re

Powder refilling device, process cartridge and image including same, and powder refilling method

A powder refilling device includes a refill powder chamber to accommodate a powder bag containing powder, an opener to open the powder bag inside the refill powder chamber, and a squeezer to squeeze the opened powder bag to discharge powder therefrom and reduce a volume of the opened powder bag.




re

Using synchronous converter in asynchronous mode to prevent current reversal during battery charging

Efficiency of a switch mode power supply (SMPS) is optimized by operating the SMPS in an asynchronous mode when current being supplied therefrom is less than a certain current value and operating the SMPS in a synchronous mode when the current being supplied therefrom is equal to or greater than the certain current value. When the SMPS is operating in the synchronous mode high-side and low-side power transistors alternately turn on and off. When the SMPS is operating in the asynchronous mode only the high-side power transistor turns on and off and the low-side power transistor remains off. When charging a battery with the SMPS discharge of the battery is eliminated when operating in the asynchronous mode at a low current output.




re

Voltage-to-current sensing circuit and related DC-DC converter

The present disclosure is directed to a voltage-to-current sensing circuit having a bias terminal configured to receive a reference voltage, an offset terminal configured to receive an offset current, and an operational amplifier configured to output a low voltage signal. The device includes a first amplifier having first and second high voltage inputs configured to receive a first voltage difference across a sense component on a high voltage line and to generate a first current, a second amplifier having first and second low voltage inputs configured to receive a second voltage difference between the bias terminal and the offset terminal and to generate a second current, a summing circuit configured to provide an intermediate voltage corresponding to a sum of the first and the second currents, and a low-voltage transistor coupled to an output of the amplifier and controlled by the intermediate voltage to generate the output current.




re

High efficient control circuit for buck-boost converters and control method thereof

A controller used in a buck-boost converter includes a clock generator, an error amplifying circuit, a comparing circuit, a proportional sampling circuit, a logic circuit, a pulse width increasing circuit, first and second driving circuits. Based on a clock signal generated by the clock generator, the proportional sampling circuit samples the difference between a current sensing signal and a compensation signal generated by the error amplifying circuit, and generates a proportional sampling signal. The pulse width increasing circuit generates a sum control signal based on the proportional sampling signal and a logic control signal generated by the logic circuit, wherein a modulation value adjusted by the proportional sampling signal is added to the pulse width of the logic control signal to generate the pulse width of the sum control signal. The first and second driving circuits generate driving signals based on the sum control signal and the logic control signal.




re

Control circuit of a switched-mode power converter and method thereof

A method for controlling voltage crossing a power switch of a switched-mode power converter includes the steps of: controlling a switch frequency of the power switch of the switched-mode power converter to a first frequency as activating the switched-mode power converter; and then changing the switch frequency of the power switch to a second frequency after the switched-mode power converter is activated for a predetermined time; wherein the first frequency is lower than the second frequency.




re

Interleaved two-stage power factor correction system

Methods and systems are described for providing power factor correction for high-power loads using two interleaved power factor correction stages. Each power factor correction stage includes a controllable switch that is operated to control the phasing of each power factor correction stage. The phasing of output current from the second power factor correction stage is shifted 180 degree relative to the output current from the first power factor correction stage.




re

System and method for multi-phase voltage regulation

In accordance with one embodiment of the present disclosure, a multi-phase voltage regulator may comprise a plurality of phases, each phase configured to supply electrical current to one or more information handling resources electrically coupled to the voltage regulator. A controller may be electrically coupled to the plurality of phases. The controller may designate at least one of the plurality of phases as a first state phase, and designate each of the plurality of phases not designated as a first state phase as a second state phase. The controller may alternate the designation of at least two of the plurality of phases between a first state phase and a second state phase. Each first state phase may be configured to supply a first electrical current regardless of electrical current demand. Each second state phase may be configured to supply a second electrical current based on the current demand.




re

Modular power converter having reduced switching loss

In one implementation, a modular power converter having a reduced switching loss includes a package, a field-effect transistor (FET) including a gate terminal, a drain terminal, and a source terminal, and fabricated on a semiconductor die situated inside the package, and a driver circuit inside the package. The driver circuit is configured to drive the gate terminal of the FET. The driver circuit is further configured to sample a drain-to-source voltage (VDS) of the FET directly from the drain terminal and the source terminal, thereby enabling the reduced switching loss.




re

Low dropout light emitting diode (LED) ballast circuit and method therefor

A ballast circuit for a Light Emitting Diode (LED) has a regulator element coupled to the LED and to an input voltage source. A control circuit is coupled to the LED and to an input voltage source. A first switching device is coupled in series with the regulator element. A second switching device is coupled to the input voltage and the control circuit.




re

System for eliminating current surges in electronic systems and equipment having intermittent current consumption

The invention relates to a system for eliminating current surges that includes a first voltage regulator (7) having a current limit programmable to a value (I(limit)) that depends on the value of the intermittent current surges (IO(surge)) required by the intermittent load (3) and the relationship thereof to the work cycle, a second voltage regulator (9), a condenser (4) connected between the first and second regulators (7, 9), that loads when the current is no longer required and that unloads when there is a need for output current to provide current to the second regulator (9) which absorbs the changes in voltage produced by the loading/unloading of the condenser and provides a constant voltage for any value of the required output current surge, independently of voltage changes in the condenser (4), and a control loop between a sensor for the output current provided to the load and an input limit (15) for the input current (II) in the first regulator (7). Thus, the input current (I(limit)) (1) and the output voltage (VLoad) are constant for any value of the output current surge (IO(surge)).




re

Voltage regulator with current limiter

A voltage regulator includes an amplifier having a first input coupled to a first reference voltage and a second input coupled to a voltage feedback signal; a multiplexer having a first input coupled to an output of the amplifier, a second input coupled to a voltage clamp signal, and a control input; and a control circuit having a first input coupled to an over current indicator, a second input coupled to a no over voltage indicator, a third input coupled to a timer signal, and an output coupled to the control input of the multiplexer.




re

Method and apparatus for optimizing linear regulator transient performance

A voltage regulator compensation circuit provides power to a dynamic load and includes a power transistor configured to drive the dynamic load, a reference determining transistor configured to establish a voltage reference proportional to a regulated output voltage of the power transistor, and a control circuit coupled to a gate input of both the power transistor and the reference determining transistor. Also included is a comparison engine configured to compare the regulated output voltage and the voltage reference, and a current consuming transistor operatively coupled to an output of the power transistor and configured to provide a varying secondary load. The comparison engine is configured to control the current consuming transistor to increase current draw or decrease current draw from the power transistor based on the difference between the regulated output voltage and the voltage reference.




re

Charge pump regulator circuit with a variable drive voltage ring oscillator

A charge pump regulator circuit includes a voltage controlled oscillator and a plurality of charge pumps. The voltage controlled oscillator has a plurality of inverter stages connected in series in a ring. A plurality of oscillating signals is generated from outputs of the inverter stages. Each oscillating signal has a frequency or amplitude or both that are variable dependent on a variable drive voltage. Each oscillating signal is phase shifted from a preceding oscillating signal. Each charge pump is connected to a corresponding one of the inverter stages to receive the oscillating signal produced by that inverter stage. Each charge pump outputs a voltage and current. The output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to the load.




re

Switching regulator

A disclosed switching regulator includes a speed-up circuit for speeding up an operation of an error amplifier circuit during the time starting from when a switching element is turned OFF based on an output of an abnormality detection circuit, or starting from a fixed period of time after the switching element is turned OFF based on the output of the abnormality detection circuit, until the next time the switching element is again turned OFF based on an output of a PWM comparison circuit.




re

Constant on-time switching converters with sleep mode and control methods thereof

A constant on-time switching converter includes a switching circuit, an on-time control circuit, a comparing circuit and a logic circuit. The switching circuit has a first switch and is configured to provide an output voltage to a load. The on-time control circuit generates an on-time control signal to control the on-time of the first switch. The comparing circuit compares the output voltage of the switching circuit with a reference signal and generates a comparison signal. The logic circuit generates a control signal to control the first switch based on the on-time control signal and the comparison signal. When the switching frequency of the switching circuit approaches an audible range, the switching converter enters into a sleep mode, the on-time control signal is reduced to increase the switching frequency of the switching circuit.




re

Power converting circuit and control circuit thereof

A power converting circuit includes an upper gate switch, a transistor, a current source circuit, a comparator circuit, a delay circuit, and a pulse width modulation signal generating circuit. The transistor and the current source circuit provide a reference signal. The comparator circuit generates a comparing signal according to the reference signal and an output signal provided by the upper gate switch. The delay circuit generates a delay signal according to the comparing signal and a clock signal. The pulse width modulation signal generating circuit generates a control signal for the upper gate switch according to the delay signal and the clock signal for configuring the conduction status of the upper gate switch. The power converting circuit adjusts the conduction time of the upper gate switch according to the reference signal and the output signal.




re

High resolution control for a multimode SMPS converter and high resolution slope generator

In various embodiments a controller for controlling the operation of a switched mode power supply is provided, the controller comprising: a first signal source configured to provide a first set of signals including a set signal and a clear signal, wherein the first set of signals may correspond to a first mode of operation of the switched mode power supply; a second signal source configured to provide a second set of signals including a set signal and a clear signal, wherein the second set of signals may correspond to a second mode of operation of the switched mode power supply; a selecting circuit coupled to the first signal source and to the second signal source, the selecting circuit being configured to select either the first set of signals or the second set of signals; a switching signal generating circuit coupled to the selecting circuit and configured to provide a switching signal to the switched mode power supply based on the set of signals received from the selecting circuit.




re

Pseudo constant on time control circuit and step-down regulator

A step-down regulator comprising a pseudo constant on time control circuit is disclosed, comprising an on-time generator configured to receive a switching signal provided by the step-down regulator and a control signal provided by the pseudo constant on time control circuit, and generates an on-time signal; a feedback control circuit configured to receive a feedback signal representative of the output voltage of the step-down regulator and generate an output signal; and a logic control circuit coupled to the on-time generator and the feedback control circuit to receive the on-time signal and the output signal and generating the control signal, and a power stage configured to receive an input voltage and the control signal and generate the switching signal.




re

Reference voltage circuit and image-capture circuit

A reference voltage circuit for generating a reference voltage to be referred when a pixel signal is digitally converted, includes ramp voltage generating means for generating a ramp voltage which drops from a predetermined initial voltage at a certain gradient, a transistor for forming, together with the ramp voltage generating means, a current mirror circuit, and gain change means for changing a current value of a current flowing from a predetermined power supply via the transistor to change the gradient of the ramp voltage generated by the ramp voltage generating means.




re

Current mirror circuits in different integrated circuits sharing the same current source

A current mirror circuit, receiving an input current and outputting a plurality of mirroring currents, comprising: a first transistor, wherein a control terminal and a first terminal of the first transistor are connected to a first mirroring current of the input current; at least one second transistor, wherein a control terminal and a first terminal of the at least one second transistor are connected to the at least one second mirroring current of the input current; and a plurality of third transistors, outputting the plurality of mirroring currents from first terminals of the plurality of third transistors, wherein control terminals of the plurality of third transistors are connected to control terminals of the first transistor and the at least one second transistor. The first transistor, the at least one second transistor and the plurality of third transistors are identical.




re

Low-dropout voltage regulator

A low-dropout voltage regulator includes a power transistor configured to receive an input voltage and to provide a regulated output voltage at an output voltage node. The power transistor includes a control electrode configured to receive a driver signal. A reference circuit is configured to generate a reference voltage. A feedback network is coupled to the power transistor and is configured to provide a first feedback signal and a second feedback signal. The first feedback signal represents the output voltage and the second feedback signal represents an output voltage gradient. An error amplifier is configured to receive the reference voltage and the first feedback signal representing the output voltage. The error amplifier is configured to generate the driver signal dependent on the reference voltage and the first feedback signal. The error amplifier includes an output stage that is biased with a bias current responsive to the second feedback signal.




re

Remote controlled aerial reconnaissance vehicle

A radio controlled UAV is disclosed. The UAV includes a parachute, with a cylindrical power and control module suspended vertically below the parachute. In one embodiment, a propulsion source is mounted on top of the power and control module with control lines connected to the module below the propulsion source, and in another embodiment the power and control module is suspended from a point above a propulsion source. The UAV is controlled by radio controls from a hand held controller, with actuators retracting and letting out control lines attached to the parachute in order to control direction of the parachute. The UAV may be launched from a tube using a pressurized tank with a nozzle expelling gas from the tank, the tank and nozzle towing a canister from which the UAV is deployed.




re

Passive adaptive structures

Embodiments of an aerodynamic structural insert frame comprise a leading edge, a trailing edge opposite the leading edge, and at least one cavity between the leading edge and trailing edge, wherein the aerodynamic structural insert frame is configured to deflect upon activation by an external stimulus; at least one deformable buckling member extending the distance between opposite edges of the cavity, wherein the deflection of the aerodynamic structural insert frame is configured to trigger deflection of the deformable buckling member; a pivot region; and at least one stopper bar attached to and extending from one edge of the cavity a distance less than the distance between opposite edges of the cavity, wherein the stopper bar is configured to stop the deflection of the aerodynamic structural insert and the buckling member when the stopper bar strikes an opposite edge of the cavity.




re

Cabin air compressor support bracket

A support bracket for a cabin air compressor (CAC) assembly includes a CAC mounting portion with a plurality of CAC mounting holes distributed in an arc configuration along a CAC mounting hole circle radius. A support portion includes a ramped face that transitions to an upper lug portion and a substantially perpendicular face relative to the CAC mounting portion. An upper lug extends from the upper lug portion. The upper lug includes a coupling hole that is offset from a first CAC mounting hole of the CAC mounting holes at a length in a first direction and a length in a second direction. A ratio of the CAC mounting hole circle radius to the length in the first direction is between 2.14 and 2.20, and a ratio of the CAC mounting hole circle radius to the length in the second direction is between 1.16 and 1.19.




re

Safety seat and method for reducing stress on an occupant of a motor vehicle

In a method for reducing the impact of a force upon a person seated in a safety seat of a motor vehicle at least a seat unit of the safety seat is restrained at least in part by at least one support strap. The support strap is formed with an extension piece configured to lengthen when exposed to a load as a result of an accident or explosion. A winding unit holds the support strap to shorten an effective length of the support strap and to build up a force to maintain the support strap under tension after the support strap underwent a lengthening in an area of the extension piece as a result of a load caused by a force resulting from an accident or explosion so as to reestablish an effective length of the support strap for lengthening during a subsequent force impact.




re

Control system with regenerative heat system

An exoatmospheric vehicle uses a control system that includes a thrust system to provide thrust to control flight of the vehicle. A regenerative heat system is used to preheat portions of the thrust system, prior to their use in control of the vehicle. The heat for preheating may be generated by consumption of a fuel of the vehicle, such as a monopropellant fuel. The fuel may be used to power a pump (among other possibilities), to pressurize the fuel for use by thrusters of the thrust system. The preheated portions of the thrust system may include one or more catalytic beds of the thrust system, which may be preheated using exhaust gasses from the pump. The preheating may reduce the response time of the thrusters that have their catalytic beds preheated. Other thrusters of the thrust system may not be preheated at all before operation.




re

Method and device for creating an aircraft flight plan

A method of creating at least one flight plan of an aircraft includes entering a creation objective which illustrates a type and general characteristics of the flight plan to be created, automatically generating a flight plan outline, automatically generating a targeted request for information relating to missing parameters, entering the requested information relating to the missing parameters, and supplementing automatically the flight plan outline and automatically deleting any discontinuities to create, in a definitive manner, the flight plan.




re

Electric de-icing device and related monitoring system

The invention relates to a de-icing device for an element of a nacelle of a turbojet engine, including at least one heating resistant mat connected to at least one electrical power source (3) and thus defining an assembly (1) of resistant mats, characterized in that the assembly of resistant mats includes one or more subassemblies of resistant mats, each subassembly in turn including one or more resistant mats of the assembly, and each subassembly of resistive mats having a different ohmic value.




re

Rotor configuration for reaction drive rotor system

A rotor system is disclosed for a reactive drive rotary wing aircraft. Apparatus and methods are disclosed for maintaining the rigidity of the rotor and eliminating play between flight controls and the rotor by mounting swashplate actuators to a flange rigidly secured to the mast. Methods are disclosed for modulating the temperature of oil pumped over one or more of the mast bearing, swashplate bearing, and spindle bearing. The temperature of air passively or actively drawn through rotor may also be modulated to maintain bearing temperature within a predetermined range. Structures for reducing pressure losses and drag on components due to air flow through the rotor are also disclosed. A rotor facilitating thermal management by oil and air flow is also disclosed. Surfaces interfacing between the swashplate and the mast and between control rods and the swashplate or pitch horn may bear a solid lubricant layer.




re

Towable autogyro system having repositionable mast responsive to center of gratvity calculations

An unmanned, towable aerovehicle is described and includes a container to hold cargo, an autogyro assembly connected to the container and to provide flight characteristics, and a controller to control operation the autogyro assembly for unmanned flight. The container includes a connection to connect to a powered aircraft to provide forward motive force to power the autogyro assembly. In an example, the autogyro assembly includes a mast extending from the container, a rotatable hub on an end of the mast, and a plurality of blades connected to the hub for rotation to provide lift to the vehicle. In an example, an electrical motor rotates the blades prior to lift off to assist in take off. The electrical motor does not have enough power to sustain flight of the vehicle.




re

Passive torque balancing in a high-frequency oscillating system

A passively torque-balanced device includes (a) a frame; (b) a drivetrain including a drive actuator mounted to the frame and configured for reciprocating displacement, an input platform configured for displacement by the drive actuator, a plurality of rigid links, including a proximate link and remote links, wherein the rigid links are collectively mounted to the frame, and a plurality of joints joining the rigid links and providing a plurality of non-fully actuated degrees of freedom for displacement of the rigid links, the plurality of joints including a fulcrum joint that is joined both to the input platform and to the proximate rigid link; and (c) at least two end effectors respectively coupled with the remote links and configured for displacement without full actuation.




re

Floor for an aircraft cargo compartment and method for the assembly thereof

In conventional aircraft cargo compartments panels or similar flat floor elements are fastened to floor beams or similar supporting elements that are installed in the body of the aircraft. Subsequently functional units such as roller elements, latches or PDUs are mounted and connected to one another by way of appropriate control conductors. It is proposed to fasten the floor elements permanently to the supporting beams so as to form prefabricated floor modules and to install these floor modules in the aircraft.




re

Headrest assembly

A headrest assembly (1) for an ejection seat, comprising: a support mounting (2); and a pair of inflatable side beams (3), each attached at one end to the support mounting and spaced apart from one another, the side beams (3) being configured to be inflated from a stowed configuration to a deployed configuration in which the side beams extend from the support panel, the side beams (3) configured to deploy through: a capturing phase, during which the side beams are partially inflated from the stowed configuration such that they extend outwardly and upwardly from the support mounting and away from one another to surround the head of an occupant of the ejection seat toward a central location with respect to the support mounting.




re

Radio frequency shielding system

An assembly for shielding an aircraft from electromagnetic energy may include a window mounting configured to be conductively coupled to an aperture in a fuselage of an aircraft. The window mounting may include a window pane having an electromagnetically-reflective coating for reflecting electromagnetic energy. The window pane may remain electrically isolated from the fuselage prior to the electromagnetic energy exceeding a frequency of approximately 1 GHz. The window mounting may further include a capacitive gasket capacitively coupling the window pane to the fuselage after the frequency of the electromagnetic energy reflected by the window pane exceeds approximately 1 GHz.




re

Refueling boom disconnection system

A method and apparatus comprising a refueling controller. The refueling controller is configured to receive data about a current rate of movement of a refueling boom while the refueling boom is in contact with a receiver aircraft during flight. The refueling controller is further configured to disconnect the refueling boom from the receiver aircraft based on the current rate of movement of the refueling boom and a current position of the refueling boom.




re

Devices configured to provide pre-launch support of kites

Certain embodiments described herein are directed to devices configured to retain, at least for some period, and provide pre-launch support kites such as stunt kites. In certain instances, the device positions stunt kites of various sizes and design, including, for example, delta wing kits, diamond kits and foil kits, in a reclined position to provide pre-launch stability and wind flow/spill-over across the face of the kite to help prevent unintentional or premature launch. If desired, optional control line upright supports can be present that permit minimum control line pull-back thereby reducing the recline of the kite to bring the face of the kite into the wind and thereby launch the kite. The control line upright supports may also prevent the kite from falling completely face down on the surface, thereby requiring a reset of the kite on the device.




re

Space debris remover

A space debris remover aiming to remove a space debris object in earth orbits. Angular thrust calculation unit calculates angular thrust. Radial thrust calculation unit calculates radial thrust based on the angular thrust, estimated angular momentum and estimated space debris mass. A foam bonding mechanism connects the space debris remover and the space debris object. A space debris removal controller calculates firing time, and sends a space debris removal control signal comprising the radial thrust, the angular thrust and the firing time. A plurality of first stage thrusters generate the radial thrust and the angular thrust after the firing time. After the stage separator separates a first stage and a second stage of the space debris remover, a plurality of second stage thrusters generate the radial thrust and the angular thrust, and propel the space debris object towards the sun.




re

Programmable reverse thrust detent system and method

A reverse thrust detent system for an aircraft includes a throttle quadrant having an intermediate reverse thrust detent position, a reverse thrust scheduling system interfacing with the throttle quadrant, at least one aircraft engine interfacing with the reverse thrust scheduling system and a programmable input interfacing with the reverse thrust scheduling system and adapted to receive an engine reverse thrust setting. The reverse thrust scheduling system is adapted to operate the at least one aircraft engine according to the engine reverse thrust setting responsive to actuation of the intermediate reverse thrust detent position of the throttle quadrant. A reverse thrust detent method for an aircraft is also disclosed.




re

Selectively degradable passage restriction and method

An actuation system and method includes a tubular defining a passage, and an assembly disposed with the tubular. The assembly includes a restriction operatively arranged to receive a restrictor for enabling actuation of the assembly. The restriction includes a degradable material with a protective layer thereon, the degradable material degrading upon exposure to a fluid in the passage and the protective layer isolating the degradable material from the fluid.




re

Pressure activated down hole systems and methods

Systems and methods for activating a down hole tool in a wellbore. A piston is moveable from a first position to a second position for activating the down hole tool. The piston includes a first side exposed to a first chamber, and a second side exposed to a second chamber. A rupture member has a first side exposed to the first chamber and a second side exposed to a third chamber. The rupture member is configured to rupture when a pressure differential between the first chamber and the third chamber reaches a predetermined threshold value, at which point the rupture member allows fluid communication between the first chamber and the third chamber. When the rupture member is intact, the piston is in the first position, and when the rupture member ruptures, the piston moves to the second position and activates the down hole tool.




re

No-Go tag systems and methods for progressive cavity pumps

A stator for a progressive cavity pump comprises a stator housing having a central axis, a first end, and a second end opposite the first end. In addition, the stator comprises a stator liner disposed within the stator housing. The stator liner has a first end and a second end opposite the first end. The first end of the stator liner is axially spaced from the first end of the stator housing. Further, the stator comprises a tag insert positioned in the stator housing between the first end of the stator housing and the first end of the stator liner. The tag insert has a through passage defining a radially inner surface that includes a tag shoulder.




re

Reactor tank

Disclosed is an improved water treatment cavitation reactor cone. The tank operates on a continuous flow of fluids which are subjected to ultrasonic waves in combination with a high level of injected ozone. The treatment tank includes a tangential inlet that induces a rotating flow into the tank thereby increasing the mixing of the ozone within the effluent. The effluent is further treated with DC current. The treatment tank provides a cost efficient and environmentally friendly process and apparatus for cleaning and recycling fluids as contaminated as frac water, used to stimulate gas production from shale formations, as well as other types of fluids having various levels of contaminants such as aerobic and anaerobic bacteria and suspended solids. The calcium carbonate scaling tendency is reduced to an acceptable level without the use of acids, ion exchange materials, or anti scaling chemicals which is of economical and environmental significance and benefit.




re

Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions and/or enhanced fluid performance

Fluid treatment systems and compositions are provided including (a) at least one material including (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof; and (b) at least one friction reducing agent selected from the group consisting of guar gums, polyacrylamides, hydratable cellulosic materials, viscoelastic surfactants, and mixtures thereof. The fluid treatment systems and compositions can be used to treat aqueous systems, for example as fracturing fluids for use in fracturing subterranean formations. Methods for inhibiting formation and/or precipitation of metal oxides in an aqueous composition using the fluid treatment systems or compositions also are provided.




re

Fluid treatment systems, compositions and methods for metal ion stabilization in aqueous solutions

Fluid treatment systems and compositions are provided including (a) at least one material including (1) at least one carboxylic acid functional group and (2) at least one sulfur-containing group selected from the group consisting of sulfonyl functional groups, sulfonate functional groups and mixtures thereof; and (b) at least one scale control agent. The fluid treatment systems and compositions can be used to treat aqueous systems, for example as fracturing fluids for treating aqueous compositions found in subterranean formations. Methods for inhibiting formation and/or precipitation of calcium salts in an aqueous composition using the fluid treatment systems or compositions also are provided.




re

Apparatus for creating and customizing intersecting jets with oilfield shaped charges

A geological perforating tool (gun) shape charges disposed at an angle that provides an improvement over other known embodiments by accurately securing the charges in the tool to facilitate reliable, reproducible focus of the shaped charges. Charges are disposed on metal strips fitted into slots that are precision cut at predetermined angles in a tool barrel circumference.




re

Use of PNC tools to determine the depth and relative location of proppant in fractures and the near borehole region

Methods are provided for identifying the location and height of induced subterranean formation fractures and the presence of any associated frac-pack or gravel pack material in the vicinity of the borehole using pulsed neutron capture (PNC) logging tools. The proppant/sand used in the fracturing and packing processes is tagged with a thermal neutron absorbing material. When proppant is present, increases in detected PNC formation and/or borehole component cross-sections, combined with decreases in measured count rates, are used to determine the location of the formation fractures and the presence and percent fill of pack material in the borehole region. Changes in measured formation cross-sections relative to changes in other PNC parameters provide a relative indication of the proppant in fractures compared to that in the borehole region.




re

Method for lost circulation reduction in drilling operations

A method may include determining a first particle size distribution for particulate additives in a first wellbore fluid circulated through a wellbore through an earthen formation, and determining a second particle size distribution for drilled cuttings resulting from drilling of the wellbore. The first and second particle size distributions may then be compared to determine a third particle size distribution for the combined particulate additives and the drilled cuttings. A lost circulation material having a fourth particle size distribution may then be selected based on the third particle size distribution and the selected lost circulation material may be pumped into the wellbore.




re

Reconfigurable cement composition, articles made therefrom and method of use

A pourable aqueous cement composition is disclosed. The cement composition comprises a hydraulic cement, water and a selectively removable material comprising a plurality of selectively corrodible metal powder particles dispersed within the cement or a nanomatrix powder compact, or a combination thereof. An article, including a downhole article, and more particularly a reconfigurable downhole article is disclosed. The article includes a hydraulic cement, wherein the hydraulic cement has at least partially set into a permanent form. The article also includes a selectively removable material dispersed within the cement, the selectively removable material comprising a plurality of selectively corrodible metal powder particles dispersed within the cement or a nanomatrix powder compact, or a combination thereof, wherein the selectively removable material is configured for removal in response to a predetermined wellbore condition.




re

Method and system for servicing a wellbore

A method of servicing a wellbore that includes, transporting a fluid treatment system to a wellsite, accessing a water source proximate to the wellsite, introducing a water stream from the water source into the fluid treatment system, irradiating at least a portion of the water stream within the fluid treatment system, forming a wellbore servicing fluid from the irradiated water stream, and placing the wellbore servicing fluid into the wellbore. The portion of the water stream is irradiating by exposing the portion of water stream to ultraviolet light emitted from at least one pulsed ultraviolet lamp.




re

Light well intervention umbilical and flying lead management system and related methods

Systems and methods for managing umbilical lines and one or more jumpers are provided. An example of a system includes a deployment platform carrying a winch and spool assembly, a tether management assembly, and an integrated electrical and/or hydraulic umbilical line extending between a spool on the winch and spool assembly and the tether management assembly. The winch and spool assembly is configured to deploy and to support the umbilical line. The tether management assembly includes a winch and spool assembly for deploying a flying lead and/or annulus jumper adapted to connect to an emergency disconnect package of a well control package for a well. A set of buoyant modules are connected to or integral with a portion of the umbilical line to be used to form an artificial heave compensation loop.