pro

Re: Scandal of “newborn gang” that put profits ahead of babies’ lives rocks Turkey’s health system




pro

Re: Scandal of “newborn gang” that put profits ahead of babies’ lives rocks Turkey’s health system




pro

Re: Scandal of “newborn gang” that put profits ahead of babies’ lives rocks Turkey’s health system




pro

Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression

Jessica Y. Franco
Dec 1, 2020; 19:1936-1951
Research




pro

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals

Tricia Rowlison
Dec 1, 2020; 19:2090-2103
Research




pro

High-throughput and site-specific N-glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery

Toma Keser
Dec 29, 2020; 0:RA120.002433v1-mcp.RA120.002433
Research




pro

Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry

Yadong Yu
Dec 1, 2020; 19:1997-2014
Research




pro

Identification of novel serological autoantibodies in Takayasu arteritis patients using HuProt arrays

Xiao-Ting Wen
Dec 17, 2020; 0:RA120.002119v1-mcp.RA120.002119
Research




pro

Interspecies differences in proteome turnover kinetics are correlated with lifespans and energetic demands

Kyle Swovick
Dec 28, 2020; 0:RA120.002301v1-mcp.RA120.002301
Research




pro

Global Proteome and Phosphoproteome Characterization of Sepsis-induced Kidney Injury

Yi-Han Lin
Dec 1, 2020; 19:2030-2046
Research




pro

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke

Alba Simats
Dec 1, 2020; 19:1921-1935
Research




pro

Multi-sample mass spectrometry-based approach for discovering injury markers in chronic kidney disease

Ji Eun Kim
Dec 20, 2020; 0:RA120.002159v1-mcp.RA120.002159
Research




pro

Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target

Alison M. Kurimchak
Dec 1, 2020; 19:2068-2089
Research




pro

The role of Data-Independent Acquisition for Glycoproteomics

Zilu Ye
Dec 28, 2020; 0:R120.002204v1-mcp.R120.002204
Review




pro

Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons

Charlotte A. G. H. van Gelder
Dec 1, 2020; 19:1952-1967
Research




pro

Proteome-wide Analysis Reveals Substrates of E3 Ligase RNF146 Targeted for Degradation

Litong Nie
Dec 1, 2020; 19:2015-2029
Research




pro

Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor

Sylwia Struk
Dec 28, 2020; 0:RA119.001766v1-mcp.RA119.001766
Research




pro

CMMB (Carboxylate Modified Magnetic Bead) -based isopropanol gradient peptide fractionation (CIF) enables rapid and robust off-line peptide mixture fractionation in bottom-up proteomics

Weixian Deng
Dec 22, 2020; 0:RA120.002411v1-mcp.RA120.002411
Research




pro

Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection

Julia Knöckel
Dec 22, 2020; 0:RA120.002432v1-mcp.RA120.002432
Research




pro

In depth characterization of the Staphylococcus aureus phosphoproteome reveals new targets of Stk1

Nadine Prust
Dec 17, 2020; 0:RA120.002232v1-mcp.RA120.002232
Research




pro

Thyroglobulin interactome profiling defines altered proteostasis topology associated with thyroid dyshormonogenesis

Madison T Wright
Nov 18, 2020; 0:RA120.002168v1-mcp.RA120.002168
Research




pro

Proteome analysis reveals a significant host-specific response in Rhizobium leguminosarum bv viciae endosymbiotic cells

David Durán
Nov 19, 2020; 0:RA120.002276v1-mcp.RA120.002276
Research




pro

A proteomics-based assessment of inflammation signatures in endotoxemia

Sean A Burnap
Dec 7, 2020; 0:RA120.002305v1-mcp.RA120.002305
Research




pro

A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective

Xinting Zhang
Dec 8, 2020; 0:RA120.002306v1-mcp.RA120.002306
Research




pro

Proteogenomic characterization of the pathogenic fungus Aspergillus flavus reveals novel genes involved in aflatoxin production

Mingkun Yang
Nov 24, 2020; 0:RA120.002144v1-mcp.RA120.002144
Research




pro

Quantitative proteomics reveal neuron projection development genes ARF4, KIF5B and RAB8A associated with Hirschsprung disease

Qin Zhang
Nov 17, 2020; 0:RA120.002325v1-mcp.RA120.002325
Research




pro

Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts

Juntuo Zhou
Nov 30, 2020; 0:RA120.002384v1-mcp.RA120.002384
Research




pro

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia

Ka-Won Kang
Nov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169
Research




pro

Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics

Kailun Fang
Nov 30, 2020; 0:RA120.002081v1-mcp.RA120.002081
Research




pro

Peptidomics-driven strategy reveals peptides and predicted proteases associated with oral cancer prognosis

Leandro Xavier Neves
Nov 11, 2020; 0:RA120.002227v1-mcp.RA120.002227
Research




pro

Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases

Matthias Schittmayer
Dec 1, 2020; 19:2104-2114
Research




pro

Proteomic identification of Coxiella burnetii effector proteins targeted to the host cell mitochondria during infection

Laura F Fielden
Nov 11, 2020; 0:RA120.002370v1-mcp.RA120.002370
Research




pro

Proteome Turnover in the Spotlight: Approaches, Applications & Perspectives

Alison B. Ross
Nov 30, 2020; 0:R120.002190v1-mcp.R120.002190
Review




pro

Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches

Congcong Lu
Nov 17, 2020; 0:R120.002257v1-mcp.R120.002257
Review




pro

Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy

Tirsa L. E. van Westering
Dec 1, 2020; 19:2047-2067
Research




pro

Protein modification characteristics of the malaria parasite Plasmodium falciparum and the infected erythrocytes

Jianhua Wang
Nov 4, 2020; 0:RA120.002375v1-mcp.RA120.002375
Research




pro

ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping

Diana Samodova
Dec 1, 2020; 19:2139-2156
Technological Innovation and Resources




pro

Plasma proteomic data can contain personally identifiable, sensitive information and incidental findings

Philipp Emanuel Geyer
Dec 17, 2020; 0:RA120.002359v1-mcp.RA120.002359
Research




pro

Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells [Signal Transduction]

Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function.




pro

ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells [Cell Biology]

Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity.




pro

A Gs-RhoGEF interaction: An old G protein finds a new job [Cell Biology]

The heterotrimeric G proteins are known to have a variety of downstream effectors, but Gs was long thought to be specifically coupled to adenylyl cyclases. A new study indicates that activated Gs can also directly interact with a guanine nucleotide exchange factor for Rho family small GTPases, PDZ-RhoGEF. This novel interaction mediates activation of the small G protein Cdc42 by Gs-coupled GPCRs, inducing cytoskeletal rearrangements and formation of filopodia-like structures. Furthermore, overexpression of a minimal PDZ-RhoGEF fragment can down-regulate cAMP signaling, suggesting that this effector competes with canonical signaling. This first demonstration that the Gαs subfamily regulates activity of Rho GTPases extends our understanding of Gαs activity and establishes RhoGEF coupling as a universal Gα function.




pro

Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways [Gene Regulation]

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.




pro

Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion [Cell Biology]

In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.




pro

Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation [Cell Biology]

Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.




pro

NETosis occurs independently of neutrophil serine proteases [Enzymology]

Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.




pro

Wildtype {sigma}1 receptor and the receptor agonist improve ALS-associated mutation-induced insolubility and toxicity [Neurobiology]

Genetic mutations related to ALS, a progressive neurological disease, have been discovered in the gene encoding σ-1 receptor (σ1R). We previously reported that σ1RE102Q elicits toxicity in cells. The σ1R forms oligomeric states that are regulated by ligands. Nevertheless, little is known about the effect of ALS-related mutations on oligomer formation. Here, we transfected NSC-34 cells, a motor neuronal cell line, and HEK293T cells with σ1R-mCherry (mCh), σ1RE102Q-mCh, or nontagged forms to investigate detergent solubility and subcellular distribution using immunocytochemistry and fluorescence recovery after photobleaching. The oligomeric state was determined using crosslinking procedure. σ1Rs were soluble to detergents, whereas the mutants accumulated in the insoluble fraction. Within the soluble fraction, peak distribution of mutants appeared in higher sucrose density fractions. Mutants formed intracellular aggregates that were co-stained with p62, ubiquitin, and phosphorylated pancreatic eukaryotic translation initiation factor-2-α kinase in NSC-34 cells but not in HEK293T cells. The aggregates had significantly lower recovery in fluorescence recovery after photobleaching. Acute treatment with σ1R agonist SA4503 failed to improve recovery, whereas prolonged treatment for 48 h significantly decreased σ1RE102Q-mCh insolubility and inhibited apoptosis. Whereas σ1R-mCh formed monomers and dimers, σ1RE102Q-mCh also formed trimers and tetramers. SA4503 reduced accumulation of the four types in the insoluble fraction and increased monomers in the soluble fraction. The σ1RE102Q insolubility was diminished by σ1R-mCh co-expression. These results suggest that the agonist and WT σ1R modify the detergent insolubility, toxicity, and oligomeric state of σ1RE102Q, which may lead to promising new treatments for σ1R-related ALS.




pro

Transcription factor NF-{kappa}B promotes acute lung inȷury via microRNA-99b-mediated PRDM1 down-regulation [Developmental Biology]

Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1.




pro

PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells [Signal Transduction]

RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.




pro

GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness [Cell Biology]

Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone–rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro. The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer—6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.




pro

NSun2 promotes cell migration through methylating autotaxin mRNA [Cell Biology]

NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX.