at

Tunisia in an Election Year: What Next?




at

The Korean Peninsula: A Diplomatic Outlook




at

A Path Forward for US Politics




at

Direct Democracy: Participation Without Populism?




at

Who Should Regulate Free Speech Online?




at

Artificial Intelligence and the Public: Prospects, Perceptions and Implications




at

Child Soldiers: Rethinking Reintegration




at

Securing Our Climate Future: Risk, Resilience and Diplomacy




at

Climate Action: A Role for Civil Disobedience?




at

Preparing for Digital Transformation




at

In Conversation With Bob Dudley, Group Chief Executive, BP




at

Zimbabwe’s International Engagement




at

Undercurrents: Episode 37 - Women in Leadership, and Europe's Ageing Population




at

Leadership in the 21st Century: Jim O’Neill, Chatham House




at

The 2019 Arab Youth Survey: Pragmatism, Frustration and Optimism




at

How Democratic Is the EU?




at

The Future of UK-China Relations




at

Reflections on the State of Political Discourse




at

Podcast: International Law, Security and Prosperity in the Asia-Pacific




at

Getting to a New Deal: Guidance for the United States, Europe and Iran




at

Brexit in a Historical Context: Pursuing a Global Vision at the Expense of Domestic Harmony?




at

Climate, Food and Land




at

The Fate of ISIS in Northeast Syria




at

Simulation: The Implications of Drone Warfare




at

Undercurrents: Episode 41 - Personalized Political Advertising, and Climate Justice in Chile




at

Who Runs the Internet: Internet Consolidation and Control




at

UK General Election 2019: Foreign Policy Implications




at

Undercurrents: Episode 43 - The UK Election, and Svyatoslav Vakarchuk on the Future of Ukraine




at

Investigating Violations of International Humanitarian Law




at

Angola's Business Promise: Evaluating the Progress of Privatization and Other Economic Reforms




at

A Conversation With: Steven T Mnuchin, Secretary, US Treasury




at

The State of Democracy in Turkey




at

Britain’s Soft Power Potential: In Conversation with Penny Mordaunt




at

Schapiro Lecture: The Would-Be Federation Next Door – What Next for Britain?




at

Ten Conflicts to Watch in 2020




at

Chatham House Primer: Democratic Socialism




at

Understanding Decolonization in the 21st Century




at

Secularism, Nationalism and India's Constitution




at

Undercurrents: Episode 46 - Understanding Decolonization, and China’s Response to Coronavirus




at

The Climate Briefing: Episode 1 - What Does Success Look Like At COP26?




at

Undercurrents: Episode 48 - UK Intelligence Agencies, and Paying for Climate Action




at

The Climate Briefing: Episode 2 - European Climate Ambitions




at

Undercurrents: Episode 50 - The Coronavirus Communications Crisis, and Justice in Myanmar




at

The Climate Briefing: Episode 3 - Climate Change and National Security




at

Undercurrents: Episode 51 - Preparing for Pandemics, and Gandhi's Chatham House Speech




at

Correction: Diversity in the Protein N-Glycosylation Pathways Within the Campylobacter Genus. [Additions and Corrections]




at

Proteomic Analysis of Salmonella-modified Membranes Reveals Adaptations to Macrophage Hosts [Research]

Systemic infection and proliferation of intracellular pathogens require the biogenesis of a growth-stimulating compartment. The gastrointestinal pathogen Salmonella enterica commonly forms highly dynamic and extensive tubular membrane compartments built from Salmonella-modified membranes (SMMs) in diverse host cells. Although the general mechanism involved in the formation of replication-permissive compartments of S. enterica is well researched, much less is known regarding specific adaptations to different host cell types. Using an affinity-based proteome approach, we explored the composition of SMMs in murine macrophages. The systematic characterization provides a broader landscape of host players to the maturation of Salmonella-containing compartments and reveals core host elements targeted by Salmonella in macrophages as well as epithelial cells. However, we also identified subtle host specific adaptations. Some of these observations, such as the differential involvement of the COPII system, Rab GTPases 2A, 8B, 11 and ER transport proteins Sec61 and Sec22B may explain cell line-dependent variations in the pathophysiology of Salmonella infections. In summary, our system-wide approach demonstrates a hitherto underappreciated impact of the host cell type in the formation of intracellular compartments by Salmonella.




at

Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines [Research]

Acute myeloid leukemia (AML) is a clonal disorder arising from hematopoietic myeloid progenitors. Aberrantly activated tyrosine kinases (TK) are involved in leukemogenesis and are associated with poor treatment outcome. Kinase inhibitor (KI) treatment has shown promise in improving patient outcome in AML. However, inhibitor selection for patients is suboptimal.

In a preclinical effort to address KI selection, we analyzed a panel of 16 AML cell lines using phosphotyrosine (pY) enrichment-based, label-free phosphoproteomics. The Integrative Inferred Kinase Activity (INKA) algorithm was used to identify hyperphosphorylated, active kinases as candidates for KI treatment, and efficacy of selected KIs was tested.

Heterogeneous signaling was observed with between 241 and 2764 phosphopeptides detected per cell line. Of 4853 identified phosphopeptides with 4229 phosphosites, 4459 phosphopeptides (4430 pY) were linked to 3605 class I sites (3525 pY). INKA analysis in single cell lines successfully pinpointed driver kinases (PDGFRA, JAK2, KIT and FLT3) corresponding with activating mutations present in these cell lines. Furthermore, potential receptor tyrosine kinase (RTK) drivers, undetected by standard molecular analyses, were identified in four cell lines (FGFR1 in KG-1 and KG-1a, PDGFRA in Kasumi-3, and FLT3 in MM6). These cell lines proved highly sensitive to specific KIs. Six AML cell lines without a clear RTK driver showed evidence of MAPK1/3 activation, indicative of the presence of activating upstream RAS mutations. Importantly, FLT3 phosphorylation was demonstrated in two clinical AML samples with a FLT3 internal tandem duplication (ITD) mutation.

Our data show the potential of pY-phosphoproteomics and INKA analysis to provide insight in AML TK signaling and identify hyperactive kinases as potential targets for treatment in AML cell lines. These results warrant future investigation of clinical samples to further our understanding of TK phosphorylation in relation to clinical response in the individual patient.




at

Identification of an Unconventional Subpeptidome Bound to the Behcet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) [Research]

Human leukocyte antigen (HLA) B*51:01 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly genetically associated with Behcet's disease (BD). Previous studies have defined two subgroups of HLA-B*51 peptidome containing proline (Pro) or alanine (Ala) at position 2 (P2). Little is known about the unconventional non-Pro/Ala2 HLA-B*51-bound peptides. We aimed to study the features of this novel subpeptidome, and investigate its regulation by ERAP1. CRISPR-Cas9 was used to generate an HLA-ABC-triple knockout HeLa cell line (HeLa.ABC-KO), which was subsequently transduced to express HLA-B*51:01 (HeLa.ABC-KO.B51). ERAP1 was silenced using lentiviral shRNA. Peptides bound to HLA-B*51:01 were eluted and analyzed by mass spectrometry. The characteristics of non-Pro/Ala2, Pro2, and Ala2 peptides and their alteration by ERAP1 silencing were investigated. Effects of ERAP1 silencing on cell surface expression of HLA-B*51:01 were studied using flow cytometry. More than 20% of peptides eluted from HLA-B*51:01 lacked Pro or Ala at P2. This unconventional group of HLA-B*51:01-bound peptides was relatively enriched for 8-mers (with relatively fewer 9-mers) compared with the Pro2 and Ala2 subpeptidomes and had similar N-terminal and C-terminal residue usages to Ala2 peptides (with the exception of the less abundant leucine at position ). Knockdown of ERAP1 increased the percentage of non-Pro/Ala2 from 20% to ~40%, increased the percentage of longer (10-mer and 11-mer) peptides eluted from HLA-B*51:01 complexes, and abrogated the predominance of leucine at P1. Interestingly knockdown of ERAP1 altered the length and N-terminal residue usage of non-Ala2&Pro2 and Ala2 but not the Pro2 peptides. Finally, ERAP1 silencing regulated the expression levels of cell surface HLA-B*51 in a cell-type-dependent manner. In conclusion, we have used a novel methodology to identify an unconventional but surprisingly abundant non-Pro/Ala2 HLA-B*51:01 subpeptidome. It is increased by knockdown of ERAP1, a gene affecting the risk of developing BD. This has implications for theories of disease pathogenesis.




at

Discovery of a Redox Thiol Switch: Implications for Cellular Energy Metabolism [Research]

The redox-based modifications of cysteine residues in proteins regulate their function in many biological processes. The gas molecule H2S has been shown to persulfidate redox sensitive cysteine residues resulting in an H2S-modified proteome known as the sulfhydrome. Tandem Mass Tags (TMT) multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent in detecting cysteine modifications. Here we developed a TMT-based proteomics approach for selectively trapping and tagging cysteine persulfides in the cellular proteomes. We revealed the natural protein sulfhydrome of two human cell lines, and identified insulin as a novel substrate in pancreatic beta cells. Moreover, we showed that under oxidative stress conditions, increased H2S can target enzymes involved in energy metabolism by switching specific cysteine modifications to persulfides. Specifically, we discovered a Redox Thiol Switch, from protein S-glutathioinylation to S-persulfidation (RTSGS). We propose that the RTSGS from S-glutathioinylation to S-persulfidation is a potential mechanism to fine tune cellular energy metabolism in response to different levels of oxidative stress.