year. This result suggests that in future, sNfL assessment may substitute the need for annual brain MRI monitoring in considerable number (23.1%–36.4%) of visits in clinically stable patients.




    oni

    Development of a Novel and Rapid Antibody-Based Diagnostic for Chronic Staphylococcus aureus Infections Based on Biofilm Antigens [Immunoassays]

    Prosthetic joint infections are difficult to diagnose and treat due to biofilm formation by the causative pathogens. Pathogen identification relies on microbial culture that requires days to weeks, and in the case of chronic biofilm infections, lacks sensitivity. Diagnosis of infection is often delayed past the point of effective treatment such that only the removal of the implant is curative. Early diagnosis of an infection based on antibody detection might lead to less invasive, early interventions. Our study examined antibody-based assays against the Staphylococcus aureus biofilm-upregulated antigens SAOCOL0486 (a lipoprotein), glucosaminidase (a domain of SACOL1062), and SACOL0688 (the manganese transporter MntC) for detection of chronic S. aureus infection. We evaluated these antigens by enzyme-linked immunosorbent assay (ELISA) using sera from naive rabbits and rabbits with S. aureus-mediated osteomyelitis, and then we validated a proof of concept for the lateral flow assay (LFA). The SACOL0688 LFA demonstrated 100% specificity and 100% sensitivity. We demonstrated the clinical diagnostic utility of the SACOL0688 antigen using synovial fluid (SF) from humans with orthopedic implant infections. Elevated antibody levels to SACOL0688 in clinical SF specimens correlated with 91% sensitivity and 100% specificity for the diagnosis of S. aureus infection by ELISA. We found measuring antibodies levels to SACOL0688 in SF using ELISA or LFA provides a tool for the sensitive and specific diagnosis of S. aureus prosthetic joint infection. Development of the LFA diagnostic modality is a desirable, cost-effective option, potentially providing rapid readout in minutes for chronic biofilm infections.




    oni

    Fourier Transform Infrared Spectroscopy Is a New Option for Outbreak Investigation: a Retrospective Analysis of an Extended-Spectrum-Beta-Lactamase-Producing Klebsiella pneumoniae Outbreak in a Neonatal Intensive Care Unit [Epidemiology]

    The IR Biotyper is a new automated typing system based on Fourier-transform infrared (FT-IR) spectroscopy that gives results within 4 h. We aimed (i) to use the IR Biotyper to retrospectively analyze an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-KP) in a neonatal intensive care unit and to compare results to BOX-PCR and whole-genome sequencing (WGS) results as the gold standard and (ii) to assess how the cutoff values used to define clusters affect the discriminatory power of the IR Biotyper. The sample consisted of 18 isolates from 14 patients. Specimens were analyzed in the IR Biotyper using the default analysis settings, and spectra were analyzed using OPUS 7.5 software. The software contains a feature that automatically proposes a cutoff value to define clusters; the cutoff value defines up to which distance the spectra are considered to be in the same cluster. Based on FT-IR, the outbreak represented 1 dominant clone, 1 secondary clone, and several unrelated clones. FT-IR results, using the cutoff value generated by the accompanying software after 4 replicates, were concordant with WGS for all but 1 isolate. BOX-PCR was underdiscriminatory compared to the other two methods. Using the cutoff value generated after 12 replicates, the results of FT-IR and WGS were completely concordant. The IR Biotyper can achieve the same typeability and discriminatory power as genome-based methods. However, to attain this high performance requires either previous, strain-dependent knowledge about the optimal technical parameters to be used or validation by a second method.




    oni

    A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer

    Breast cancer is a leading cause of death in women worldwide, but the underlying mechanisms of breast tumorigenesis remain unclear. Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor in breast cancer. However, the mechanisms of FBP1 as a tumor suppressor in breast cancer remain to be explored. Here we showed that FBP1 bound to Notch1 in breast cancer cells. Moreover, FBP1 enhanced ubiquitination of Notch1, further leading to proteasomal degradation via FBXW7 pathway. In addition, we found that FBP1 significantly repressed the transactivation of Notch1 in breast cancer cells. Functionally, Notch1 was involved in FBP1-mediated tumorigenesis of breast cancer cells in vivo and in vitro. Totally, these findings indicate that FBP1 inhibits breast tumorigenesis by regulating Notch1 pathway, highlighting FBP1 as a potential therapeutic target for breast cancer.

    Implications:

    We demonstrate FBP1 as a novel regulator for Notch1 in breast cancer.




    oni

    Distinct Regulation of {sigma}1 Receptor Multimerization by Its Agonists and Antagonists in Transfected Cells and Rat Liver Membranes [Cellular and Molecular]

    Extensive studies have shown that the 1 receptor (1R) interacts with and modulates the activity of multiple proteins with important biological functions. Recent crystal structures of 1R as a homotrimer differ from a dimer-tetramer model postulated earlier. It remains inconclusive whether ligand binding regulates 1R oligomerization. Here, novel nondenaturing gel methods and mutational analysis were used to examine 1R oligomerization. In transfected cells, 1R exhibited as multimers, dimers, and monomers. Overall, 1R agonists decreased, whereas 1R antagonists increased 1R multimers, suggesting that agonists and antagonists differentially affect the stability of 1R multimers. Endogenous 1R in rat liver membranes also showed similar regulation of oligomerization as in cells. Mutations at key residues lining the trimerization interface (Arg119, Asp195, Phe191, Trp136, and Gly91) abolished multimerization without disrupting dimerization. Intriguingly, truncation of the N terminus reduced 1R to apparent monomer. These results demonstrate that multiple domains play crucial roles in coordinating high-order quaternary organization of 1R. The E102Q 1R mutant implicated in juvenile amyotrophic lateral sclerosis formed dimers only, suggesting that dysregulation of 1R multimeric assembly may impair its function. Interestingly, oligomerization of 1R was pH-dependent and correlated with changes in [3H](+)-pentazocine binding affinity and Bmax. Combined with mutational analysis, it is reasoned that 1R multimers possess high-affinity and high-capacity [3H](+)-pentazocine binding, whereas monomers likely lack binding. These results suggest that 1R may exist in interconvertible oligomeric states in a dynamic equilibrium. Further exploration of ligand-regulated 1R multimerization may provide novel approaches to modulate the function of 1R and its interacting proteins.

    SIGNIFICANCE STATEMENT

    The 1 receptor (1R) modulates the activities of various partner proteins. Recently, crystal structures of 1R were elucidated as homotrimers. This study used novel nondenaturing gel methods to examine 1R oligomerization in transfected cells and rat liver membranes. Overall, agonist binding decreased, whereas antagonist binding increased 1R multimers, which comprised trimers and larger units. 1R multimers were shown to bind [3H](+)-pentazocine with high affinity and high capacity. Furthermore, mutational analysis revealed a crucial role of its N-terminal domain in 1R multimerization.




    oni

    Dose Frequency Optimization of the Dual Amylin and Calcitonin Receptor Agonist KBP-088: Long-Lasting Improvement in Food Preference and Body Weight Loss [Behavioral Pharmacology]

    Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time period, resulting in metabolic effects superior to those of amylin. Because of the prolonged receptor activation, different dosing intervals and, hence, less frequent receptor activation might change the efficacy of DACRA treatment in terms of weight loss and food preference. In this study, we compared daily dosing to dosing every other day with the aim of understanding the optimal balance between efficacy and tolerability. Obese and lean male Sprague-Dawley rats were treated with the DACRA KBP-088, applying two different dosing intervals (1.5 nmol/kg once daily and 3 nmol/kg every other day) to assess the effect on body weight, food intake, glucose tolerance, and food preference when given the choice between chow (13% fat) and a high-fat diet (60% fat). Treatment with KBP-088 induced significant weight loss, reduction in adiposity, improvement in glucose control, and altered food preference toward food that is less calorie-dense. KBP-088 dosed every other day (3 nmol/kg) was superior to KBP-088 once daily (1.5 nmol/kg) in terms of weight loss and improvement of food preference. The beneficial effects were evident in both lean and obese rats. Hence, dosing KBP-088 every other day positively affects overall efficacy on metabolic parameters regardless of the lean/obese state, suggesting that less-frequent dosing with KBP-088 could be feasible.

    SIGNIFICANCE STATEMENT

    Here, we show that food preference can be altered chronically toward choices that are less calorie-dense by pharmacological treatment. Further, pharmacological dosing regimens affect the efficacy differently, as dosing every other day improved body weight loss and alterations in food preference compared with daily dosing. This suggest that alterations of the dosing regimens could be feasible in the treatment of obesity.




    oni

    Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

    In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

    SIGNIFICANCE STATEMENT

    This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.




    oni

    KPR-5714, a Novel Transient Receptor Potential Melastatin 8 Antagonist, Improves Overactive Bladder via Inhibition of Bladder Afferent Hyperactivity in Rats [Gastrointestinal, Hepatic, Pulmonary, and Renal]

    Transient receptor potential (TRP) melastatin 8 (TRPM8) is a temperature-sensing ion channel mainly expressed in primary sensory neurons (A-fibers and C-fibers in the dorsal root ganglion). In this report, we characterized KPR-5714 (N-[(R)-3,3-difluoro-4-hydroxy-1-(2H-1,2,3-triazol-2-yl)butan-2-yl]-3-fluoro-2-[5-(4-fluorophenyl)-1H-pyrazol-3-yl]benzamide), a novel and selective TRPM8 antagonist, to assess its therapeutic potential against frequent urination in rat models with overactive bladder (OAB). In calcium influx assays with HEK293T cells transiently expressing various TRP channels, KPR-5714 showed a potent TRPM8 antagonistic effect and high selectivity against other TRP channels. Intravenously administered KPR-5714 inhibited the hyperactivity of mechanosensitive C-fibers of bladder afferents and dose-dependently increased the intercontraction interval shortened by intravesical instillation of acetic acid in anesthetized rats. Furthermore, we examined the effects of KPR-5714 on voiding behavior in conscious rats with cerebral infarction and in those exposed to cold in metabolic cage experiments. Cerebral infarction and cold exposure induced a significant decrease in the mean voided volume and increase in voiding frequency in rats. Orally administered KPR-5714 dose-dependently increased the mean voided volume and decreased voiding frequency without affecting total voided volume in these models. This study demonstrates that KPR-5714 improves OAB in three different models by inhibiting exaggerated activity of mechanosensitive bladder C-fibers and suggests that KPR-5714 may provide a new and useful approach to the treatment of OAB.

    SIGNIFICANCE STATEMENT

    TRPM8 is involved in bladder sensory transduction and plays a role in the abnormal activation in hypersensitive bladder disorders. KPR-5714, as a novel and selective TRPM8 antagonist, may provide a useful treatment for the disorders related to the hyperactivity of bladder afferent nerves, particularly in overactive bladder.




    oni

    Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome [Drug Discovery and Translational Medicine]

    Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33–amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS.

    SIGNIFICANCE STATEMENT

    Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections.




    oni

    Mouse Colonic Epithelial Cells Functionally Express the Histamine H4 Receptor [Gastrointestinal, Hepatic, Pulmonary, and Renal]

    We hypothesized that, in mice, histamine via the histamine receptor subtype 4 (H4R) on colon epithelial cells affects epithelial barrier integrity, perturbing physiologic function of the colonic mucosa and thus aggravating the severity of colitis. To test this hypothesis, bone marrow–chimeric mice were generated from H4R knockout (H4R–/–) and wild-type (WT) BALB/cJ mice and subjected to the dextrane sodium sulfate (DSS)-induced acute colitis model. Clinical symptoms and pathohistological derangements were scored. Additionally, total RNA was extracted from either mouse whole-colon homogenates or primary cell preparations enriched for epithelial cells, and gene expression was analyzed by real-time quantitative polymerase chain reaction. The impact of the H4R on epithelial barrier function was assessed by measurement of transepithelial electrical resistence of organoid-derived two-dimensional monolayers from H4R–/– and WT mice using chopstick electrodes. Bone marrow–chimeric mice with genetic depletion of the H4R in nonhematopoietic cells exhibited less severe DSS-induced acute colitis symptoms compared with WT mice, indicating a functional proinflammatory expression of H4R in nonimmune cells of the colon. Analysis of H4R expression revealed the presence of H4R mRNA in colon epithelial cells. This expression could be confirmed and complemented by functional analyses in organoid-derived epithelial cell monolayers. Thus, we conclude that the H4R is functionally expressed in mouse colon epithelial cells, potentially modulating mucosal barrier integrity and intestinal inflammatory reactions, as was demonstrated in the DSS-induced colitis model, in which presence of the H4R on nonhematopoietic cells aggravated the inflammatory phenotype.

    SIGNIFICANCE STATEMENT

    The histamine H4 receptor (H4R) is functionally expressed on mouse colon epithelial cells, thereby aggravating dextrane sodium sulfate–induced colitis in BALB/cJ mice. Histamine via the H4R reduces transepithelial electrical resistance of colon epithelial monolayers, indicating a function of H4R in regulation of epithelial barrier integrity.




    oni

    Transitioning from Basic toward Systems Pharmacodynamic Models: Lessons from Corticosteroids [Review Articles]

    Technology in bioanalysis, -omics, and computation have evolved over the past half century to allow for comprehensive assessments of the molecular to whole body pharmacology of diverse corticosteroids. Such studies have advanced pharmacokinetic and pharmacodynamic (PK/PD) concepts and models that often generalize across various classes of drugs. These models encompass the "pillars" of pharmacology, namely PK and target drug exposure, the mass-law interactions of drugs with receptors/targets, and the consequent turnover and homeostatic control of genes, biomarkers, physiologic responses, and disease symptoms. Pharmacokinetic methodology utilizes noncompartmental, compartmental, reversible, physiologic [full physiologically based pharmacokinetic (PBPK) and minimal PBPK], and target-mediated drug disposition models using a growing array of pharmacometric considerations and software. Basic PK/PD models have emerged (simple direct, biophase, slow receptor binding, indirect response, irreversible, turnover with inactivation, and transduction models) that place emphasis on parsimony, are mechanistic in nature, and serve as highly useful "top-down" methods of quantitating the actions of diverse drugs. These are often components of more complex quantitative systems pharmacology (QSP) models that explain the array of responses to various drugs, including corticosteroids. Progressively deeper mechanistic appreciation of PBPK, drug-target interactions, and systems physiology from the molecular (genomic, proteomic, metabolomic) to cellular to whole body levels provides the foundation for enhanced PK/PD to comprehensive QSP models. Our research based on cell, animal, clinical, and theoretical studies with corticosteroids have provided ideas and quantitative methods that have broadly advanced the fields of PK/PD and QSP modeling and illustrates the transition toward a global, systems understanding of actions of diverse drugs.

    Significance Statement

    Over the past half century, pharmacokinetics (PK) and pharmacokinetics/pharmacodynamics (PK/PD) have evolved to provide an array of mechanism-based models that help quantitate the disposition and actions of most drugs. We describe how many basic PK and PK/PD model components were identified and often applied to the diverse properties of corticosteroids (CS). The CS have complications in disposition and a wide array of simple receptor-to complex gene-mediated actions in multiple organs. Continued assessments of such complexities have offered opportunities to develop models ranging from simple PK to enhanced PK/PD to quantitative systems pharmacology (QSP) that help explain therapeutic and adverse CS effects. Concurrent development of state-of-the-art PK, PK/PD, and QSP models are described alongside experimental studies that revealed diverse CS actions.