pro

How are war crimes prosecuted?

How are war crimes prosecuted? Explainer Video NCapeling 26 April 2022

Explaining what war crimes are and how, in the circumstances of Ukraine, could war crimes be prosecuted.

The Geneva Conventions and Protocol 1 describe what they call ‘grave breaches’ of international humanitarian law, and both Ukraine and Russia are parties to these treaties.

Grave breaches include directly attacking civilians and launching an indiscriminate attack affecting the civilian population or civilian property.

Many states and the International Criminal Court (ICC) also have the possibility to prosecute a wider set of war crimes although, in the past, states have not prosecuted many such crimes committed outside their own territory.

Neither Russia nor Ukraine is a party to the ICC Statute, but Ukraine did declared it accepted the Court’s jurisdiction for crimes on its territory, and and investigations have now started.

But there are several problems to be overcome to achieve successful prosecutions, such as the collection and preservation of evidence, proof of the intent of the suspects in the heat of war, how to be arrest suspects, and the issue of immunity.




pro

Amyloid precursor protein is a restriction factor that protects against Zika virus infection in mammalian brains [Gene Regulation]

Zika virus (ZIKV) is a neurotropic flavivirus that causes several diseases including birth defects such as microcephaly. Intrinsic immunity is known to be a frontline defense against viruses through host anti-viral restriction factors. Limited knowledge is available on intrinsic immunity against ZIKV in brains. Amyloid precursor protein (APP) is predominantly expressed in brains and implicated in the pathogenesis of Alzheimer's diseases. We have found that ZIKV interacts with APP, and viral infection increases APP expression via enhancing protein stability. Moreover, we identified the viral peptide, HGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGGFGSLGL, which is capable of en-hancing APP expression. We observed that aging brain tissues with APP had protective effects on ZIKV infection by reducing the availability of the viruses. Also, knockdown of APP expression or blocking ZIKV-APP interactions enhanced ZIKV replication in human neural progenitor/stem cells. Finally, intracranial infection of ZIKV in APP-null neonatal mice resulted in higher mortality and viral yields. Taken together, these findings suggest that APP is a restriction factor that protects against ZIKV by serving as a decoy receptor, and plays a protective role in ZIKV-mediated brain injuries.




pro

Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii [Molecular Biophysics]

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.




pro

Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations [Molecular Biophysics]

Rhodopsin is a canonical class A photosensitive G protein–coupled receptor (GPCR), yet relatively few pharmaceutical agents targeting this visual receptor have been identified, in part due to the unique characteristics of its light-sensitive, covalently bound retinal ligands. Rhodopsin becomes activated when light isomerizes 11-cis-retinal into an agonist, all-trans-retinal (ATR), which enables the receptor to activate its G protein. We have previously demonstrated that, despite being covalently bound, ATR can display properties of equilibrium binding, yet how this is accomplished is unknown. Here, we describe a new approach for both identifying compounds that can activate and attenuate rhodopsin and testing the hypothesis that opsin binds retinal in equilibrium. Our method uses opsin-based fluorescent sensors, which directly report the formation of active receptor conformations by detecting the binding of G protein or arrestin fragments that have been fused onto the receptor's C terminus. We show that these biosensors can be used to monitor equilibrium binding of the agonist, ATR, as well as the noncovalent binding of β-ionone, an antagonist for G protein activation. Finally, we use these novel biosensors to observe ATR release from an activated, unlabeled receptor and its subsequent transfer to the sensor in real time. Taken together, these data support the retinal equilibrium binding hypothesis. The approach we describe should prove directly translatable to other GPCRs, providing a new tool for ligand discovery and mutant characterization.




pro

Identification of compounds that bind the centriolar protein SAS-6 and inhibit its oligomerization [Computational Biology]

Centrioles are key eukaryotic organelles that are responsible for the formation of cilia and flagella, and for organizing the microtubule network and the mitotic spindle in animals. Centriole assembly requires oligomerization of the essential protein spindle assembly abnormal 6 (SAS-6), which forms a structural scaffold templating the organization of further organelle components. A dimerization interaction between SAS-6 N-terminal “head” domains was previously shown to be essential for protein oligomerization in vitro and for function in centriole assembly. Here, we developed a pharmacophore model allowing us to assemble a library of low-molecular-weight ligands predicted to bind the SAS-6 head domain and inhibit protein oligomerization. We demonstrate using NMR spectroscopy that a ligand from this family binds at the head domain dimerization site of algae, nematode, and human SAS-6 variants, but also that another ligand specifically recognizes human SAS-6. Atomistic molecular dynamics simulations starting from SAS-6 head domain crystallographic structures, including that of the human head domain which we now resolve, suggest that ligand specificity derives from favorable Van der Waals interactions with a hydrophobic cavity at the dimerization site.




pro

Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors [Molecular Biophysics]

RNA-protein interfaces control key replication events during the HIV-1 life cycle. The viral trans-activator of transcription (Tat) protein uses an archetypal arginine-rich motif (ARM) to recruit the host positive transcription elongation factor b (pTEFb) complex onto the viral trans-activation response (TAR) RNA, leading to activation of HIV transcription. Efforts to block this interaction have stimulated production of biologics designed to disrupt this essential RNA-protein interface. Here, we present four co-crystal structures of lab-evolved TAR-binding proteins (TBPs) in complex with HIV-1 TAR. Our results reveal that high-affinity binding requires a distinct sequence and spacing of arginines within a specific β2-β3 hairpin loop that arose during selection. Although loops with as many as five arginines were analyzed, only three arginines could bind simultaneously with major-groove guanines. Amino acids that promote backbone interactions within the β2-β3 loop were also observed to be important for high-affinity interactions. Based on structural and affinity analyses, we designed two cyclic peptide mimics of the TAR-binding β2-β3 loop sequences present in two high-affinity TBPs (KD values of 4.2 ± 0.3 and 3.0 ± 0.3 nm). Our efforts yielded low-molecular weight compounds that bind TAR with low micromolar affinity (KD values ranging from 3.6 to 22 μm). Significantly, one cyclic compound within this series blocked binding of the Tat-ARM peptide to TAR in solution assays, whereas its linear counterpart did not. Overall, this work provides insight into protein-mediated TAR recognition and lays the ground for the development of cyclic peptide inhibitors of a vital HIV-1 RNA-protein interaction.








pro

Cities as climate leaders: Progress and ambition

Cities as climate leaders: Progress and ambition 1 December 2021 — 12:00PM TO 1:00PM Anonymous (not verified) 16 November 2021 Online

This panel discusses the progress cities have already made, whether progress at COP26 was enough, and what more needs to be done to scale action and ambition internationally.

Cities are critical to tackling the pressing environmental challenges of our time. While they now account for an estimated 75 per cent of global CO2 emissions, cities also offer a unique opportunity for devolved leadership on climate action. At the recent COP26, some significant progress was made in elevating cities’ position on climate action with a flurry of announcements and commitments.

For example, more than 1,000 cities are now committed to the Cities Race to Zero and C40’s Clean Construction Declaration saw multiple cities committing to at least halving emissions from initial construction of buildings by 2030. A raft of financing commitments were also made to improve urban resilience in the face of climate change.

This builds on existing momentum before COP26. Over 50 world cities are now on track to meet Paris Agreement and the Marrakech Partnership is further enabling collaboration between governments and cities within the UNFCCC processes.

Therefore, how we design, build, govern and use our urban places will be a key factor for decarbonization and climate change adaptation.

On the back of COP26, this panel brings together leaders from across urban development sectors to discuss the progress cities have already made, whether progress at COP26 was enough, and what more needs to be done to scale action and ambition internationally. 




pro

Bangladesh: The Trade-Off Between Economic Prosperity and Human Rights

Bangladesh: The Trade-Off Between Economic Prosperity and Human Rights 11 March 2020 — 1:00PM TO 2:00PM Anonymous (not verified) 28 February 2020 Chatham House | 10 St James's Square | London | SW1Y 4LE

Bangladesh’s recent gains in economic and social indices, set against its record of corruption and poor civil rights, has at times been termed the ‘Bangladesh Paradox’. Yet this label is overly simplistic; the current situation proves that these trends can coexist.

The Awami League government, in power since 2009, has increased political stability, delivered unprecedented economic and social advances, and adopted a counter-terrorism strategy to stamp out extremist groups. At the same time, it is criticized for curbing civil rights and failing to hold credible elections. However, as the two previous regimes have demonstrated, the rights situation is unlikely to improve even if the Awami League were replaced.

How did worsening rights become a feature of the state irrespective of its political dispensation? An unresolved contest between political and non-political state actors may hold the key to that puzzle. The perils of the current dispensation have recently manifested in weakening economic indicators, which jeopardize the very stability and social progress for which the country has garnered much praise.




pro

The 2020 Inner Mongolia Language Protests: Wider Meanings for China and the Region

The 2020 Inner Mongolia Language Protests: Wider Meanings for China and the Region 24 November 2020 — 3:00PM TO 4:00PM Anonymous (not verified) 12 November 2020 Online

Speakers discuss the historical roots of the language issue, as well as the wider significance of the protests in China.

Please note this is an online event. Please register on Zoom using the link below to secure your registration.

In September thousands of people protested in Inner Mongolia in opposition to a government move to replace Mongolian language with Standard Mandarin in three school subjects – history, politics and Chinese language.

Announced less than a week before the start of the new school year, the policy also requires schools to use new national textbooks in Chinese, instead of regional textbooks. The mass protests and classroom walk-outs reflect ethnic Mongolian’s anxiety that their native language may be eliminated. What has the government’s response to the protests been?




pro

Rethinking European and Afghan policy approaches to migration

Rethinking European and Afghan policy approaches to migration 9 February 2021 — 12:30PM TO 1:30PM Anonymous (not verified) 19 January 2021 Online

Speakers argue for a more multidimensional approach to migration, and for a nuanced reassessment of policy.

Please note this is an online event. Please register using the link below to finalize your registration.

Afghanistan is a key country of origin for asylum seekers in Europe, and the prime global recipient of EU development assistance. It was one of the first nations to conclude a migration partnership agreement with the EU, in 2016.

Implementation has been thwarted, however, by war and violence, limited state capacity, entrenched economic deprivation, internal displacement and the unfolding impact of COVID-19.

The speakers argue for a more multidimensional approach to migration, and for a nuanced reassessment of policy. They underscore the strength of Afghanistan’s responses to migration, returns, reintegration, security and peace, and point to the need for synchronizing the EU’s policy approaches.

They argue that effective policy must consider the historical significance of mobility for Afghanistan and the need for coherent regional responses to migration.

This event launches the publication The EU and the Politics of Migration Management in Afghanistan.






pro

An abstract approach to Marcinkiewicz-Zygmund inequalities for approximation and quadrature in modulation spaces

Martin Ehler and Karlheinz Gröchenig
Math. Comp. 93 (), 2885-2919.
Abstract, references and article information







pro

High-order splitting finite element methods for the subdiffusion equation with limited smoothing property

Buyang Li, Zongze Yang and Zhi Zhou
Math. Comp. 93 (), 2557-2586.
Abstract, references and article information




pro

Recent Progress in Function Theory and Operator Theory

Alberto A. Condori, Elodie Pozzi, William T. Ross and Alan A. Sola, editors. American Mathematical Society, 2024, CONM, volume 799, approx. 224 pp. ISBN: 978-1-4704-7246-7 (print), 978-1-4704-7612-0 (online).

This volume contains the proceedings of the AMS Special Session on Recent Progress in Function Theory and Operator Theory, held virtually on April 6,...




pro

Recent Progress in Special Functions

Galina Filipuk, editor. American Mathematical Society, 2024, CONM, volume 807, approx. 242 pp. ISBN: 978-1-4704-7429-4 (print), 978-1-4704-7722-6 (online).

This volume contains a collection of papers that focus on recent research in the broad field of special functions.

The articles cover topics...






pro

Strong laws of large numbers for weighted sums of ????-dimensional arrays of random variables and applications to marked point processes

Ta Cong Son, Tran Manh Cuong, Le Quang Dung and Le Van Dung
Theor. Probability and Math. Statist. 111 (), 153-165.
Abstract, references and article information




pro

Large deviations for perturbed Gaussian processes and logarithmic asymptotic estimates for some exit probabilities

Claudio Macci and Barbara Pacchiarotti
Theor. Probability and Math. Statist. 111 (), 21-43.
Abstract, references and article information








pro

Threshold approximations for the exponential of a factorized operator family with correctors taken into account

T. A. Suslina
St. Petersburg Math. J. 35 (), 537-570.
Abstract, references and article information





pro

Algebraic solutions of linear differential equations: An arithmetic approach

Alin Bostan, Xavier Caruso and Julien Roques
Bull. Amer. Math. Soc. 61 (), 609-658.
Abstract, references and article information




pro

UC Irvine Wins 2025 AMS Award for an Exemplary Program in a Mathematics Department

The Math Community Educational Outreach (Math CEO) program at the University of California, Irvine (UCI) will receive the 2025 AMS Award for an Exemplary Program or Achievement in a Mathematics Department.

Founded in 2014, UCI’s Math CEO is an after-school math enrichment program aimed at increasing the number of talented students in STEM from diverse backgrounds by fostering mathematical exploration, mentor development, and community engagement.

Participants in the Math CEO program at University of California, Irvine
Credit: Jennifer Tran, Math CEO outreach assistant

From the citation

The University of California, Irvine (UCI) Math CEO program is recognized for its exceptional contributions to the mathematics community and society at large. Established in 2014 by professors Alessandra Pantano and Li-Sheng Tseng, Math CEO targets students from Title I middle schools, providing them with a high-quality after-school math enrichment program. This program brings middle-school students to the UCI campus to work in small groups with undergraduate mentors, many of whom are also from historically marginalized groups, to engage in challenging mathematical tasks and encourage exploration. 

From September 2019 to June 2024, Math CEO engaged a total of 1,221 youth, with 48.6% identifying as female. The ethnic background of the participants was predominantly Latinx (93.5%), with smaller representations of Asian, white, and multiethnic students. In the same five-year period, Math CEO engaged 553 undergraduate mentors, 62.2% of whom were female. The mentors’ ethnic backgrounds were diverse, with significant representation of Asian (52%) and Latinx (30%) students. The undergraduate mentors, many of whom pursue careers in education, receive training in culturally responsive teaching practices and equity in education, significantly impacting their professional development. In a post-survey, 52.3% of the undergraduate mentors expressed interest in teaching or working in education and 45.9% were likely to pursue professions working with children or families.

Recognizing the central role of families in supporting Latinx youth, Math CEO involves parents through bilingual workshops that enhance community awareness of college pathways and financial opportunities. 

Math CEO has been the foundation for numerous research projects in mathematics education, supported by NSF grants, leading to publications and program growth. The program’s success is evident in its expansion to high schools and other regions in Southern California, including a new branch at California State University, Dominguez Hills. Math CEO continues to make a substantial impact on underserved youth, demonstrating a model of systemic, reproducible change that can be implemented by others.

Response of Alessandra Pantano, UCI Math CEO

I am deeply honored to receive the AMS Award for an Exemplary Program in a Mathematics Department on behalf of the UCI Math CEO team. This wonderful award recognizes the work of many colleagues, graduate students, and undergraduate students in developing and delivering the UCI Math Community Educational Outreach (Math CEO) program. For over a decade, Math CEO has provided creative and culturally responsive math enrichment opportunities for hundreds of underprivileged middle-school students, many of which have since “graduated” to high school or even college. Leading this exceptional and dedicated team of volunteers has been the highest pride of my professional life. A special thanks to my partners-in-crime, Prof. Li-Sheng Tseng, codirector of Math CEO, and former graduate student Andres Forero Cuervo, academic coordinator for Math CEO: We could have never done this without you. I look forward to pushing this activity forward and continuing to dedicate my energy to help kids in our county find the way to express their potential – in math and in life! A big thanks to the colleagues who nominated us and to the AMS for recognizing our efforts.  

History of the program

The UC Irvine Math Community Educational Outreach (Math CEO) program was founded in 2014 by math faculty Alessandra Pantano and Li-Sheng Tseng in collaboration with Santa Ana Unified math teacher Jasmina Matasovic. The founders shared a belief that low standardized test scores in underserved communities do not reflect students’ interest and potential to succeed in STEM. Math CEO runs free, weekly, after-school math enrichment sessions, welcoming all youth regardless of math achievement. Starting with only 25 students from one middle school, the program has grown and engaged nearly two thousand students in all, from multiple school districts in Southern California.

About the award

The annual AMS Award for an Exemplary Program or Achievement in a Mathematics Department was established in 2004 and first given in 2006. This award recognizes a department which has distinguished itself by undertaking an unusual or particularly effective program of value to the mathematics community, internally or in relation to the rest of society. Departments of mathematical sciences in North America that offer at least a bachelor’s degree in mathematical sciences are eligible. The award amount is currently $5,000. The award will be presented at the 2025 Joint Mathematics Meetings in Seattle.

Learn more about the award and previous recipients.

Contact: AMS Communications.

*****

The American Mathematical Society is dedicated to advancing research and connecting the diverse global mathematical community through our publications, meetings and conferences, MathSciNet, professional services, advocacy, and awareness programs.
 




pro

The Election Proved Something Painful About Gen Z. It’s Worse Than We Thought.




pro

These are the House races that still don't have a projected winner




pro

Too many wild deer are roaming England's forests. Can promoting venison to consumers help?




pro

Scammers posing as Nigy Boy’s team trick promoter

Nigy Boy's management team was forced to put out a scam alert on Thursday as news surfaced that a promoter in the Turks and Caicos Islands, inadvertently wired thousands of US dollars to who he believed was the artiste's booking team as a deposit...




pro

St Thomas residents plan proper funeral for Donovan

In a touching display of compassion and solidarity, a group of St Thomas residents has come together to organise the funeral of a a well-known and beloved man with intellectual challenges. For years, Donovan Sinclair was a familiar face in the...




pro

Workers at the Secrets and Breathless resorts protest overwork and low wages

Staff at the Secrets and Breathless resorts in Montego Bay, St James, walked off the job this morning complaining of overwork, low wages, lack of overtime pay and disrespect.




pro

Biochemical transformation of bacterial lipopolysaccharides by acyloxyacyl hydrolase reduces host injury and promotes recovery [Enzymology]

Animals can sense the presence of microbes in their tissues and mobilize their own defenses by recognizing and responding to conserved microbial structures (often called microbe-associated molecular patterns (MAMPs)). Successful host defenses may kill the invaders, yet the host animal may fail to restore homeostasis if the stimulatory microbial structures are not silenced. Although mice have many mechanisms for limiting their responses to lipopolysaccharide (LPS), a major Gram-negative bacterial MAMP, a highly conserved host lipase is required to extinguish LPS sensing in tissues and restore homeostasis. We review recent progress in understanding how this enzyme, acyloxyacyl hydrolase (AOAH), transforms LPS from stimulus to inhibitor, reduces tissue injury and death from infection, prevents prolonged post-infection immunosuppression, and keeps stimulatory LPS from entering the bloodstream. We also discuss how AOAH may increase sensitivity to pulmonary allergens. Better appreciation of how host enzymes modify LPS and other MAMPs may help prevent tissue injury and hasten recovery from infection.




pro

Mouse Ifit1b is a cap1-RNA-binding protein that inhibits mouse coronavirus translation and is regulated by complexing with Ifit1c [RNA]

Knockout mouse models have been extensively used to study the antiviral activity of IFIT (interferon-induced protein with tetratricopeptide repeats). Human IFIT1 binds to cap0 (m7GpppN) RNA, which lacks methylation on the first and second cap-proximal nucleotides (cap1, m7GpppNm, and cap2, m7GpppNmNm, respectively). These modifications are signatures of “self” in higher eukaryotes, whereas unmodified cap0-RNA is recognized as foreign and, therefore, potentially harmful to the host cell. IFIT1 inhibits translation at the initiation stage by competing with the cap-binding initiation factor complex, eIF4F, restricting infection by certain viruses that possess “nonself” cap0-mRNAs. However, in mice and other rodents, the IFIT1 orthologue has been lost, and the closely related Ifit1b has been duplicated twice, yielding three paralogues: Ifit1, Ifit1b, and Ifit1c. Although murine Ifit1 is similar to human IFIT1 in its cap0-RNA–binding selectivity, the roles of Ifit1b and Ifit1c are unknown. Here, we found that Ifit1b preferentially binds to cap1-RNA, whereas binding is much weaker to cap0- and cap2-RNA. In murine cells, we show that Ifit1b can modulate host translation and restrict WT mouse coronavirus infection. We found that Ifit1c acts as a stimulatory cofactor for both Ifit1 and Ifit1b, promoting their translation inhibition. In this way, Ifit1c acts in an analogous fashion to human IFIT3, which is a cofactor to human IFIT1. This work clarifies similarities and differences between the human and murine IFIT families to facilitate better design and interpretation of mouse models of human infection and sheds light on the evolutionary plasticity of the IFIT family.




pro

Development of a novel mammalian display system for selection of antibodies against membrane proteins [Immunology]

Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD) as low as 0.8 nm. We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule–positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.




pro

Quantitative phosphoproteomic analysis reveals involvement of PD-1 in multiple T cell functions [Signal Transduction]

Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell–mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell–mediated anti-tumor immunity, but many patients do not respond and a significant proportion develop inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization, and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed that kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1–triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1–targeting therapeutic approaches.




pro

Ischemic stroke disrupts the endothelial glycocalyx through activation of proHPSE via acrolein exposure [Molecular Bases of Disease]

Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC–MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.




pro

Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding [Glycobiology and Extracellular Matrices]

VAR2CSA is the placental-malaria–specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria.




pro

The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of {alpha}-1,3-galactosidic linkages in {lambda}-carrageenan and blood group antigens [Enzymology]

α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.




pro

Structural and biochemical characteristics of two Staphylococcus epidermidis RNase J paralogs RNase J1 and RNase J2 [Protein Structure and Folding]

RNase J enzymes are metallohydrolases that are involved in RNA maturation and RNA recycling, govern gene expression in bacteria, and catalyze both exonuclease and endonuclease activity. The catalytic activity of RNase J is regulated by multiple mechanisms which include oligomerization, conformational changes to aid substrate recognition, and the metal cofactor at the active site. However, little is known of how RNase J paralogs differ in expression and activity. Here we describe structural and biochemical features of two Staphylococcus epidermidis RNase J paralogs, RNase J1 and RNase J2. RNase J1 is a homodimer with exonuclease activity aided by two metal cofactors at the active site. RNase J2, on the other hand, has endonuclease activity and one metal ion at the active site and is predominantly a monomer. We note that the expression levels of these enzymes vary across Staphylococcal strains. Together, these observations suggest that multiple interacting RNase J paralogs could provide a strategy for functional improvisation utilizing differences in intracellular concentration, quaternary structure, and distinct active site architecture despite overall structural similarity.




pro

Calreticulin enhances the secretory trafficking of a misfolded {alpha}-1-antitrypsin [Protein Structure and Folding]

α1-antitrypsin (AAT) regulates the activity of multiple proteases in the lungs and liver. A mutant of AAT (E342K) called ATZ forms polymers that are present at only low levels in the serum and induce intracellular protein inclusions, causing lung emphysema and liver cirrhosis. An understanding of factors that can reduce the intracellular accumulation of ATZ is of great interest. We now show that calreticulin (CRT), an endoplasmic reticulum (ER) glycoprotein chaperone, promotes the secretory trafficking of ATZ, enhancing the media:cell ratio. This effect is more pronounced for ATZ than with AAT and is only partially dependent on the glycan-binding site of CRT, which is generally relevant to substrate recruitment and folding by CRT. The CRT-related chaperone calnexin does not enhance ATZ secretory trafficking, despite the higher cellular abundance of calnexin-ATZ complexes. CRT deficiency alters the distributions of ATZ-ER chaperone complexes, increasing ATZ-BiP binding and inclusion body formation and reducing ATZ interactions with components required for ER-Golgi trafficking, coincident with reduced levels of the protein transport protein Sec31A in CRT-deficient cells. These findings indicate a novel role for CRT in promoting the secretory trafficking of a protein that forms polymers and large intracellular inclusions. Inefficient secretory trafficking of ATZ in the absence of CRT is coincident with enhanced accumulation of ER-derived ATZ inclusion bodies. Further understanding of the factors that control the secretory trafficking of ATZ and their regulation by CRT could lead to new therapies for lung and liver diseases linked to AAT deficiency.