ide

Synthesis and crystal structure of (E)-2-({2-[aza­niumyl­idene(methyl­sulfan­yl)meth­yl]hydrazinyl­idene}meth­yl)benzene-1,4-diol hydrogen sulfate

The title mol­ecular salt, C9H12N3O2S+·HSO4−, was obtained through the protonation of the azomethine N atom in a sulfuric acid medium. The crystal com­prises two entities, a thio­semicarbazide cation and a hydrogen sulfate anion. The cation is essentially planar and is further stabilized by a strong intra­molecular O—H⋯N hydrogen bond. In the crystal, a three-dimensional network is established through O—H⋯O and N—H⋯O hydrogen bonds. A weak intermolecular C—H⋯O hydrogen bond is also observed. The hydrogen sulfate anion exhibits disorder over two sets of sites and was modelled with refined occupancies of 0.501 (6) and 0.499 (6).




ide

Different packing motifs mediated by weak inter­actions and polymorphism in the crystal structures of five 2-(benzyl­idene)benzosuberone derivatives

The syntheses and crystal structures of five 2-benzyl­idene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetra­hydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-meth­oxy­benzyl­idene)-1-benzosuberone, C19H18O2, (I), 2-(4-eth­oxy­benzyl­idene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzyl­benzyl­idene)-1-benzosuberone, C25H22O2, (III), 2-(4-chloro­benzyl­idene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyano­benzyl­idene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π inter­actions consolidate the structures and weak aromatic π–π stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are com­pared and structural features of the 2-benzyl­idene-1-benzosuberone family of phases are surveyed.




ide

Crystal structure and Hirshfeld surface analysis of 2,2'-{(1E,1'E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[4-(tri­fluoro­meth­oxy)phenol]copper(II) hydro­quinone hemisolvate

In the title com­plex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetra­dentate open-chain Schiff base ligand 6,6'-{(1E,1'E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[2-(tri­fluoro­meth­oxy)phenol]. The crystal packing is stabilized by intra­molecular O—H⋯O and inter­molecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π inter­actions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) inter­actions.




ide

Crystal structure of benzo[h]quinoline-3-carbox­amide

The title com­pound, C14H10N2O, crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. All 17 non-H atoms of one mol­ecule lie essentially in one plane. In the unit cell, two pairs of mol­ecules are exactly coplanar, while the angle between these two orientations is close to perfectly perpendicular at 87.64 (6)°. In the crystal, mol­ecules adopt a 50:50 crisscross arrangement, which is held together by two nonclassical and two classical inter­molecular hydrogen bonds. The hydrogen-bonding network together with off-centre π–π stacking inter­actions between the pyridine and outermost benzene rings, stack the mol­ecules along the b-axis direction.




ide

Crystal structure and Hirshfeld surface analysis of poly[tris­(μ4-benzene-1,4-di­carboxyl­ato)tetra­kis­(di­methyl­formamide)­trinickel(II)]: a two-dimensional coordination network

The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-di­carboxyl­ate and DMF = di­methyl­formamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides inter­actions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF mol­ecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C inter­actions between DMF mol­ecules, as shown by Hirshfeld surface analysis.




ide

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

In the paper by Gomes et al. [Acta Cryst. (2019), E75, 1403–1410], there was an error and omission in the author and affiliation list.




ide

Crystal structures of (E)-3-(4-hy­droxy­benzyl­idene)chroman-4-one and (E)-3-(3-hy­droxy­benzyl­idene)-2-phenyl­chroman-4-one

The synthesis and crystal structures of (E)-3-(4-hy­droxy­benzyl­idene)chroman-4-one, C16H12O3, I, and (E)-3-(3-hy­droxy­benzyl­idene)-2-phenyl­chroman-4-one, C22H16O3, II, are reported. These compounds are of inter­est with respect to biological activity. Both structures display inter­molecular C—H⋯O and O—H⋯O hydrogen bonding, forming layers in the crystal lattice. The crystal structure of compound I is consolidated by π–π inter­actions. The lipophilicity (logP) was determined as it is one of the parameters qualifying compounds as potential drugs. The logP value for compound I is associated with a larger contribution of C⋯H inter­action in the Hirshfeld surface.




ide

Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-di­methyl­imidazo[1,2-a]pyridin-3-yl)-2-(1,3-di­thio­lan-2-yl­idene)ethanone monohydrate

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-di­thiol­ane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-di­thiol­ane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid mol­ecules are associated in R22(14) dimeric units by weak C—H⋯O inter­actions. O—H⋯O hydrogen bonds link the water mol­ecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of inter­molecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water mol­ecules are the main driving force in the crystal packing formation.




ide

N,N'-Bis(pyridin-3-ylmeth­yl)ethanedi­amide monohydrate: crystal structure, Hirshfeld surface analysis and computational study

The mol­ecular structure of the title bis-pyridyl substituted di­amide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methyl­ene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intra­molecular amide-N—H⋯O(carbon­yl) hydrogen bonds are formed, each closing an S(5) loop. Supra­molecular tapes are formed in the crystal via amide-N—H⋯O(carbon­yl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water mol­ecules via water-O—H⋯N(pyrid­yl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methyl­ene-C—H⋯O(water) and methyl­ene-C—H⋯π(pyrid­yl) inter­actions, give rise to a layer parallel to (10overline{1}); the layers stack without directional inter­actions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding inter­actions, and to the significant influence of the water mol­ecule of crystallization upon the mol­ecular packing. The analysis also indicates the contribution of methyl­ene-C—H⋯O(carbon­yl) and pyridyl-C—H⋯C(carbon­yl) contacts to the stability of the inter-layer region. The calculated inter­action energies are consistent with importance of significant electrostatic attractions in the crystal.




ide

Crystal structure, Hirshfeld surface analysis and computational study of bis­(2-{[(2,6-di­chloro­benzyl­idene)hydrazinyl­idene]meth­yl}phenolato)cobalt(II) and of the copper(II) analogue

The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry overline{1}). In the crystal of (I), discernible supra­molecular layers in the ac plane are sustained by chloro­benzene-C—H⋯O(coordinated), chloro­benzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chloro­benzene)–π(chloro­benzene) inter­actions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by di­chloro­benzene-C—H⋯π(fused-benzene ring) and π–π inter­actions between fused-benzene rings and between chloro­benzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supra­molecular layers are also found in the crystal of (II), being stabilized by π–π inter­actions formed between fused-benzene rings and between chloro­benzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10overline{1}] without directional inter­actions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The inter­action energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing inter­action in the crystal of (II).




ide

An unusually short inter­molecular N—H⋯N hydrogen bond in crystals of the hemi-hydro­chloride salt of 1-exo-acetamido­pyrrolizidine

The title compound [systematic name: (1R*, 8S)-2-acetamidoocta­hydro­pyrrol­izin-4-ium chloride–N-[(1R, 8S)-hexa­hydro-1H-pyrrolizin-2-yl)acetamide (1/1)], 2(C9H16N2O)·HCl or C9H17N2O+·Cl−·C9H16N2O, arose as an unexpected product when 1-exo-acetamido­pyrrolizidine (AcAP; C9H16N2O) was dissolved in CHCl3. Within the AcAP pyrrolizidine group, the unsubstituted five-membered ring is disordered over two orientations in a 0.897 (5):0.103 (5) ratio. Two AcAP mol­ecules related by a crystallographic twofold axis link to H+ and Cl− ions lying on the rotation axis, thereby forming N—H⋯N and N—H⋯Cl⋯H—N hydrogen bonds. The first of these has an unusually short N⋯N separation of 2.616 (2) Å: refinement of different models against the present data set could not distinguish between a symmetrical hydrogen bond (H atom lying on the twofold axis and equidistant from the N atoms) or static or dynamic disorder models (i.e. N—H⋯N + N⋯H—N). Computational studies suggest that the disorder model is slightly more stable, but the energy difference is very small.




ide

Syntheses and crystal structures of 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic acid and 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride

In 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic acid, C8H14O4, the carboxyl group occupies an equatorial position on the 1,3-dioxane ring. In the crystal, O—H⋯O hydrogen bonds form chains of mol­ecules, which are linked into a three-dimensional network by C—H⋯O hydrogen bonds. The asymmetric unit of 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride, C16H26O7, consists of two independent mol­ecules, which are linked by C—H⋯O hydrogen bonds. In the crystal, these units are connected into corrugated layers two mol­ecules thick and parallel to the ab plane by additional C—H⋯O hydrogen bonds.




ide

Bis{4-[(2-hy­droxy-5-meth­oxy-3-nitro­benzyl­idene)amino]­phen­yl} ether

The mol­ecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the mol­ecule exhibits an imine E configuration. An intra­molecular O—H⋯N hydrogen bond is present. In the crystal, the mol­ecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin.




ide

The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmeth­yl)ethanedi­amide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study

The crystal and mol­ecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide mol­ecule has a (+)-anti­periplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid mol­ecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds between the benzoic acid mol­ecules and the pyridyl residues of the di­amide leads to a three-mol­ecule aggregate. Centrosymmetrically related aggregates assemble into a six-mol­ecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supra­molecular tape via amide-N—H⋯O(carbon­yl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methyl­ene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbon­yl). These inter­actions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces.




ide

Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobi­cyclo[2.2.1]heptan-3-yl­idene]hydrazinecarbo­thio­amide

The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thio­semicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thio­semicarbazone], which maintains the chirality of the methyl­ated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two mol­ecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thio­semicarbazone isomer and the second the (1S)- isomer. In the crystal, the mol­ecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S inter­actions, building a tape-like structure parallel to the (overline{1}01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S inter­actions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) inter­actions.




ide

Crystal structure, DFT and Hirshfeld surface analysis of (E)-N'-[(1-chloro-3,4-di­hydro­naph­thal­en-2-yl)methyl­idene]benzohydrazide monohydrate

In the title compound, C18H15ClN2O·H2O, a benzohydrazide derivative, the dihedral angle between the mean plane of the di­hydro­naphthalene ring system and the phenyl ring is 17.1 (2)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the benzohydrazide and water mol­ecules, forming a layer parallel to the bc plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (45.7%) and H⋯C/C⋯H (20.2%) contacts.




ide

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aqua­dichlorido­{N-[(pyridin-2-yl)methyl­idene]aniline}copper(II) monohydrate

The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water mol­ecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand inter­acts through a strong hydrogen bond with a water mol­ecule of crystallization. In the crystal, mol­ecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that inter­act in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water mol­ecules. The mol­ecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




ide

The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-di­methyl­anilino)-N-(3,4-di­methyl­phen­yl)quinoline-3-carboxamide

The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and inter­molecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the inter­molecular inter­actions.




ide

(E)-{[(Butyl­sulfan­yl)methane­thio­yl]amino}(4-meth­oxy­benzyl­idene)amine: crystal structure and Hirshfeld surface analysis

The title hydrazine carbodi­thio­ate, C13H18N2OS2, is constructed about a central and almost planar C2N2S2 chromophore (r.m.s. deviation = 0.0263 Å); the terminal meth­oxy­benzene group is close to coplanar with this plane [dihedral angle = 3.92 (11)°]. The n-butyl group has an extended all-trans conformation [torsion angles S—Cm—Cm—Cm = −173.2 (3)° and Cm—Cm—Cm—Cme = 180.0 (4)°; m = methyl­ene and me = meth­yl]. The most prominent feature of the mol­ecular packing is the formation of centrosymmetric eight-membered {⋯HNCS}2 synthons, as a result of thio­amide-N—H⋯S(thio­amide) hydrogen bonds; these are linked via meth­oxy-C–H⋯π(meth­oxy­benzene) inter­actions to form a linear supra­molecular chain propagating along the a-axis direction. An analysis of the calculated Hirshfeld surfaces and two-dimensional fingerprint plots point to the significance of H⋯H (58.4%), S⋯H/H⋯S (17.1%), C⋯H/H⋯C (8.2%) and O⋯H/H⋯O (4.9%) contacts in the packing. The energies of the most significant inter­actions, i.e. the N—H⋯S and C—H⋯π inter­actions have their most significant contributions from electrostatic and dispersive components, respectively. The energies of two other identified close contacts at close to van der Waals distances, i.e. a thione–sulfur and meth­oxy­benzene–hydrogen contact (occurring within the chains along the a axis) and between methyl­ene-H atoms (occurring between chains to consolidate the three-dimensional architecture), are largely dispersive in nature.




ide

Crystal structure of 4-methyl-N-(4-methyl­benz­yl)benzene­sulfonamide

The title compound, C15H17NO2S, was synthesized via a substitution reaction between 4-methyl­benzyl­amine and p-toluene­sulfonyl chloride. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, forming ribbons running along the b-axis direction. One of the aromatic rings hosts two inter­molecular C—H⋯π inter­actions that link these hydrogen-bonded ribbons into a three-dimensional network.




ide

An indenide-tethered N-heterocyclic stannylene

The structure of (μ-1κN:2(η2),κ2N,N'-(2-{[2,6-bis(propan-2-yl)phen­yl]aza­nid­yl}eth­yl)[2-(1H-inden-1-yl)eth­yl]aza­nido)(1,4,7,10,13,16-hexa­oxa­cyclo­octa­dec­ane-1κ6O)lithiumtin, [LiSn(C8H16O4)(C25H31N2)], at 100 K has monoclinic (P21/n) symmetry. Analysis of the coordination of the Sn to the indenyl ring shows that the Sn inter­acts in an η2 fashion. A database survey showed that whilst this coordination mode is unusual for Ge and Pb compounds, Sn displays a wider range of coordination modes to cyclo­penta­dienyl ligands and their derivatives.




ide

Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis­(pyridin-4-ylmeth­yl)ethane­diamide and 4-chloro­benzoic acid

The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol­ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in general positions. Each 4LH2 mol­ecule has a (+)anti­periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol­ecules. The anti conformation of the carbonyl groups enables the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol­ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol­ecule aggregates are formed via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding. These are connected into a supra­molecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions. As revealed by a more detailed analysis of the mol­ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter­actions which provide inter­action energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supra­molecular tape.




ide

Crystal structure of a tripeptide biphenyl hybrid C50H56N6O10·0.5H2O

A peptide biphenyl hybrid compound {systematic name: dimethyl 2,2'-[((2S,2'S)-2,2'-{[(2S,2'S)-1,1'-([1,1'-biphen­yl]-2,2'-dicarbon­yl)bis­(pyrrolidine-1,2-diyl-2-carbon­yl)]bis­(aza­nedi­yl)}bis­(3-phenyl­propano­yl))bis­(aza­nedi­yl)](2S,2'S)-dipropionate hemihydrate}, C50H56N6O10·0.5H2O, was prepared by coupling of [1,1'-biphen­yl]-2,2'-dicarbonyl dichloride, tri­ethyl­amine and the tripeptide Pro–Phe–Ala in CH2Cl2 at 273 K under an N2 atmosphere. In the crystal, the asymmetric unit contains the peptide biphenyl hybrid accompanied by one-half of a water mol­ecule. A C atom of one of the proline rings is disordered between two positions in a 0.746 (11):0.254 (11) ratio. An important structural aspect of peptide compounds is their capacity to self-associate mediated by inter­molecular and intra­molecular hydrogen bonding. This characteristic can be useful in understanding the inter­actions between peptides and biomacromolecular targets, as well as to explain peptide properties.




ide

Crystal structure of the mixed methanol and ethanol solvate of bis­{3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazidato}zinc(II)

The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex mol­ecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π inter­actions between the planar ligand moieties, which are further connected by C⋯O and C⋯C inter­actions. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) inter­actions.




ide

Tetra­aqua­[3-oxo-1,3-bis­(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate

The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octa­hedral NiII atom coordinated to the enol form of 1,3-di­pyridyl­propane-1,3-dione (dppo) and four water mol­ecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitro­gen-containing rings are involved in hydrogen-bonding inter­actions with neighoring bromide anions. There are many additional hydrogen-bonding inter­actions involving coordinated water mol­ecules on the NiII atom, bromide anions and hydration water mol­ecules.




ide

Crystal structures and Hirshfeld surface analysis of trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline-κ2N,N'}manganese(II) and trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyri

Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex mol­ecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thio­cyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octa­hedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The tri­methyl­benzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify these inter­molecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)].




ide

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of (2Z)-2-(2,4-di­chloro­benzyl­idene)-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

The title compound, C24H27Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units in which the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form chains of mol­ecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphy⋯π (ring) inter­actions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.




ide

Synthesis and crystal structure of (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetra­hydro­pyrano[3,2-b]pyran-2-carboxamide

The pyran­opyran amide (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetra­hydro­pyrano[3,2-b]pyran-2-carboxamide, C9H9NO4, 3, was prepared by a chemoselective hydration of the corresponding nitrile, 2, using a heterogeneous catalytic method based on copper(II) supported on mol­ecular sieves, in the presence of acetaldoxime. Compound 3 belongs to a new class of pyran­opyrans that possess anti­bacterial and phytotoxic activity. Crystallographic analysis of 3 shows a bent structure for the cis-fused bicyclic pyran­opyran, similar to nitrile 2. Evidence of an intra­molecular hydrogen bond involving the amide group and ring oxygen was not observed; however, two separate inter­molecular hydrogen-bonding inter­actions were observed between the amide hydrogen atoms and adjacent carbonyl oxygen atoms along the b- and a-axis directions. The latter inter­action may also be supported by an inter­molecular C—H⋯O hydrogen bond. The lattice is filled out by close-packed layers of this hydrogen-bonded network along the c-axis direction, related from one to the next by a 21 screw axis.




ide

Crystal structure of 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­(perchlorate) dichloride from synchrotron X-ray data

The crystal structure of title salt, C14H36N44+·2ClO4−·2Cl−, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding inter­actions with the cations. The crystal structure is consolidated by inter­molecular hydrogen bonds involving the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network.




ide

Conversion of di­aryl­chalcones into 4,5-di­hydro­pyrazole-1-carbo­thio­amides: mol­ecular and supra­molecular structures of two precursors and three products

Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides using a cyclo­condensation reaction with thio­semicarbazide. The chalcones 1-(4-chloro­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromo­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their mol­ecules are linked into sheets by two independent C—H⋯π(arene) inter­actions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chloro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16ClN3OS, (IV), (RS)-3-(4-bromo­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16BrN3OS, (V), and (RS)-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-yn­yloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their mol­ecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The mol­ecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds.




ide

Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex

The title pyrazine dicarboxamide ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10overline{1}) plane, which are in turn linked by offset π–π inter­actions [inter­centroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supra­molecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in aceto­nitrile leads to the formation of the binuclear complex, [μ-(3-{hy­droxy[(quinolin-8-yl)imino]­meth­yl}pyrazin-2-yl)[(quinolin-8-yl)imino]­methano­lato]bis­[diaceto­nitrile­copper(II)] tris­(per­chlor­ate) aceto­nitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1−)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two aceto­nitrile mol­ecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional structure.




ide

Crystal structure, characterization and Hirshfeld analysis of bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetra­coordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π inter­actions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO mol­ecules inter­act weakly with the complex mol­ecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent mol­ecule is disordered over two positions with occupancies of 0.70 and 0.30.




ide

Crystal structure and Hirshfeld surface analysis of (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide

The central thia­zolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) inter­actions.




ide

Whole-mol­ecule disorder of the Schiff base compound 4-chloro-N-(4-nitro­benzyl­idene)aniline: crystal structure and Hirshfeld surface analysis

In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chloro­phen­yl)-1-(4-nitro­phen­yl)methanimine], the CNBA mol­ecule shows whole-mol­ecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the mol­ecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H⋯O hydrogen bonds predominate in linking the major components, while weak C—H⋯Cl inter­actions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures.




ide

Crystal structure and photoluminescent properties of bis­(4'-chloro-2,2':6',2''-terpyrid­yl)cobalt(II) dichloride tetra­hydrate

In the title hydrated complex, [Co(C15H10ClN3)2]Cl2·4H2O, the complete dication is generated by overline{4} symmetry. The CoN6 moiety shows distortion from regular octa­hedral geometry with the trans bond angles of two N—Co—N units being 160.62 (9)°. In the crystal, O—H⋯Cl and C—H⋯O inter­actions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO–LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum.




ide

Crystal structure, Hirshfeld surface analysis and computational study of 2-chloro-N-[4-(methyl­sulfan­yl)phen­yl]acetamide

In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the mol­ecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯S/S⋯H. π–π inter­actions between inversion-related mol­ecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the π–π* electronic transition was the major contributor to the absorption peak in the electronic spectrum.




ide

Intra­molecular 1,5-S⋯N σ-hole inter­action in (E)-N'-(pyridin-4-yl­methyl­idene)thio­phene-2-carbohydrazide

The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The mol­ecular conformation is nearly planar and features an intra­molecular chalcogen bond between the thio­phene S and the imine N atoms. Within the crystal, the strongest inter­actions between mol­ecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features π–π stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise inter­molecular inter­actions within the stacks are considerably larger than those found for the inter­actions between the layers.




ide

Crystal structure of 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­[chlorido­chromate(VI)] dichloride from synchrotron X-ray data

The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chloro­chromate anion and one chloride anion. Both the Cl− anion and chloro­chromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane (TMC) N—H groups and C—H groups as donor groups and three O atoms of the chloro­chromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network.




ide

Crystal structure and Hirshfeld surface analysis of 2-amino-3-hy­droxy­pyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts.




ide

Crystal structure, Hirshfeld surface analysis and inter­action energy, DFT and anti­bacterial activity studies of ethyl 2-[(2Z)-2-(2-chloro­benzyl­idene)-3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl]acetate

The title compound, C19H16ClNO3S, consists of chloro­phenyl methyl­idene and di­hydro­benzo­thia­zine units linked to an acetate moiety, where the thia­zine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = di­hydro­benzo­thia­zine) hydrogen bonds form layers of mol­ecules parallel to the bc plane. The layers stack along the a-axis direction with inter­calation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the anti­bacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria.




ide

Crystal structures of (η4-cyclo­octa-1,5-diene)bis(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide and (η4-cyclo­octa-1,5-diene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide

The title complexes, (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cyclo­octa-1,5-di­ene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid l-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the ortho­rhom­bic space group Pccn, both with Z = 4.




ide

Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate-κ2N2,O]bis(thio­cyanato)­nickel(II)

The title centrosymmetric NiII complex, [Ni(NCS)2(C15H22N2O2)2], crystallizes with one half mol­ecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octa­hedral coordination geometry with two mutually trans benzyl-2-(heptan-4-yl­idene)hydrazine-1-carboxyl­ate ligands in the equatorial plane with the axial positions occupied by N-bound thio­cyanato ligands. The overall conformation of the mol­ecule is also affected by two, inversion-related, intra­molecular C—H⋯O hydrogen bonds. The crystal structure features N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds together with C—H⋯π contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA–DTA analyses.




ide

Dehydration synthesis and crystal structure of terbium oxychloride, TbOCl

Terbium oxychloride, TbOCl, was synthesized via the simple heat-treatment of TbCl3·6H2O and its structure was determined by refinement against X-ray powder diffraction data. TbOCl crystallizes with the matlockite (PbFCl) structure in the tetra­gonal space group P4/nmm and is composed of alternating (001) layers of (TbO)n and n Cl−. The unit-cell parameters, unit-cell volume, and density were compared to the literature data of other isostructural rare-earth oxychlorides in the same space group and showed good agreement when compared to the calculated trendlines.




ide

Crystal structure of N'-[4-(di­methyl­amino)­benzyl­idene]furan-2-carbohydrazide monohydrate

The condensation of 2-furoic hydrazide and 4-dimethyl amino­benzaldehyde in ethanol yielded a yellow solid formulated as the title compound, C14H15N3O2·H2O. The crystal packing is stabilized by inter­molecular O(water)—H⋯O,N(carbohydrazide) and N—H⋯O(water) hydrogen bonds, which form a two-dimensional network along the bc plane. Additional C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. The dihedral angle between the mean planes of the benzene and the furan ring is 34.47 (6)°. The carbohydrazide moiety, i.e., the C=N—N—C=O fragment and the benzene ring are almost coplanar, with an angle of 6.75 (9)° between their mean planes.




ide

Crystal structure of trans-di­chlorido­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­(form­amide-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­[tetra­ch

The structure of the title compound, [CrCl2(C10H24N4)][Cr(HCONH2)2(C10H24N4)][ZnCl4]2 (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; HCONH2 = formamide, fa), has been determined from synchrotron X-ray data. The asymmetric unit contains two independent halves of the [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations, and one tetra­chlorido­zincate anion. In each complex cation, the CrIII ion is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and two Cl ligands or two O-bonded formamide mol­ecules in a trans axial arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, while the Cr—Cl and Cr—O(fa) bond distances are 2.3194 (7) and 1.9953 (19) Å, respectively. The macrocyclic cyclam moieties adopt the centrosymmetric trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the NH or CH groups of cyclam and the NH2 group of coordinated formamide as donors, and Cl atoms of the ZnCl42− anion as acceptors.




ide

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid di­methyl­formamide monosolvate

The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a di­methyl­formamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic mol­ecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Car­yl—CH2—NH—Car­yl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supra­molecular network, resulting from hydrogen-bonding inter­actions between the carb­oxy­lic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carb­oxy­lic group and additional C—H⋯π inter­actions. Hirshfeld surface analysis was performed to qu­antify the inter­molecular inter­actions.




ide

Synthesis and crystal structure of a penta­copper(II) 12-metallacrown-4: cis-di­aqua­tetra­kis­(di­methyl­formamide-κO)manganese(II) tetra­kis­(μ3-N,2-dioxido­benzene-1-carboximidate)penta­copper(II)

The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each penta­copper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octa­hedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water mol­ecules of the MnII ion. The water mol­ecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs.




ide

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-chloro­phen­yl)-5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carboxamide

The title compound, C19H17ClN4O2, was obtained via a two-step synthesis involving the enol-mediated click Dimroth reaction of 4-azido­anisole with methyl 3-cyclo­propyl-3-oxo­propano­ate leading to the 5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carb­oxy­lic acid and subsequent acid amidation with 4-chloro­aniline by 1,1'-carbonyl­diimidazole (CDI). It crystallizes in space group P21/n, with one mol­ecule in the asymmetric unit. In the extended structure, two mol­ecules arranged in a near coplanar fashion relative to the triazole ring planes are inter­connected by N—H⋯N and C—H⋯N hydrogen bonds into a homodimer. The formation of dimers is a consequence of the above inter­action and the edge-to-face stacking of aromatic rings, which are turned by 58.0 (3)° relative to each other. The dimers are linked by C—H⋯O inter­actions into ribbons. DFT calculations demonstrate that the frontier mol­ecular orbitals are well separated in energy and the HOMO is largely localized on the 4-chloro­phenyl amide motif while the LUMO is associated with aryl­triazole grouping. A Hirshfeld surface analysis was performed to further analyse the inter­molecular inter­actions.




ide

Charge densities in actinide compounds: strategies for data reduction and model building

The data quality requirements for charge density studies on actinide compounds are extreme. Important steps in data collection and reduction required to obtain such data are summarized and evaluated. The steps involved in building an augmented Hansen–Coppens multipole model for an actinide pseudo-atom are provided. The number and choice of radial functions, in particular the definition of the core, valence and pseudo-valence terms are discussed. The conclusions in this paper are based on a re-examination and improvement of a previously reported study on [PPh4][UF6]. Topological analysis of the total electron density shows remarkable agreement between experiment and theory; however, there are significant differences in the Laplacian distribution close to the uranium atoms which may be due to the effective core potential employed for the theoretical calculations.




ide

Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase

Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of `tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels–Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99–107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels–Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels–Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.