sm

Assessment of drug resistance during phase 2b clinical trials of presatovir in adults naturally infected with respiratory syncytial virus [Antiviral Agents]

Background: This study summarizes drug resistance analyses in 4 recent phase 2b trials of the respiratory syncytial virus (RSV) fusion inhibitor presatovir in naturally infected adults.

Methods: Adult hematopoietic cell transplant (HCT) recipients, lung transplant recipients, or hospitalized patients with naturally acquired, laboratory-confirmed RSV infection were enrolled in 4 randomized, double-blind, placebo-controlled studies with study-specific presatovir dosing. Full-length RSV F sequences amplified from nasal swabs obtained at baseline and postbaseline were analyzed by population sequencing. Substitutions at RSV fusion inhibitor resistance-associated positions are reported.

Results: Genotypic analyses were performed on 233 presatovir-treated and 149 placebo-treated subjects. RSV F variant V127A was present in 8 subjects at baseline. Population sequencing detected treatment-emergent substitutions in 10/89 (11.2%) HCT recipients with upper and 6/29 (20.7%) with lower respiratory tract infection, 1/35 (2.9%) lung transplant recipients, and 1/80 (1.3%) hospitalized patients treated with presatovir; placebo-treated subjects had no emergent resistance-associated substitutions. Subjects with substitutions at resistance-associated positions had smaller decreases in viral load during treatment relative to those without, but similar clinical outcomes.

Conclusions: Subject population type and dosing regimen may have influenced RSV resistance development during presatovir treatment. Subjects with vs without genotypic resistance development had decreased virologic responses but comparable clinical outcomes.




sm

Biochemical Characterization of QPX7728, a New Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo-Beta-Lactamases [Mechanisms of Resistance]

QPX7728 is a new ultra-broad-spectrum inhibitor of serine and metallo beta-lactamases from a class of cyclic boronates that gave rise to vaborbactam. The spectrum and mechanism of beta-lactamase inhibition by QPX7728 were assessed using purified enzymes from all molecular classes. QPX7728 inhibits class A ESBLs (IC50 range 1-3 nM) and carbapenemases such as KPC (IC50 2.9±0.4 nM) as well as class C P99 (IC50 of 22±8 nM) with a potency that is comparable or higher than recently FDA approved BLIs avibactam, relebactam and vaborbactam. Unlike those other BLIs, QPX7728 is also a potent inhibitor of class D carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from A. baumannii (OXA-23/24/58, IC50 range 1-2 nM) as well as MBLs such as NDM-1 (IC50 55±25 nM), VIM-1 (IC50 14±4 nM) and IMP-1 (IC50 610±70 nM). Inhibition of serine enzymes by QPX7728 is associated with progressive inactivation with a high efficiency k2/K ranging from of 6.3 x 104 (for P99) to 9.9 x 105 M-1 s-1 (for OXA-23). This inhibition is reversible with variable stability of the QPX7728-beta-lactamase complexes with target residence time ranging from minutes to several hours: 5-20 minutes for OXA carbapenemases from A. baumanii, ~50 minutes for OXA-48 and 2-3 hours for KPC and CTX-M-15. QPX7728 inhibited all tested serine enzymes at 1:1 molar ratio. Metallo-beta-lactamases NDM, VIM, and IMP were inhibited by a competitive mechanism with fast-on-fast-off kinetics, with Kis of 7.5±2.1 nM, 32±14 nM and 240±30 nM for VIM-1, NDM-1 and IMP-1, respectively. QPX7728 ultra-broad-spectrum of BLI inhibition combined with its high potency enables combinations with multiple different beta-lactam antibiotics.




sm

A histone methyltransferase inhibitor can reverse epigenetically acquired drug resistance in the malaria parasite Plasmodium falciparum [Mechanisms of Resistance]

Malaria parasites invade and replicate within red blood cells (RBCs), extensively modifying their structure and gaining access to the extracellular environment by placing the plasmodial surface anion channel (PSAC) into the RBC membrane. Expression of members of the cytoadherence linked antigen gene 3 (clag3) family is required for PSAC activity, a process that is regulated epigenetically. PSAC is a well-established route of uptake for large, hydrophilic antimalarial compounds and parasites can acquire resistance by silencing clag3 gene expression, thereby reducing drug uptake. We found that exposure to sub-IC50 concentrations of the histone methyltransferase inhibitor chaetocin caused substantial changes in both clag3 gene expression and RBC permeability, reversing acquired resistance to the antimalarial compound blasticidin S that is transported through PSAC. Chaetocin treatment also altered progression of parasites through their replicative cycle, presumably by changing their ability to modify chromatin appropriately to enable DNA replication. These results indicate that targeting histone modifiers could represent a novel tool for reversing epigenetically acquired drug resistance in P. falciparum.




sm

Effect of drug pressure on promoting the emergence of antimalarial resistant parasites among pregnant women in Ghana [Mechanisms of Resistance]

Continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRNI-A/FGKGS/T pfdhfr/pfdhps haplotypes including the pfdhps A581G and A613S/T mutations was high at delivery among post-SP treatment isolates (18.2%) compared to those of first-antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP); 6.1%; p = 0.03). Regarding the pfk13 marker gene, two non-synonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast-Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance on additional mutations associated with increased SP resistance as well as emergence of resistance against artemesinin derivatives.




sm

Significant efficacy of single low dose primaquine compared to stand alone artemisinin combination therapy in reducing gametocyte carriage in Cambodian patients with uncomplicated multidrug resistant Plasmodium falciparum malaria [Epidemiology and Surveil

Since 2012, single low dose of primaquine (SLDPQ, 0.25mg/kg) has been recommended with artemisinin-based combination therapies, as first-line treatment of acute uncomplicated Plasmodium falciparum malaria, to interrupt its transmission, especially in low transmission settings of multidrug, including artemisinin, resistance. Policy makers in Cambodia have been reluctant to implement this recommendation due to primaquine safety concerns and lack of data on its efficacy.

In this randomized controlled trial, 109 Cambodians with acute uncomplicated P. falciparum malaria received dihydroartemisinin-piperaquine (DP) alone or combined with SLDPQ on the first treatment day. Transmission-blocking efficacy of SLDPQ was evaluated on Days 0, 1, 2, 3, 7, 14, 21, 28 and recrudescence by reverse transcriptase polymerase chain reaction (RT-PCR) (gametocyte prevalence) and membrane-feeding assays with Anopheles minimus mosquitoes (gametocyte infectivity). Without the influence of recrudescent infections, DP+SLDPQ reduced gametocyte carriage 3 fold compared to DP. Of 48 patients tested on Day 0, only three patients were infectious to mosquitoes (~6%). Post-treatment, three patients were infectious: on D14 (3.5%, 1/29), and on the first and seventh day of recrudescence (8.3%, 1/12 for each); this overall low infectivity precluded our ability to assess its transmission blocking efficacy.

Our study confirms effective gametocyte clearance of SLDPQ when combined with DP in multidrug resistant P. falciparum and the negative impact of recrudescent infections due to poor DP efficacy. Artesunate-mefloquine (ASMQ) has replaced DP and ASMQ-SLDPQ has been deployed to treat all P. falciparum symptomatic patients to further support the elimination of multidrug resistant P. falciparum in Cambodia.




sm

Stp1 loss of function promotes {beta}-lactam resistance in S. aureus that is independent of classical genes [Mechanisms of Resistance]

β-lactam resistance in Staphylococcus aureus limits treatment options. Stp1 and Stk1, a serine-threonine phosphatase and kinase respectively, mediate serine-threonine kinase (STK) signaling. Loss of function point mutations in stp1 were detected among laboratory passaged, β-lactam resistant S. aureus strains lacking mecA and blaZ, the major determinants of β-lactam resistance in the bacteria. Loss of Stp1 function facilitates β-lactam resistance of the bacteria.




sm

The Als3 cell wall adhesin plays a critical role in human Serum amyloid A1 (SAA1)-induced cell death and aggregation in Candida albicans [Mechanisms of Resistance]

Antimicrobial peptides and proteins play critical roles in the host defense against invading pathogens. We recently discovered that recombinantly expressed human and mouse serum amyloid A1 (rhSAA1 and rmSAA1) proteins have potent antifungal activities against the major human fungal pathogen Candida albicans. At high concentrations, rhSAA1 disrupts C. albicans membrane integrity and induces rapid fungal cell death. In the current study, we find that rhSAA1 promotes cell aggregation and targets the C. albicans cell wall adhesin Als3. Inactivation of ALS3 in C. albicans leads to a striking decrease in cell aggregation and cell death upon rhSAA1 treatment, suggesting that Als3 plays a critical role in SAA1 sensing. We further demonstrate that deletion of the transcriptional regulators controlling the expression of ALS3, such as AHR1, BCR1, and EFG1 in C. albicans results in similar effects to that of the als3/als3 mutant upon rhSAA1 treatment. Global gene expression profiling indicates that rhSAA1 has a discernible impact on the expression of cell wall- and metabolism-related genes, suggesting that rhSAA1 treatment could lead to a nutrient starvation effect on C. albicans cells.




sm

Structure and molecular recognition mechanism of IMP-13 metallo-{beta}-lactamase [Mechanisms of Resistance]

Multi-drug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely-used antibiotic class, the β-lactams, including the most recent-generation carbapenems. Interspecies spread renders these enzymes a serious clinical threat and there are no clinically-available inhibitors. We present crystal structures of IMP-13, a structurally-uncharacterized MBL from Gram-negative Pseudomonas aerugionasa found in clinical outbreaks globally, and characterize the binding using solution NMR-spectroscopy and molecular-dynamics simulations. Crystal structures of apo IMP-13 and bound to four clinically-relevant carbapenem antibiotics (doripenem, ertapenem, imipenem and meropenem) are presented. Active site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance.




sm

Fosmanogepix (APX001) is Effective in the Treatment of Pulmonary Murine Mucormycosis Due to Rhizopus arrhizus [Experimental Therapeutics]

Mucormycosis is a life-threatening infection with high mortality that occurs predominantly in immunocompromised patients. Manogepix (MGX) is a novel antifungal that targets Gwt1, an early step in the conserved glycosylphosphotidyl inositol (GPI) post-translational modification pathway of surface proteins in eukaryotic cells. Inhibition of inositol acylation by MGX results in pleiotropic effects including inhibition of maturation of GPI-anchored proteins necessary for growth and virulence. MGX has been previously shown to have in vitro activity against some strains of Mucorales. Here we assessed the in vivo activity of the prodrug fosmanogepix, currently in clinical development for the treatment of invasive fungal infections, against two Rhizopus arrhizus strains with high (4.0 μg/ml) and low (0.25 μg/ml) minimum effective concentration (MEC) values. In both invasive pulmonary infection models, treatment of mice with 78 mg/kg or 104 mg/kg fosmanogepix, along with 1-aminobenzotriazole to enhance the serum half-live of MGX in mice, significantly increased median survival time and prolonged overall survival by day 21 post infection when compared to placebo. In addition, administration of fosmanogepix resulted in a 1-2 log reduction in both lung and kidney fungal burden. For the 104 mg/kg fosmanogepix dose, tissue clearance and survival were comparable to clinically relevant doses of isavuconazole (ISA), which is FDA approved for the treatment of mucormycosis. These results support continued development of fosmanogepix as a first in class treatment for invasive mucormycosis.




sm

Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli [Mechanisms of Resistance]

Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 E. coli bloodstream infection isolates from Oxfordshire, UK, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity 23% (78/339)) but improved when genetic features associated with penicillinase hyper-production (e.g. promoter mutations, copy number estimates) were considered (sensitivity 82% (277/339); p<0.0001). Most discrepancies occurred in isolates with peri-breakpoint MICs. We investigated two potential causes; the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions.




sm

Mutations in ArgS arginine-tRNA synthetase confer additional antibiotic-tolerance protection to ESBL-producing Burkholderia thailandensis [Mechanisms of Resistance]

Highly conserved PenI-type class A β-lactamase in pathogenic members of Burkholderia can evolve to extended-spectrum β-lactamase (ESBL), which exhibits hydrolytic activity towards third-generation cephalosporins, while losing its activity towards the original penicillin substrates. We describe three single-amino-acid-substitution mutations in the ArgS arginine-tRNA synthetase that confer extra antibiotic tolerance protection to ESBL-producing Burkholderia thailandensis. This pathway can be exploited to evade antibiotic tolerance induction in developing therapeutic measures against Burkholderia species, targeting their essential aminoacyl-tRNA synthetases.




sm

Metronidazole-Treated Porphyromonas gingivalis Persisters Invade Human Gingival Epithelial Cells and Perturb Innate Responses [Mechanisms of Resistance]

Periodontitis as a biofilm-associated inflammatory disease is highly prevalent worldwide. It severely affects oral health and yet closely links to systemic diseases like diabetes and cardiovascular disease. Porphyromonas gingivalis as a ‘keystone' periodontopathogen drives the shift of microbe-host symbiosis to dysbiosis, and critically contributes to the pathogenesis of periodontitis. Persisters are a tiny subset of biofilm-associated microbes highly tolerant to lethal treatment of antimicrobials, and notably metronidazole-tolerant P. gingivalis persisters have recently been identified by our group. This study further explored the interactive profiles of metronidazole-treated P. gingivalis persisters (M-PgPs) with human gingival epithelial cells (HGECs). P. gingivalis cells (ATCC 33277) at stationary phase were treated with lethal dosage of metronidazole (100 μg/ml, 6 hours) for generating M-PgPs. The interaction of M-PgPs with HGECs was assessed by microscopy, flow cytometry, cytokine profiling and qPCR. We demonstrated that the overall morphology and ultra-cellular structure of M-PgPs remained unchanged. Importantly, M-PgPs maintained the capabilities to adhere to and invade into HGECs. Moreover, M-PgPs significantly suppressed pro-inflammatory cytokine expression in HGECs at a comparable level with the untreated P. gingivalis cells, through the thermo-sensitive components. The present study reveals that P. gingivalis persisters induced by lethal treatment of antibiotics could maintain their capabilities to adhere to and invade into human gingival epithelial cells, and perturb the innate host responses. Novel strategies and approaches need to be developed for tackling P. gingivalis and favourably modulating the dysregulated immuno-inflammatory responses for oral/periodontal health and general wellbeing.




sm

Complex response of the CpxAR two-component system to {beta}-lactams on antibiotic resistance and envelop homeostasis in Enterobacteriaceae [Mechanisms of Resistance]

The Cpx stress response is widespread among Enterobacteriaceae. We have previously reported a mutation in cpxA in a multidrug resistant strain of Klebsiella aerogenes isolated from a patient treated with imipenem. This mutation yields to a single amino acid substitution (Y144N) located in the periplasmic sensor domain of CpxA. In this work, we sought to characterize this mutation in Escherichia coli by using genetic and biochemical approaches. Here, we show that cpxAY144N is an activated allele that confers resistance to β-lactams and aminoglycosides in a CpxR-dependent manner, by regulating the expression of the OmpF porin and the AcrD efflux pump, respectively. We also demonstrate the intimate interconnection between Cpx system and peptidoglycan integrity on the expression of an exogenous AmpC β-lactamase by using imipenem as a cell wall active antibiotic or inactivation of penicillin-binding proteins. Moreover, our data indicate that the Y144N substitution abrogates the interaction between CpxA and CpxP and increase phosphotransfer activity on CpxR. Because the addition of a strong AmpC inducer such as imipenem is known to causes abnormal accumulation of muropeptides (disaccharide-pentapeptide, N-acetylglucosamyl-1,6-anhydro-N-acetylmuramyl-l-alanyl-d-glutamy-meso-diaminopimelic-acid-d-alanyl-d-alanine) in the periplasmic space, we propose these molecules activate the Cpx system by displacing CpxP from the sensor domain of CpxA. Altogether, these data could explain why large perturbations to peptidoglycan caused by imipenem lead to mutational activation of the Cpx system and bacterial adaptation through multidrug resistance. These results also validate the Cpx system, in particular the interaction between CpxA and CpxP, as a promising therapeutic target.




sm

The Impact of Intrinsic Resistance Mechanisms on Potency of QPX7728, a New Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo Beta-Lactamases in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. [Mechanisms of Resis

QPX7728 is an ultra-broad-spectrum boronic acid beta-lactamase inhibitor that demonstrates inhibition of key serine and metallo beta-lactamases at a nano molar range in biochemical assays with purified enzymes. The broad-spectrum inhibitory activity of QPX7728 observed in biochemical experiments translates into enhancement of the potency of many beta-lactams against strains of target pathogens producing beta-lactamases. The impact of bacterial efflux and permeability on inhibitory potency were determined using isogenic panels of KPC-3 producing isogenic strains of K. pneumoniae and P. aeruginosa and OXA-23-producing strains of A. baumannii with various combinations of efflux and porin mutations. QPX7728 was minimally affected by multi-drug resistance efflux pumps in either Enterobacteriaceae, or in non-fermenters such as P. aeruginosa or A. baumannii. In P. aeruginosa, the potency of QPX7728 was further enhanced when the outer membrane is permeabilized. The potency of QPX7728 in P. aeruginosa is not affected by inactivation of the carbapenem porin OprD. While changes in OmpK36 (but not OmpK35) reduced the potency of QPX7728 (8-16-fold), QPX7728 (4 μg/ml) nevertheless completely reversed KPC-mediated meropenem resistance in strains with porin mutations, consistent with a lesser effect of these mutations on the potency of QPX7728 compared to other agents. The ultra-broad-spectrum beta-lactamase inhibition profile combined with enhancement of the activity of multiple beta-lactam antibiotics with varying sensitivity to the intrinsic resistance mechanisms of efflux and permeability indicate QPX7728 is a useful inhibitor for use with multiple beta-lactam antibiotics.




sm

Proteomic changes of Klebsiella pneumoniae in response to colistin treatment and crrB mutation-mediated colistin resistance [Mechanisms of Resistance]

Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually for the last few years. Although studies on mechanisms of polymyxin are expanding, system-wide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapt to colistin (polymyxin E) pressure, we carried out proteomic analysis of Klebsiella pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in Klebsiella pneumoniae involving several pathways, including (i) gluconeogenesis and TCA cycle; (ii) arginine biosynthesis; (iii) porphyrin and chlorophyll metabolism; and (iv) enterobactin biosynthesis. Interestingly, decreased abundance of class A β-lactamases including TEM, SHV-11, SHV-4 were observed in cells treated with colistin. Moreover, we also present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant Klebsiella pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of Klebsiella pneumoniae ATCC BAA 2146, showed missense mutation in crrB. The crrB mutant Ci, which displayed lipid A modification with 4-amino-4-deoxy-L-arabinose (L-Ara4N) and palmitoylation, showed striking increases of CrrAB, PmrAB, PhoPQ, ArnBCADT and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediate colistin resistance, which may further offer valuable information to manage polymyxin resistance.




sm

Antimicrobial resistance in clinical Ureaplasma spp. and Mycoplasma hominis and structural mechanisms underlying the quinolone resistance [Mechanisms of Resistance]

Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018, were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin and erythromycin resistance rates were 84.69%, 51.44% and 3.59% in U. parvum and 82.43%, 62.16% and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis. A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and ermB gene were identified in erythromycin-resistant Ureaplasma spp. Fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced.




sm

MgrB inactivation is responsible for acquired resistance to colistin in Enterobacter hormaechei subsp. steigerwaltii [Mechanisms of Resistance]

Multidrug resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV and C-VIII, have increasingly emerged as a leading cause of healthcare-associated infections, with colistin used as one of the last line of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii. An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. Wild-type mgrB gene from Eh22, as well as that of a clinical strain of Klebsiella pneumoniae used as controls, were cloned and the corresponding recombinant plasmids were used for complementation assays. Results showed a fully restored susceptibility to colistin, and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains.




sm

Transferable Resistance Gene optrA in Enterococcus faecalis from Swine in Brazil [Mechanisms of Resistance]

OptrA is an ATP-binding cassette (ABC)-F protein that confers resistance to oxazolidinones and phenicols, and can be either plasmid or chromosomally encoded. We isolated 13 Enterococcus faecalis strains possessing linezolid MIC ≥ 4 mg/L from nursery pigs in swine herds located across Brazil. Genome sequence comparison showed that these strains possess optrA in different genetic contexts occurring in 5 different E. faecalis sequence type backgrounds. The optrA gene invariably occurred in association with an araC regulator and a gene encoding a hypothetical protein. In some contexts, this genetic island was able to excise and form a covalently closed circle within the cell which appeared to occur in high abundance, and to be transmissible by co-resident plasmids.




sm

Novel peptide from commensal Staphylococcus simulans blocks MRSA quorum sensing and protects host skin from damage [Mechanisms of Action]

Recent studies highlight the abundance of commensal coagulase-negative staphylococci (CoNS) on healthy skin. Evidence suggests that CoNS actively shape the skin immunological and microbial milieu to resist colonization or infection by opportunistic pathogens, including methicillin resistant Staphylococcus aureus (MRSA), in a variety of mechanisms collectively termed colonization resistance. One potential colonization resistance mechanism is the application of quorum sensing, also called the Accessory Gene Regulator (agr) system, which is ubiquitous among staphylococci. Common and rare CoNS make autoinducing peptides (AIPs) that function as MRSA agr inhibitors, protecting the host from invasive infection. In a screen of CoNS spent media we found that Staphylococcus simulans, a rare human skin colonizer and frequent livestock colonizer, released potent inhibitors of all classes of MRSA agr signaling. We identified three S. simulans agr classes, and have shown intraspecies cross-talk between non-cognate S. simulans agr types for the first time. The S. simulans AIP-I structure was confirmed, and the novel AIP-II and AIP-III structures were solved via mass spectrometry. Synthetic S. simulans AIPs inhibited MRSA agr signaling with nanomolar potency. S. simulans in competition with MRSA reduced dermonecrotic and epicutaneous skin injury in murine models. Addition of synthetic AIP-I also effectively reduced MRSA dermonecrosis and epicutaneous skin injury in murine models. These results demonstrate potent anti-MRSA quorum sensing inhibition by a rare human skin commensal, and suggest that cross-talk between CoNS and MRSA may be important in maintaining healthy skin homeostasis and preventing MRSA skin damage during colonization or acute infection.




sm

Structural recognition of spectinomycin by resistance enzyme ANT(9) from Enterococcus faecalis [Mechanisms of Resistance]

Spectinomycin is a ribosome-binding antibiotic that blocks the translocation step of translation. A prevalent resistance mechanism is the modification of the drug by aminoglycoside nucleotidyl transferase (ANT) enzymes of the spectinomycin-specific ANT (9) family or by the dual-specificity ANT(3") (9) family that also acts on streptomycin. We previously reported the structural mechanism of streptomycin modification by the ANT(3") (9) AadA from Salmonella enterica. ANT (9) from Enterococcus faecalis adenylates the 9-hydroxyl of spectinomycin. We here present the first structures of spectinomycin bound to an ANT enzyme. Structures were solved for ANT (9) in apo form, in complex with ATP, spectinomycin and magnesium or in complex with only spectinomycin. ANT (9) shows similar overall structure as AadA with an N-terminal nucleotidyltransferase domain and a C-terminal α-helical domain. Spectinomycin binds close to the entrance of the interdomain cleft, while ATP is buried at the bottom. Upon drug binding, the C-terminal domain rotates by 14 degrees to close the cleft, allowing contacts of both domains with the drug. Comparison with AadA shows that spectinomycin specificity is explained by a straight α5 helix and a shorter α5-α6 loop that would clash with the larger streptomycin substrate. In the active site, we observe two magnesium ions, one of them in a previously un-observed position that may activate the 9-hydroxyl for deprotonation by the catalytic base Glu-86. The observed binding mode for spectinomycin suggests that also spectinamides and aminomethyl spectinomycins, recent spectinomycin analogues with expansions in position 4 of the C ring, will be subjected to modification by ANT (9) and ANT(3") (9) enzymes.




sm

Ceftazidime-avibactam resistance mediated by the N346Y substitution in various AmpC {beta}-lactamases [Mechanisms of Resistance]

Chromosomal and plasmid-borne AmpC cephalosporinases are a major resistance mechanism to β-lactams in Enterobacteriaceae and Pseudomonas aeruginosa. The new β-lactamase inhibitor avibactam effectively inhibits class C enzymes and can fully restore ceftazidime susceptibility. The conserved amino acid residue Asn346 of AmpC cephalosporinases directly interacts with the avibactam sulfonate. Disruption of this interaction caused by the N346Y amino acid substitution in Citrobacter freundii AmpC was previously shown to confer resistance to the ceftazidime-avibactam combination (CAZ-AVI). The aim of this study was to phenotypically and biochemically characterize the consequences of the N346Y substitution in various AmpC backgrounds. Introduction of N346Y into Enterobacter cloacae AmpC (AmpCcloacae), plasmid-mediated DHA-1, and P. aeruginosa PDC-5, led to 270-, 12,000-, and 79-fold decreases in the inhibitory efficacy (k2/Ki) of avibactam, respectively. The kinetic parameters of AmpCcloacaeand DHA-1 for ceftazidime hydrolysis were moderately affected by the substitution. Accordingly, AmpCcloacaeand DHA-1 harboring N346Y conferred CAZ-AVI resistance (MIC of ceftazidime of 16 µg/ml in the presence of 4 µg/ml of avibactam). In contrast, production of PDC-5 N346Y was associated with a lower MIC (4 µg/ml) since this β-lactamase retained a higher inactivation efficacy by avibactam in comparison to AmpCcloacaeN346Y. For FOX-3, the I346Y substitution did not reduce the inactivation efficacy of avibactam and the substitution was highly deleterious for β-lactam hydrolysis, including ceftazidime, preventing CAZ-AVI resistance. Since AmpCcloacaeand DHA-1 display substantial sequence diversity, our results suggest that loss of hydrogen interaction between Asn346 and avibactam could be a common mechanism of acquisition of CAZ-AVI resistance.




sm

Structural basis of reduced susceptibility to ceftazidime-avibactam and cefiderocol in Enterobacter cloacae due to AmpC R2 loop deletion [Mechanisms of Resistance]

Ceftazidime–avibactam and cefiderocol are two of the latest generation β-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales. Here we show that structural changes in AmpC β-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant Enterobacter cloacae clinical strain (Ent385) was found to be resistant to ceftazidime–avibactam and cefiderocol without prior exposure to either agent. The AmpC β-lactamase of Ent385 (AmpCEnt385) contained an alanine–proline deletion at positions 294–295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime–avibactam and cefiderocol when cloned into Escherichia coli TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared with AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of E. cloacae, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in ampC to confer reduced susceptibility to both ceftazidime–avibactam and cefiderocol requires close monitoring.

Importance Ceftazidime–avibactam and cefiderocol are newly approved β-lactam agents that possess broad spectrum activity against multidrug-resistant (MDR) Gram-negative bacteria. We show here that a two amino-acid deletion in the chromosomal AmpC β-lactamase, identified in a clinical strain of Enterobacter cloacae, confers reduced susceptibility to both agents. By crystallographic studies of free and drug-bound forms of enzyme, we demonstrate that this deletion in AmpC induces slanting of the H-9 helix that is directly connected with the R2 loop, and disappearance of the H-10 helix, is directly responsible for increased hydrolysis of ceftazidime and cefiderocol. These findings provide novel insights into how MDR Gram-negative bacteria may evolve their β-lactamases to survive selective pressure from these newly developed β-lactam agents.




sm

A novel deletion mutation in pmrB contributes to concurrent colistin resistance in carbapenem resistant E. coli ST 405 of clinical origin [Mechanisms of Resistance]

We report the first clinical Escherichia. coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, 6-11(RPISLR), in pmrB contributing to colistin resistance was verified using recombinant DNA techniques. Although decreased fitness compared to the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread.




sm

Detection of Protein Aggregation in Live Plasmodium Parasites [Pharmacology]

The rapid evolution of resistance in the malaria parasite to every single drug developed against it calls for the urgent identification of new molecular targets. Using a stain specific for the detection of intracellular amyloid deposits in live cells we have detected the presence of abundant protein aggregates in Plasmodium falciparum blood stages and female gametes cultured in vitro, in the blood stages of mice infected by Plasmodium yoelii, and in the mosquito stages of the murine malaria species Plasmodium berghei. Aggregated proteins could not be detected in early rings, the parasite form that starts the intraerythrocytic cycle. A proteomics approach was followed to pinpoint actual aggregating polypeptides in functional P. falciparum blood stages, which resulted in the identification of 369 proteins, with roles particularly enriched in nuclear import-related processes. Five aggregation-prone short peptides selected from this protein pool exhibited different aggregation propensity according to Thioflavin-T fluorescence measurements, and were observed to form amorphous aggregates and amyloid fibrils in transmission electron microscope images. The results presented suggest that generalized protein aggregation might have a functional role in malaria parasites. Future antimalarial strategies based on the upsetting of the pathogen's proteostasis and therefore affecting multiple gene products could represent the entry to new therapeutic approaches.




sm

A genotype-phenotype correlation study of SHV {beta}-lactamases - new insight into SHV resistance profiles [Mechanisms of Resistance]

The SHV β-lactamases (BLs) have undergone strong allele diversification that changed their substrate specificities. Based on 147 NCBI entries for SHV alleles, in silico mathematical models predicted five positions as relevant for the β-lactamase inhibitor (BLI) resistant (2br) phenotype, 12 as relevant for the extended-spectrum BL (ESBL) (2be) phenotype, and two positions were related to solely the narrow spectrum (2b) phenotype. These positions and additional 6 positions described in other studies (including one promoter mutation), were systematically substituted and investigated for their substrate specificities in a BL-free E. coli background, representing, to our knowledge, the most comprehensive substrate and substitution analysis for SHV alleles to date. An in vitro analysis confirmed the essentiality of the positions 238 and 179 for the 2be phenotype and 69 for the 2br phenotype. The substitutions E240K and E240R, which do not occur alone in known 2br SHV variants, led to a 2br phenotype, indicating a latent BLI-resistance potential of these substitutions. The substitutions M129V, A234G, S271I and R292Q conferred latent resistance to cefotaxime. In addition, 7 positions that were found to be not always associated with the ESBL phenotype resulted in increased resistance to ceftaroline. We also observed that coupling of a strong promoter (IS26) to a A146V mutant with the 2b phenotype resulted in a highly increased resistance to BLIs, cefepime and ceftaroline but not to 3rd generation cephalosporins, indicating that SHV enzymes represent an underestimated risk for empirical therapies that use piperacillin/tazobactam or cefepime to treat different infectious diseases caused by gram-negatives.




sm

Mutation of kvrA causes OmpK35/36 porin downregulation and reduced meropenem/vaborbactam susceptibility in KPC-producing Klebsiella pneumoniae. [Mechanisms of Resistance]

Meropenem/vaborbactam resistance in Klebsiella pneumoniae is associated with loss of function mutations in the OmpK35 and OmpK36 porins. Here we identify two previously unknown loss of function mutations that confer cefuroxime resistance in K. pneumoniae. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor controlling capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem/vaborbactam in a KPC-3 producing K. pneumoniae isolate.




sm

PAGI-associated CrpP-like fluoroquinolone-modifying enzymes among Pseudomonas aeruginosa clinical isolates in Europe [Mechanisms of Resistance]

Many transferable quinolone-resistance mechanisms have been already identified in Gram-negative bacteria. The plasmid-encoded 65 amino-acid long ciprofloxacin-modifying enzyme, namely CrpP, was recently identified in Pseudomonas aeruginosa. We analyzed a collection of 100 clonally-unrelated and multidrug-resistant P. aeruginosa clinical isolates among which 46 (46%) were found positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. Those crpP-like genes were chromosomally located, as part of PAGI-like pathogenicity genomic islands.




sm

A novel class of chikungunya virus small molecule inhibitors that targets the viral capping machinery [Antiviral Agents]

Despite the worldwide re-emergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. We here aim to identify the target of a novel class of CHIKV inhibitors i.e. CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2 and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ~18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.




sm

Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in Plasmodium berghei. [Mechanisms of Resistance]

As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in south East Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other malaria endemic regions. Artemisinin reduced susceptibility in South East Asia (SEA) has been primarily linked to mutations in P. falciparum Kelch-13, which is currently widely recognised as a molecular marker of artemisinin resistance. However, 2 mutations in a ubiquitin hydrolase, UBP-1, have been previously associated with artemisinin reduced susceptibility in a rodent model of malaria and some cases of UBP-1 mutation variants associating with artemisinin treatment failure have been reported in Africa and SEA. In this study, we have employed CRISPR-Cas9 genome editing and pre-emptive drug pressures to test these artemisinin susceptibility associated mutations in UBP-1 in P. berghei sensitive lines in vivo. Using these approaches, we have shown that the V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the V2752F mutation results in resistance to chloroquine and moderately impacts tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloroquine sensitivity in these mutant lines while simultaneous introduction of both mutations could not be achieved and appears to be lethal. Interestingly, these mutations carry a detrimental growth defect, which would possibly explain their lack of expansion in natural infection settings. Our work has provided independent experimental evidence on the role of UBP-1 in modulating parasite responses to artemisinin and chloroquine under in vivo conditions.




sm

In vitro and in vivo antibiotic capacity of two host defence peptides [Mechanisms of Action]

Two non-amidated host defence peptides named Pin2[G] and FA1 were evaluated against three types of pathogenic bacteria; two isolated from diabetic foot ulcer patients, Staphylococcus aureus UPD13 and Pseudomonas aeruginosa UPD3, and another from a commercial collection, Salmonella enterica serovar Typhimurium (ATCC 14028). In vitro experiments showed that the antimicrobial performance of the synthetic peptides, Pin2[G] and FA1, was modest, although FA1 was more effective than Pin2[G]. In contrast Pin2[G] had superior in vivo anti-infective activity to FA1 in rabbit wound infections by the diabetic foot ulcer pathogens S. aureus UPD13 and P. aeruginosa UPD3. Indeed, Pin2[G] reduced bacterial colony counts of both S. aureus UPD13 and P. aeruginosa UPD3 by >100,000-fold after 48-72 h on skin wounds of infected rabbits, while in similar infected wounds, FA1 had no major effects at 72-96 h of treatment. Ceftriaxone was equally effective vs. Pseudomonas but less effective vs. S. aureus infections. Additionally, the two peptides were evaluated in mice against intragastrically inoculated S. enterica ser. Typhimurium (ATCC 14028). Only Pin2[G], at 0.56 mg/kg, was effective in reducing systemic (liver) infection by >67-fold, equivalent to the effect of treatment with levofloxacin. Pin2[G] showed superior immunomodulatory activity in increasing chemokine production by a human bronchial cell line and suppressing poly(IC)-induced pro-inflammatory IL6 production. These data showed that the in vitro antimicrobial activity of these peptides was not correlated with their in vivo anti-infective activity, and suggest that other factors such as immunomodulatory activity were more important.




sm

The emergence of fexA in mediating resistance to florfenicols in Campylobacter [Mechanisms of Resistance]

Florfenicol belongs to a class of phenicol antimicrobials widely used as feed additives and for the treatment of respiratory infections. In recent years, increasing resistance to florfenicol has been reported in Campylobacter spp., the leading foodborne enteric pathogen causing diarrheal diseases worldwide. Here, we reported the identification of fexA, a novel mobile florfenicol resistance gene in Campylobacter. Of the 100 Campylobacter jejuni strains isolated from poultry in Zhejiang, China, nine of them were shown to be fexA positive, and their whole genome sequences were further determined by integration of Illumina short-read and MinION long-read sequencing. The fexA gene was found in the plasmid of one strain and chromosomes of eight strains, and its location was verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Based on comparative analysis, the fexA gene was located within a region with the tet(L)-fexA-catA-tet(O) gene arrangement, demonstrated to be successfully transferrable among C. jejuni strains. Functional cloning indicated that acquisition of the single fexA gene significantly increased resistance to florfenicol, whereas its inactivation resulted in increased susceptibility to florfenicol in Campylobacter. Taken together, these results indicated that the emerging fexA resistance is horizontally transferable, which might greatly facilitate the adaptation of Campylobacter in food producing environments where florfenicols are frequently used.




sm

Evaluation of leishmanicidal activity of an in silico screened novel inhibitor against ascorbate peroxidase of Leishmania donovani [Mechanisms of Action]

Peroxidases are a group of heterogeneous family of enzyme that plays diverse biological functions. Ascorbate peroxidase is a redox enzyme that is reduced by trypanothione, which plays a central role in the redox defence system of Leishmania. In view of developing new and novel therapeutics, we have performed in silico studies in order to search for ligand library and identification of new drug candidates and its physiological role against promastigotes and intracellular amastigotes of Leishmania donovani. Our results demonstrated that the selected inhibitor ZINC96021026 has significant anti-leishmanial effect and effectively killed both free and intracellular forms of the parasite. ZINC96021026 was found to be identical to ML-240, a selective inhibitor of Valosin-containing protein (VCP) or p97, a member of AAA-ATPase protein family which was derived from the scaffold of DBeQ, targeting the D2-ATPase domain of the enzyme. ZINC96021026 (ML-240) thus have broad range of cellular functions, thought to be derived from its ability to unfold proteins or disassemble protein complexes besides inhibiting the ascorbate peroxidase activity. ML-240 may inhibits the parasite's ascorbate peroxidase leading to extensive apoptosis and inducing generation of reactive oxygen species. Taken together, our results demonstrated that ML-240 could be an attractive therapeutic option for treatment against leishmaniasis.




sm

Influence of CYP2C8, CYP3A4 and CYP3A5 host genotypes on early recurrence of Plasmodium vivax [Mechanisms of Resistance]

CYP450 enzymes are involved in biotransformation of chloroquine (CQ), but the role of the different metabolism profiles of this drug has not been properly investigated in relation to P. vivax recurrences. To investigate the influence of CYPs genotypes associated with CQ-metabolism on early recurrence rates of P. vivax, a case-control study was carried out. Cases included patients presenting an early recurrence (CQ-recurrent), defined as recurrence during the first 28 days after initial infection, plasma concentrations of CQ plus desethylchloroquine (DCQ, the major CQ metabolite) higher than 100 ng/mL. A control (CQ-responsive) with no parasite recurrence over the follow-up was also included. CQ and DCQ plasma levels were measured on Day 28. CQ CYPs (CYP2C8, CYP3A4 and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify CQ and DCQ efficacy in P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and controls for CYP2C8 (OR=1.45, 95% CI=0.51-4.14, p=0.570), CYP3A4 (OR=2.38, 95% CI=0.92-6.19, p=0.105) and CYP3A5 (OR=4.17, 95% CI=0.79-22.04, p=1.038) genes. DCQ levels were higher than CQ, regardless of the genotype. Regarding the DCQ/CQ rate, there was no difference between groups or between those patients who had a normal or mutant genotype. DCQ and CQ showed similar efficacy ex vivo. CYPs genotypes had no influence on early recurrence rates. Similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite presence of alleles associated with slow metabolism.




sm

Comparative Genomic Analysis of Third Generation Cephalosporin-Resistant Escherichia coli Harboring blaCMY-2-Positive IncI1 group, IncB/O/K/Z, and IncC Plasmids Isolated from Healthy Broilers in Japan. [Epidemiology and Surveillance]

The off-label use of third generation cephalosporin (3GC) during in ovo vaccination or vaccination of newly hatched chicks, was a common practice worldwide. CMY-2-producing Escherichia coli have been disseminated among broiler production. The objectives of this study were to determine the epidemiological linkage of blaCMY-2-positive plasmids among broilers both within and outside Japan because grandparent stock and parent stock were imported in Japan. We examined the whole genome sequences of 132 3GC-resistant E. coli isolates collected from healthy broilers during 2002-2014. The predominant 3GC-resistance gene was blaCMY-2, which was detected in the plasmids of 87 (65.9%) isolates. The main plasmid replicon types were IncI1-I (n=21; 24.1%), IncI (n=12; 13.8%), IncB/O/K/Z (n=28; 32.2%), and IncC (n=22; 25.3%). Those plasmids were subjected to gene clustering and network analyses and plasmid multi-locus sequence typing (pMLST). The chromosomal DNA of isolates was subjected to MLST and single nucleotide variant (SNV)-based phylogenetic analysis.

MLST and SNV-based phylogenetic analysis revealed high diversity of E. coli isolates. ST429 harboring blaCMY-2-positive IncB/O/K/Z was closely related to isolates from broiler in Germany harboring blaCMY-2-positive IncB/O/K/Z. pST55-IncI and pST12-IncI1-I and pST3-IncC were prevalent in western Japan. pST12-IncI1-I and pST3-IncC were closely related to those detected in E. coli isolates from chicken in American continent, whereas 26 IncB/O/K/Z were related to those in Europe. These data will be useful to reveal the whole picture of transmission of CMY-2-producing bacteria in and out of Japan.




sm

Activity of epigenetic inhibitors against Plasmodium falciparum asexual and sexual blood stages. [Susceptibility]

Earlier genetic and inhibitor studies have shown that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new anti-malarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of Plasmodium falciparum. We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.




sm

Comparative plasma pharmacokinetics of ceftriaxone and ertapenem between normoalbuminemia, hypoalbuminemia and with albumin replacement in a sheep model. [Pharmacology]

Background

Optimal concentrations of unbound antimicrobials are essential for maximum microbiological effect. Although hypoalbuminemia and albumin fluid resuscitation are common in critical care, the effects of different albumin concentrations on the unbound concentrations of highly protein-bound antimicrobials are not known. The aim of this study was to compare effects of different albumin states on total and unbound concentrations of ertapenem and ceftriaxone using an ovine model.

Methods

Design

Prospective, three phase intervention observational study.

Subjects

Healthy Merino sheep.

Interventions

Eight sheep were subject to three experimental phases; normoalbuminemia, hypoalbuminemia using plasmapheresis and albumin replacement using a 25% albumin solution. In each phase, ceftriaxone 40 mg/kg and ertapenem 15 mg/kg were given intravenously. Blood samples were collected at pre-defined intervals and analyzed using an ultra-high-performance liquid chromatography tandem mass spectrometry method. Pharmacokinetic parameters such as area under the curve (AUC0-24), plasma clearance (CL) and apparent volume of distribution in the terminal phase (Vd) were estimated and compared between the phases.

Results

The protein and albumin concentrations were significantly different between phases. Hypoalbuminemia resulted in a significantly lower AUC0-24 and higher CL of total and unbound concentrations of ceftriaxone compared to the other phases. Whereas albumin replacement led to higher AUC0-24 and lower CL compared to other phases for both drugs. The Vd for total drug concentrations for both drugs were significantly lower with albumin replacement.

Conclusions

For highly protein-bound drugs such as ceftriaxone and ertapenem, both hypoalbuminemia and albumin replacement may affect unbound drug exposure.




sm

Fin24.com | JSE wrap | Oil price drop drives further stock pessimism

The JSE fell on Tuesday as global markets tumbled on the back of a rout in crude oil prices.




sm

Fin24.com | Markets wrap | Local stocks edge higher as optimism remains

Still, there was disappointment in terms of economic data following the release of the SACCI Business Confidence index data for April which came in at 77.8, compared to a forecast of 89.2.




sm

RHSU Classic: How Education Philanthropy Can Accidentally Promote Groupthink and Bandwagonism

In number 10 in our countdown, I tried to offer a few thoughts to funders as they embraced new agendas and looked to avoid repeating yesterday's missteps.




sm

Perioperative Transfusions and Venous Thromboembolism

BACKGROUND AND OBJECTIVES:

Annual incidence of venous thromboembolism (VTE) including postoperative VTE in hospitalized children is rising significantly. A growing body of evidence supports the role of red blood cells (RBCs) in pathologic thrombosis. In this study, we examined the association of perioperative RBC transfusion with postoperative VTE in pediatric patients.

METHODS:

The pediatric databases of the American College of Surgeons’ National Surgical Quality Improvement Project from 2012 to 2017 were used. Multivariable logistic regression was used to examine the association between perioperative RBC transfusion status and the development of new or progressive VTE within 30 days of surgery. The analyses were age stratified, as follows: neonates (≤28 days), infants (>28 days and <1 year), and children (≥1 year).

RESULTS:

In this study, we included 20 492 neonates, 79 744 infants, and 382 862 children. Postoperative development of VTE was reported in 99 (0.48%) neonates, 147 (0.2%) infants, and 374 (0.1%) children. In all age groups, development of VTE was significantly more common among patients with a perioperative RBC transfusion than patients without a perioperative RBC transfusion (neonates: adjusted odds ratio [aOR] = 4.1, 95% confidence interval [CI] = 2.5–6.7; infants: aOR = 2.4, 95% CI = 1.7–3.6; children: aOR = 2.2, 95% CI = 1.7–2.9). Among children who received an intra- or postoperative transfusion, the weight-based volume of RBCs (mL/kg) transfused was associated with postoperative VTE in a dose-dependent manner: second tertile (odds ratio = 2.3, 95% CI = 1.3–4.1) and third tertile (odds ratio = 4.1, 95% CI = 2.3–7.4) versus first tertile.

CONCLUSIONS:

Perioperative RBC transfusions are independently associated with development of new or progressive postoperative VTE in children, infants, and neonates. These findings need further validation in prospective studies and emphasize the need for evidence-based perioperative pediatric blood transfusion decisions.




sm

HIV Testing Among Adolescents With Acute Sexually Transmitted Infections

BACKGROUND AND OBJECTIVES:

Rates of sexually transmitted infections (STIs) have increased over the decade. Guidelines recommend HIV testing with incident STIs. Prevalence and factors associated with HIV testing in acute STIs are unknown in adolescents. Our objective was to determine the prevalence of completed HIV testing among adolescents with incident STIs and identify patient and health care factors associated with HIV testing.

METHODS:

Retrospective study of STI episodes (gonorrhea, Chlamydia, trichomoniasis, or syphilis) of adolescents between 13 and 24 years old from July 2014 to December 2017 in 2 urban primary care clinics. We performed mixed effects logistic regression modeling to identify patient and health care factors associated with HIV testing within 90 days of STI diagnosis.

RESULTS:

The 1313 participants contributed 1816 acute STI episodes. Mean age at STI diagnosis was 17.2 years (SD = 1.7), 75% of episodes occurred in females, and 97% occurred in African Americans. Only half (55%) of acute STI episodes had a completed HIV test. In the adjusted model, female sex, previous STIs, uninsured status, and confidential sexual health encounters were associated with decreased odds of HIV testing. Patients enrolled in primary care at the clinics, compared with those receiving sexual health care alone, and those with multipathogen STI diagnoses were more likely to have HIV testing.

CONCLUSIONS:

HIV testing rates among adolescents with acute STIs are suboptimal. Patient and health care factors were found to be associated with receipt of testing and should be considered in clinical practice.




sm

Michelle Darnell named director of Smeal's new Tarriff Center

Michelle R. Darnell, associate clinical professor in management and director of honor and integrity at Smeal, has been appointed as the inaugural director of the Tarriff Center for Business Ethics and Social Responsibility.




sm

Penn State Smeal MBA student unites community with fitness

When Penn State students were faced with the unprecedented challenge of remote learning for the remainder of the spring semester in response to COVID-19, Orlando Acevedo saw an opportunity to connect his community by organizing a 9-week fitness challenge.




sm

Penn State Smeal names spring 2020 Senior Award honorees

The Penn State Smeal College of Business has announced the recipients of its spring 2020 Senior Awards.




sm

Penn State Smeal panel explores pandemic's effects on sustainability, business

The Penn State Smeal College of Business Center for the Business of Sustainability recently hosted the first in a series of virtual fireside discussions titled “The Impact of Coronavirus on Sustainability and Social Impact,” to explore how recent momentum in sustainability efforts has been altered.




sm

Smeal supply chain student marshal points to professor as guiding force

Rachel Hooker, who will graduate May 9 with a 3.99 GPA in supply chain and information systems, has been selected as the Smeal College of Business’ spring 2020 supply chain and information systems student marshal.




sm

Leadership comes naturally to Penn State Smeal spring 2020 student marshal

Jake Griggs, who will graduate Saturday with a 3.95 GPA with dual majors in management and political science, has been named Smeal’s spring 2020 management and organization student marshal.




sm

Penn State Health hospitals use recovered patients' plasma as COVID-19 treatment

Penn State Health has enrolled its first COVID-19 patient into an experimental treatment program called convalescent plasma therapy.




sm

Fin24.com | 'I told myself it's not my money, yet': This woman saved R23 400 in small change in a year

Student Sandisiwe Msomi saved R23 400 in small change over a year, which she will now use to pay for the registration fees of her second academic year.




sm

Fossil Gen 5 Smartwatch

The Fossil Gen 5 Smartwatch features an attractive design and smooth performance, but its size isn't suitable for all wrists.