at Closing the Global Access Gap in Palliative Care and Pain Relief: A Top Priority in Achieving Universal Health Coverage By feedproxy.google.com Published On :: Wed, 26 Jun 2019 13:50:01 +0000 Invitation Only Research Event 17 July 2019 - 12:30pm to 5:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Dr Tedros Adhanom Ghebreyesus, Director-General, World Health Organization The Lancet Commission on Palliative Care and Pain Relief estimated that in 2015, 61 million people experienced serious health-related suffering (SHS) that could have been ameliorated by palliative care. A large proportion of this burden – more than 80 per cent – fell on low- and middle-income countries (LMICs) despite an essential package of palliative care and pain relief services being cost-effective and affordable. As the director general of the World Health Organization (WHO) argues, there cannot be UHC without palliative care and thus, closing this coverage gap should be a top priority for the global UHC movement.The Centre on Global Health Security at Chatham House, building on the momentum of the Lancet Commission, is hosting a roundtable focused on the global unmet need for palliative care and effective pain relief. The primary purpose of this roundtable is to convene leading experts, palliative care service users and advocates with key figures from the UHC movement and global health to highlight the importance of prioritizing this vital part of the continuum of care in UHC reform processes. The roundtable will serve as a scholarly discourse in translating the recommendations of the Lancet Commission into concrete actions, focusing on the political and economic dimensions. Department/project Global Health Programme, Universal Health Coverage Policy Forum Alexandra Squires McCarthy Programme Coordinator, Global Health Programme +44 (0)207 314 2789 Email Full Article
at Reviewing Antimicrobial Resistance: Where Are We Now and What Needs to Be Done? By feedproxy.google.com Published On :: Fri, 30 Aug 2019 14:55:01 +0000 Research Event 8 October 2019 - 10:30am to 12:00pm RSA House, 8 John Adam Street, London, WC2N 6EZ Event participants Tim Jinks, Head of Drug-Resistant Infections Programme, WellcomeJim O’Neill, Chair, Review on Antimicrobial Resistance; Chair, Chatham HouseHaileyesus Getahun, Director of Global Coordination and Partnership on Antimicrobial Resistance, World Health Organization Juan Lubroth, Chief Veterinary Officer, Food and Agriculture Organization (Videolink)Jyoti Joshi, Head, South Asia, Center for Disease Dynamics, Economics & PolicyEstelle Mbadiwe, Coordinator-Nigeria, Global Antibiotic Resistance PartnershipCharles Clift, Senior Consulting Fellow, Chatham House; Report Author The Review on Antimicrobial Resistance, chaired by Jim O’Neill, was commissioned by former UK prime minister, David Cameron, in July 2014. Supported by the UK government and the Wellcome Trust, the final report of the review was published in May 2016 and has had a global impact in terms of motivating political leaders and decision-makers to take more seriously the threat posed by antimicrobial resistance.Yet there is now a perception that the political momentum to address the issue is waning and needs to be reinvigorated.In a further report produced by Chatham House, the progress of the recommendations of the review is assessed and the key ways to move forward are identified.Panellists at this event, where highlights of the report are presented, provide their assessment of the progress so far and discuss priorities for future action.The report was funded by Wellcome. Department/project Global Health Programme, Antimicrobial Resistance Alexandra Squires McCarthy Programme Coordinator, Global Health Programme +44 (0)207 314 2789 Email Full Article
at South Africa Can Easily Afford National Health Insurance By feedproxy.google.com Published On :: Mon, 09 Dec 2019 06:07:40 +0000 9 December 2019 Robert Yates Director, Global Health Programme; Executive Director, Centre for Universal Health @yates_rob Countries with much lower per capita GDP have successfully implemented universal healthcare. 2019-12-06-NMCH.jpg Builders work on an outside yard at the Nelson Mandela Children's Hospital in Johannesburg in 2016. Photo: Getty Images. At the United Nations general assembly in September, all countries, including South Africa, reaffirmed their commitment to achieving universal health coverage by 2030. This is achieved when everybody accesses the health services they need without suffering financial hardship.As governments outlined their universal health coverage plans, it was noticeable that some had made much faster progress than others, with some middle-income countries outperforming wealthier nations. For example, whereas Thailand, Ecuador and Georgia (with national incomes similar to South Africa) are covering their entire populations, in the United States, 30 million people still lack health insurance and expensive health bills are the biggest cause of personal bankruptcy.The key factor in financing universal health coverage is, therefore, not so much the level of financing but rather how the health sector is financed. You cannot cover everyone through private financing (including insurance) because the poor will be left behind. Instead, the state must step in to force wealthy and healthy members of society to subsidise services for the sick and the poor.Switching to a predominantly publicly financed health system is, therefore, a prerequisite for achieving universal health coverage.The National Health Insurance (NHI) Bill, recently presented to parliament, is President Cyril Ramaphosa’s strategy to make this essential transition. In essence, it proposes creating a health-financing system in which people pay contributions (mostly through taxes) according to their ability to pay and then receive health services according to their health needs.Surprisingly, these reforms have been dubbed 'controversial' by some commentators in the South African media, even though this is the standard route to universal health coverage as exhibited by countries across Europe, Asia, Australasia, Canada and much of Latin America.In criticising the NHI other stakeholders (often with a vested interest in preserving the status quo) have said that the government’s universal health coverage strategy is unaffordable because it will require higher levels of public financing for health.Evidence from across the world shows that this is patently false. South Africa already spends more than 8% of its national income on its health sector, which is very high for its income level. Turkey, for example (a good health performer and slightly richer than South Africa), spends 4.3% of its GDP and Thailand (a global universal health coverage leader) spends only 3.7%. Thailand shows what can be accomplished, because it launched its celebrated universal health coverage reforms in 2002 when its GDP per capita was only $1 900 — less than a third of South Africa’s today.In fact, Thailand’s prime minister famously ignored advice from the World Bank that it could not afford publicly financed, universal health coverage in the aftermath of the Asian financial crisis when it extended universal, tax-financed healthcare to the entire population. When these reforms proved a great success, a subsequent president of the World Bank, Dr Jim Kim, congratulated the Thai government for ignoring its previous advice.Similarly the United Kingdom, Japan and Norway all launched successful universal health coverage reforms at times of great economic difficulty at the end of World War II. These should be salutary lessons for those saying that South Africa can’t afford the NHI. If anything, because universal health reforms generate economic growth (with returns 10 times the public investment), now is exactly the time to launch the NHI.So there is enough overall funding in the South African health sector to take a giant step towards universal health coverage. The problem is that the current system is grossly inefficient and inequitable because more than half of these funds are spent through private insurance schemes that cover only 16% of the population — and often don’t cover even this population effectively.Were the bulk of these resources to be channelled through an efficient public financing system, evidence from around the world shows that the health sector would achieve better health outcomes, at lower cost. Health and income inequalities would fall, too.It’s true that in the long term, the government will have to increase public financing through reducing unfair subsidies to private health insurance and increasing taxes. But what the defenders of the current system don’t acknowledge is that, at the same time, private voluntary financing will fall, rapidly. Most families will no longer feel the need to purchase expensive private insurance when they benefit from the public system. It’s this fact that is generating so much opposition to the NHI from the private insurance lobby.This is the situation with the National Health Service in the UK and health systems across Europe, where only a small minority choose to purchase additional private insurance. Among major economies, only the United States continues to exhibit high levels of private, voluntary financing.As a consequence, it now spends an eye-watering 18% of its GDP on health and has some of the worst health indicators in the Organisation for Economic Co-operation and Development, including rising levels of maternal mortality. If South Africa doesn’t socialise health financing this is where its health system will end up — a long way from universal health coverage.What countries celebrating their universal health coverage successes at the UN have shown is that it is cheaper to publicly finance health than leave it to the free market. This is because governments are more efficient and fairer purchasers of health services than individuals and employers. As Dr Gro Harlem Brundtland, the former director general of the World Health Organization, said in New York: 'If there is one lesson the world has learnt, it is that you can only reach UHC [universal health coverage] through public financing.'This is a step South Africa must take — it can’t afford not to.This article was originally published by the Mail & Guardian. Full Article
at Strengthening National Accountability and Preparedness for Global Health Security (SNAP-GHS) By feedproxy.google.com Published On :: Thu, 19 Dec 2019 15:43:55 +0000 The project aims to identify the enablers and barriers to enhance data use by National Public Health Institutes (NPHIs), producing outputs that will facilitate strengthening of the role of NPHIs in monitoring potential public health threats, and in shaping and informing domestic policies on health security and preparedness. Global health security is underpinned by the actions taken at a national level to ensure capacities exist to sufficiently prepare for and respond to acute threats and crises. In many contexts, National Public Health Institutes (NPHIs) were first established because of, and in response to, specific public health challenges typically related to infectious diseases.The Strengthening National Accountability and Preparedness for Global Health Security (SNAP-GHS) project evolved from a series of roundtables and discussions hosted by the Centre on Global Health Security at Chatham House, in collaboration with the Graduate Institute of Geneva.The outcome of the project is a SNAP-GHS Toolkit to support NPHIs in better diagnosing and understanding the challenges to data use within their own institutes, as well as in relation to external stakeholders and agencies. The toolkit is intended to be used for further circulation and dissemination by the International Association of National Public Health Institutes (IANPHI).The project is led by the Centre on Global Health Security at Chatham House in collaboration with the Ethiopian Public Health Institute, the Nigeria Centre for Disease Control, and the National Institute for Health in Pakistan. Full Article
at Biosecurity: Preparing for the Aftermath of Global Health Crises By feedproxy.google.com Published On :: Thu, 09 Jan 2020 14:16:59 +0000 9 January 2020 Professor David R Harper CBE Senior Consulting Fellow, Global Health Programme @DavidRossHarper Benjamin Wakefield Research Associate, Global Health Programme @BCWakefield LinkedIn The Ebola outbreak in the Democratic Republic of the Congo is a reminder that the security of samples taken during global health emergencies is a vital part of safeguarding biosecurity. 2020-01-09-DRC.jpg A nurse prepares a vaccine against Ebola in Goma in August 2019. Photo: Getty Images. The world’s second-largest Ebola outbreak is ongoing in the Democratic Republic of the Congo (DRC) and experts from around the world have been parachuted in to support the country’s operation to stamp out the outbreak. The signs are encouraging, but we need to remain cautious.In such emergencies, little thought is usually given to what happens to the body-fluid samples taken during the course of the outbreak after the crisis is over. What gets left behind has considerable implications for global biosecurity.Having unsecured samples poses the obvious risk of accidental exposures to people who might come into contact with them, but what of the risk of malicious use? Bioterrorists would have ready access to materials that have the characteristics essential to their purpose: the potential to cause disease that is transmissible from person to person, the capacity to result in high fatality rates and, importantly, the ability to cause panic and social disruption at the very mention of them.Comparisons can be drawn with the significant international impact of the anthrax attacks in the US in 2001. Not only was there a direct effect in the US with five deaths and a further 17 people infected, but there was a paralysis of public health systems in other countries involved in the testing of countless samples from the so-called ‘white-powder incidents’ that followed.Many laboratory tests were done purely on a precautionary basis to eliminate any possibility of a risk, no matter how remote. However, the UK was also hit when a hoaxer sent envelopes of white powder labelled as anthrax to 15 MPs.The threat of the pathogen alone resulted in widespread fear, the deployment of officers trained in response to chemical, biological, radiological and nuclear incidents and the evacuation of a hospital emergency department.We learned from the 2014–16 West Africa Ebola outbreaks that during the emergency, the future biosecurity implications of the many thousands of samples taken from people were given very little consideration. It is impossible to be sure where they all are and whether they have been secured.It is widely recognized that the systems needed at the time for tracking and monitoring resources, including those necessary for samples, were weak or absent, and this has to be addressed urgently along with other capacity-building initiatives.In Sierra Leone, for example, the remaining biosecurity risk is only being addressed after the fact. To help achieve this, the government of Canada is in the process of providing a secure biobank in the Sierra Leonean capital of Freetown. The aim is to provide the proper means of storage for these hazardous samples and to allow them to remain in-country, with Sierra Leonean ownership.However, it is already more three years since the emergency was declared over by the then director-general of the World Health Organization (WHO), Margaret Chan, and the biobank and its associated laboratory are yet to be fully operational.There are many understandable reasons for this delay, including the critical issue of how best to ensure the sustainability of any new facility. But what is clear is that these solutions take time to implement and must be planned for in advance.The difficulties of responding to an outbreak in a conflict zone have been well documented, and the frequent violence in DRC has undoubtedly caused delays in controlling the outbreak. According to figures from WHO, during 2019 approximately 390 attacks on health facilities in DRC killed 11 and injured 83 healthcare workers and patients.Not only does the conflict inhibit the response, but it could also increase the risk posed by unsecured samples. There are two main potential concerns.First is the risk of accidental release during an attack on a health facility, under which circumstances sample containers may be compromised or destroyed. Second is that the samples may be stolen for malicious use or to sell them to a third-party for malicious use. It is very important in all outbreaks to ensure the necessary measures are in place to secure samples; in conflict-affected areas, this is particularly challenging.The sooner the samples in the DRC are secured, the sooner this risk to global biosecurity is reduced. And preparations for the next emergency must be made without further delay.The following steps need to be taken:Affected countries must ‘own’ the problem, with clear national government commitment to take the required actions.Funding partners must coordinate their actions and work closely with the countries to find the best solutions.If samples are to be kept in-country, secure biobanks must be established to contain them.Sustainable infrastructure must be built for samples to be kept secure into the future.An international agreement should be reached on the best approach to take to prepare for the aftermath of global health emergencies. Full Article
at The Hurdles to Developing a COVID-19 Vaccine: Why International Cooperation is Needed By feedproxy.google.com Published On :: Thu, 23 Apr 2020 09:26:36 +0000 23 April 2020 Professor David Salisbury CB Associate Fellow, Global Health Programme LinkedIn Dr Champa Patel Director, Asia-Pacific Programme @patel_champa While the world pins its hopes on vaccines to prevent COVID-19, there are scientific, regulatory and market hurdles to overcome. Furthermore, with geopolitical tensions and nationalistic approaches, there is a high risk that the most vulnerable will not get the life-saving interventions they need. 2020-04-23-Covid-Vaccine.jpg A biologist works on the virus inactivation process in Belo Horizonte, Brazil on 24 March 2020. The Brazilian Ministry of Health convened The Technological Vaccine Center to conduct research on COVID-19 in order to diagnose, test and develop a vaccine. Photo: Getty Images. On 10 January 2020, Chinese scientists released the sequence of the COVID-19 genome on the internet. This provided the starting gun for scientists around the world to start developing vaccines or therapies. With at least 80 different vaccines in development, many governments are pinning their hopes on a quick solution. However, there are many hurdles to overcome. Vaccine developmentFirstly, vaccine development is normally a very long process to ensure vaccines are safe and effective before they are used. Safety is not a given: a recent dengue vaccine caused heightened disease in vaccinated children when they later were exposed to dengue, while Respiratory Syncytial Virus vaccine caused the same problem. Nor is effectiveness a given. Candidate vaccines that use novel techniques where minute fragments of the viruses’ genetic code are either injected directly into humans or incorporated into a vaccine (as is being pursued, or could be pursued for COVID-19) have higher risks of failure simply because they haven’t worked before. For some vaccines, we know what levels of immunity post-vaccination are likely to be protective. This is not the case for coronavirus. Clinical trials will have to be done for efficacy. This is not optional – regulators will need to know extensive testing has taken place before licencing any vaccine. Even if animal tests are done in parallel with early human tests, the remainder of the process is still lengthy. There is also great interest in the use of passive immunization, whereby antibodies to SARS-CoV-2 (collected from people who have recovered from infection or laboratory-created) are given to people who are currently ill. Antivirals may prove to be a quicker route than vaccine development, as the testing requirements would be shorter, manufacturing may be easier and only ill people would need to be treated, as opposed to all at-risk individuals being vaccinated.Vaccine manufacturingDevelopers, especially small biotechs, will have to make partnerships with large vaccine manufacturers in order to bring products to market. One notorious bottleneck in vaccine development is getting from proof-of-principle to commercial development: about 95 per cent of vaccines fail at this step. Another bottleneck is at the end of production. The final stages of vaccine production involve detailed testing to ensure that the vaccine meets the necessary criteria and there are always constraints on access to the technologies necessary to finalize the product. Only large vaccine manufacturers have these capacities. There is a graveyard of failed vaccine candidates that have not managed to pass through this development and manufacturing process.Another consideration is adverse or unintended consequences. Highly specialized scientists may have to defer their work on other new vaccines to work on COVID-19 products and production of existing products may have to be set aside, raising the possibility of shortages of other essential vaccines. Cost is another challenge. Vaccines for industrialized markets can be very lucrative for pharmaceutical companies, but many countries have price caps on vaccines. Important lessons have been learned from the 2009 H1N1 flu pandemic when industrialized countries took all the vaccines first. Supplies were made available to lower-income countries at a lower price but this was much later in the evolution of the pandemic. For the recent Ebola outbreaks, vaccines were made available at low or no cost. Geopolitics may also play a role. Should countries that manufacture a vaccine share it widely with other countries or prioritize their own populations first? It has been reported that President Trump attempted to purchase CureVac, a German company with a candidate vaccine. There are certainly precedents for countries prioritizing their own populations. With H1N1 flu in 2009, the Australian Government required a vaccine company to meet the needs of the Australian population first. Vaccine distributionGlobal leadership and a coordinated and coherent response will be needed to ensure that any vaccine is distributed equitably. There have been recent calls for a G20 on health, but existing global bodies such as the Coalition for Epidemic Preparedness Innovations (CEPI) and GAVI are working on vaccines and worldwide access to them. Any new bodies should seek to boost funding for these entities so they can ensure products reach the most disadvantaged. While countries that cannot afford vaccines may be priced out of markets, access for poor, vulnerable or marginalized peoples, whether in developed or developing countries, is of concern. Developing countries are at particular risk from the impacts of COVID-19. People living in conflict-affected and fragile states – whether they are refugees or asylum seekers, internally displaced or stateless, or in detention facilities – are at especially high risk of devastating impacts. Mature economies will also face challenges. Equitable access to COVID-19 vaccine will be challenging where inequalities and unequal access to essential services have been compromised within some political systems. The need for global leadership There is an urgent need for international coordination on COVID-19 vaccines. While the WHO provides technical support and UNICEF acts as a procurement agency, responding to coronavirus needs clarity of global leadership that arches over national interests and is capable of mobilizing resources at a time when economies are facing painful recessions. We see vaccines as a salvation but remain ill-equipped to accelerate their development.While everyone hopes for rapid availability of safe, effective and affordable vaccines that will be produced in sufficient quantities to meet everyone’s needs, realistically, we face huge hurdles. Full Article
at Coronavirus: Public Health Emergency or Pandemic – Does Timing Matter? By feedproxy.google.com Published On :: Fri, 01 May 2020 14:48:43 +0000 1 May 2020 Dr Charles Clift Senior Consulting Fellow, Global Health Programme @CliftWorks The World Health Organization (WHO) has been criticized for delaying its announcements of a public health emergency and a pandemic for COVID-19. But could earlier action have influenced the course of events? 2020-05-01-Tedros-WHO-COVID WHO director-general Dr Tedros Adhanom Ghebreyesus at the COVID-19 press briefing on March 11, 2020, the day the coronavirus outbreak was classed as a pandemic. Photo by FABRICE COFFRINI/AFP via Getty Images. The World Health Organization (WHO) declared the spread of COVID-19 to be a Public Health Emergency of International Concern (PHEIC) on January 30 this year and then characterized it as a pandemic on March 11.Declaring a PHEIC is the highest level of alert that WHO is obliged to declare, and is meant to send a powerful signal to countries of the need for urgent action to combat the spread of the disease, mobilize resources to help low- and middle-income countries in this effort and fund research and development on needed treatments, vaccines and diagnostics. It also obligates countries to share information with WHO.Once the PHEIC was declared, the virus continued to spread globally, and WHO began to be asked why it had not yet declared the disease a pandemic. But there is no widely accepted definition of a pandemic, generally it is just considered an epidemic which affects many countries globally.Potentially more deadlyThe term has hitherto been applied almost exclusively to new forms of flu, such as H1N1 in 2009 or Spanish flu in 1918, where the lack of population immunity and absence of a vaccine or effective treatments makes the outbreak potentially much more deadly than seasonal flu (which, although global, is not considered a pandemic).For COVID-19, WHO seemed reluctant to declare a pandemic despite the evidence of global spread. Partly this was because of its influenza origins — WHO’s emergency programme executive director said on March 9 that ‘if this was influenza, we would have called a pandemic ages ago’.He also expressed concern that the word traditionally meant moving — once there was widespread transmission — from trying to contain the disease by testing, isolating the sick and tracing and quarantining their contacts, to a mitigation approach, implying ‘the disease will spread uncontrolled’.WHO’s worry was that the world’s reaction to the word pandemic might be there was now nothing to be done to stop its spread, and so countries would effectively give up trying. WHO wanted to send the message that, unlike flu, it could still be pushed back and the spread slowed down.In announcing the pandemic two days later, WHO’s director-general Dr Tedros Adhanom Ghebreyesus reemphasised this point: ‘We cannot say this loudly enough, or clearly enough, or often enough: all countries can still change the course of this pandemic’ and that WHO was deeply concerned ‘by the alarming levels of inaction’.The evidence suggests that the correct message did in fact get through. On March 13, US president Donald Trump declared a national emergency, referring in passing to WHO’s announcement. On March 12, the UK launched its own strategy to combat the disease. And in the week following WHO’s announcements, at least 16 other countries announced lockdowns of varying rigour including Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Hungary, Netherlands, Norway, Poland, Portugal, Serbia, Spain and Switzerland. Italy and Greece had both already instituted lockdowns prior to the WHO pandemic announcement.It is not possible to say for sure that WHO’s announcement precipitated these measures because, by then, the evidence of the rapid spread was all around for governments to see. It may be that Italy’s dramatic nationwide lockdown on March 9 reverberated around European capitals and elsewhere.But it is difficult to believe the announcement did not have an effect in stimulating government actions, as was intended by Dr Tedros. Considering the speed with which the virus was spreading from late February, might an earlier pandemic announcement by WHO have stimulated earlier aggressive actions by governments?Declaring a global health emergency — when appropriate — is a key part of WHO’s role in administering the International Health Regulations (IHR). Significantly, negotiations on revisions to the IHR, which had been ongoing in a desultory fashion in WHO since 1995, were accelerated by the experience of the first serious coronavirus outbreak — SARS — in 2002-2003, leading to their final agreement in 2005.Under the IHR, WHO’s director-general decides whether to declare an emergency based on a set of criteria and on the advice of an emergency committee. IHR defines an emergency as an ‘extraordinary event that constitutes a public health risk through the international spread of disease and potentially requires a coordinated international response’.In the case of COVID-19, the committee first met on January 22-23 but were unable to reach consensus on a declaration. Following the director-general’s trip to meet President Xi Jinping in Beijing, the committee reconvened on January 30 and this time advised declaring a PHEIC.But admittedly, public recognition of what a PHEIC means is extremely low. Only six have ever been declared, with the first being the H1N1 flu outbreak which fizzled out quickly, despite possibly causing 280,000 deaths globally. During the H1N1 outbreak, WHO declared a PHEIC in April 2009 and then a pandemic in June, only to rescind both in August as the outbreak was judged to have transitioned to behave like a seasonal flu.WHO was criticized afterwards for prematurely declaring a PHEIC and overreacting. This then may have impacted the delay in declaring the Ebola outbreak in West Africa as a PHEIC in 2014, long after it became a major crisis. WHO’s former legal counsel has suggested the PHEIC — and other aspects of the IHR framework — may not be effective in stimulating appropriate actions by governments and needs to be reconsidered.When the time is right to evaluate lessons about the response, it might be appropriate to consider the relative effectiveness of the PHEIC and pandemic announcements and their optimal timing in stimulating appropriate action by governments. The effectiveness of lockdowns in reducing the overall death toll also needs investigation. Full Article
at SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement. Full Article
at Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
at A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women. Full Article
at Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains. Full Article
at Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD. Full Article
at Slc43a3 is a regulator of free fatty acid flux [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake. Full Article
at Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction. Full Article
at Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management. Full Article
at Lipid rafts as a therapeutic target [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy. Full Article
at The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning. Full Article
at Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis. Full Article
at Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions. Full Article
at Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases. Full Article
at Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
at Lipid rafts and pathogens: the art of deception and exploitation [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents. Full Article
at Biology of Lipid Rafts: Introduction to the Thematic Review Series [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts are organized plasma membrane microdomains, which provide a distinct level of regulation of cellular metabolism and response to extracellular stimuli, affecting a diverse range of physiologic and pathologic processes. This Thematic Review Series focuses on Biology of Lipid Rafts rather than on their composition or structure. The aim is to provide an overview of ideas on how lipid rafts are involved in regulation of different pathways and how they interact with other layers of metabolic regulation. Articles in the series will review the involvement of lipid rafts in regulation of hematopoiesis, production of extracellular vesicles, host interaction with infection, and the development and progression of cancer, neuroinflammation, and neurodegeneration, as well as the current outlook on therapeutic targeting of lipid rafts. Full Article
at Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
at Latin America’s Protests Are Likely to Fail By feedproxy.google.com Published On :: Wed, 15 Jan 2020 12:29:34 +0000 Source Foreign Policy URL https://foreignpolicy.com/2019/11/08/latin-americas-protests-are-likely-to-fail/ Release date 08 November 2020 Expert Dr Christopher Sabatini In the news type Op-ed Hide date on homepage Full Article
at It’s unlikely Latin America is at risk of an Iranian proxy attack. However . . . By feedproxy.google.com Published On :: Wed, 15 Jan 2020 12:32:39 +0000 Source The Miami Herald URL https://www.miamiherald.com/opinion/op-ed/article239105468.html Release date 10 January 2020 Expert Dr Christopher Sabatini In the news type Op-ed Hide date on homepage Full Article
at Russia and Turkey failed to mediate peace in Libya. What happens now? By feedproxy.google.com Published On :: Fri, 17 Jan 2020 16:04:19 +0000 Source The Washington Post URL https://www.washingtonpost.com/politics/2020/01/15/russia-turkey-failed-mediate-... Release date 15 January 2020 Expert Tim Eaton In the news type Op-ed Hide date on homepage Full Article
at Iran attack: Who are the winners and losers in the crisis? By feedproxy.google.com Published On :: Tue, 21 Jan 2020 14:30:37 +0000 Source BBC URL https://www.bbc.co.uk/news/world-middle-east-51012268 Release date 09 January 2020 Expert Dr Sanam Vakil In the news type Op-ed Hide date on homepage Full Article
at These Iraqi militias are attacking protesters and getting away with it. Here’s why. By feedproxy.google.com Published On :: Tue, 21 Jan 2020 14:31:50 +0000 Source The Washington Post URL https://www.washingtonpost.com/politics/2019/11/18/these-iraqi-militias-are-atta... Release date 18 November 2019 Expert Dr Renad Mansour In the news type Op-ed Hide date on homepage Full Article
at Nato Leaders’ Summit 2019: Treaty organisation faces deep divisions at 70 By feedproxy.google.com Published On :: Tue, 21 Jan 2020 14:33:46 +0000 Source The National URL https://www.thenational.ae/world/nato-leaders-summit-2019-treaty-organisation-fa... Release date 02 December 2019 Expert Dr Lindsay Newman In the news type Op-ed Hide date on homepage Full Article
at Competing visions of Europe are threatening to tear the union apart By feedproxy.google.com Published On :: Mon, 10 Feb 2020 16:18:01 +0000 Source The Observer URL https://www.theguardian.com/commentisfree/2018/jul/01/three-competing-visions-of... Release date 01 July 2018 Expert Hans Kundnani In the news type Op-ed Hide date on homepage Full Article
at Centralisation is hobbling China’s response to the coronavirus By feedproxy.google.com Published On :: Mon, 10 Feb 2020 16:26:40 +0000 URL https://www.ft.com/content/1a76cf0a-4695-11ea-aee2-9ddbdc86190d Release date 05 February 2020 Expert Dr Yu Jie In the news type Op-ed Hide date on homepage Full Article
at The Democrats have set themselves up to fail in November's election — and they don't seem to realize it By feedproxy.google.com Published On :: Mon, 24 Feb 2020 14:52:24 +0000 Source The Independent URL https://www.independent.co.uk/voices/democrats-buttigieg-sanders-trump-biden-str... Release date 21 February 2020 Expert Dr Lindsay Newman In the news type Op-ed Hide date on homepage Full Article
at Foreign Interference Starts at Home By feedproxy.google.com Published On :: Fri, 06 Mar 2020 16:17:58 +0000 Source Foreign Policy URL https://foreignpolicy.com/2020/02/24/russia-china-foreign-interference-starts-at... Release date 24 February 2020 Expert Hans Kundnani In the news type Op-ed Hide date on homepage Full Article
at Can a nation be both open and in control? The UK is about to find out By feedproxy.google.com Published On :: Fri, 06 Mar 2020 16:18:40 +0000 Source The Observer URL https://www.theguardian.com/commentisfree/2020/mar/01/can-a-nation-be-both-open-... Release date 01 March 2020 Expert Hans Kundnani Hide date on homepage Full Article
at Coronavirus: Why are we catching more diseases from animals? By feedproxy.google.com Published On :: Fri, 06 Mar 2020 16:27:22 +0000 Source BBC URL https://www.bbc.co.uk/news/health-51237225 Release date 28 January 2020 Expert Professor Tim Benton In the news type Op-ed Hide date on homepage Full Article
at What's next for India's Muslims? By feedproxy.google.com Published On :: Fri, 06 Mar 2020 16:32:27 +0000 Source The Independent URL https://www.independent.co.uk/voices/india-modi-muslims-delhi-riots-hindu-violen... Release date 04 March 2020 Expert Dr Gareth Price In the news type Op-ed Hide date on homepage Full Article
at From Dictator to Demigod By feedproxy.google.com Published On :: Wed, 06 May 2020 17:16:41 +0000 Source Power Corrupts podcast URL https://www.powercorruptspodcast.com/episodes#/from-dictator-to-demigod/ Release date 01 August 2019 Expert Annette Bohr In the news type Op-ed Hide date on homepage Full Article
at To Save the Amazon, Treat It Like a UNESCO World Heritage Site By feedproxy.google.com Published On :: Wed, 06 May 2020 17:35:30 +0000 Source World Politics Review URL https://www.worldpoliticsreview.com/articles/28620/the-solution-to-amazon-defore... Release date 23 March 2020 Expert Dr Christopher Sabatini In the news type Op-ed Hide date on homepage Full Article
at There are valid questions about how China handled coronavirus but advocating hostility won't help By feedproxy.google.com Published On :: Wed, 06 May 2020 17:36:29 +0000 Source The Independent URL https://www.independent.co.uk/independentpremium/voices/coronavirus-china-cases-... Release date 10 April 2020 Expert Dr Tim Summers In the news type Op-ed Hide date on homepage Full Article
at Fighting escalates in Yemen despite coronavirus 'ceasefire' By feedproxy.google.com Published On :: Wed, 06 May 2020 17:38:30 +0000 Source The Guardian URL https://www.theguardian.com/world/2020/apr/14/fighting-escalates-in-yemen-despit... Release date 14 April 2020 Expert Farea Al-Muslimi In the news type Op-ed Hide date on homepage Full Article
at Blame Game Between U.S., China Is Accelerating By feedproxy.google.com Published On :: Wed, 06 May 2020 17:39:29 +0000 Source Bloomberg Surveillance URL https://www.bloomberg.com/news/videos/2020-04-15/blame-game-between-u-s-china-is... Release date 14 April 2020 Expert Dr Leslie Vinjamuri In the news type Op-ed Hide date on homepage Full Article
at As world leaders go into coronavirus isolation, how would quarantine affect Trump's presidency? By feedproxy.google.com Published On :: Wed, 06 May 2020 17:40:21 +0000 Source Newsweek URL https://www.newsweek.com/world-leaders-go-coronavirus-isolation-how-would-quaran... Release date 30 March 2020 Expert Dr Leslie Vinjamuri In the news type Op-ed Hide date on homepage Full Article
at X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition. Full Article
at The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells. Full Article
at Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification [RNA] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D–TLS interaction is essential for pncRNA-D–stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D. Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS–pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression. Full Article
at RNA helicase-regulated processing of the Synechocystis rimO-crhR operon results in differential cistron expression and accumulation of two sRNAs [Gene Regulation] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp–Glu–Ala–Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO–crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts. Full Article
at A kainate receptor-selective RNA aptamer [Neurobiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are two major, closely related receptor subtypes in the glutamate ion channel family. Excessive activities of these receptors have been implicated in a number of central nervous system diseases. Designing potent and selective antagonists of these receptors, especially of kainate receptors, is useful for developing potential treatment strategies for these neurological diseases. Here, we report on two RNA aptamers designed to individually inhibit kainate and AMPA receptors. To improve the biostability of these aptamers, we also chemically modified these aptamers by substituting their 2'-OH group with 2'-fluorine. These 2'-fluoro aptamers, FB9s-b and FB9s-r, were markedly resistant to RNase-catalyzed degradation, with a half-life of ∼5 days in rat cerebrospinal fluid or serum-containing medium. Furthermore, FB9s-r blocked AMPA receptor activity. Aptamer FB9s-b selectively inhibited GluK1 and GluK2 kainate receptor subunits, and also GluK1/GluK5 and GluK2/GluK5 heteromeric kainate receptors with equal potency. This inhibitory profile makes FB9s-b a powerful template for developing tool molecules and drug candidates for treatment of neurological diseases involving excessive activities of the GluK1 and GluK2 subunits. Full Article
at Unified approach to critical-contrast homogenisation with explicit links to time-dispersive media By www.ams.org Published On :: Fri, 10 Apr 2020 08:09 EDT K. D. Cherednichenko, Yu. Yu. Ershova, A. V. Kiselev and S. N. Naboko Trans. Moscow Math. Soc. 80 (2020), 251-294. Abstract, references and article information Full Article
at On the existence of an operator group generated by the one-dimensional Dirac system By www.ams.org Published On :: Fri, 10 Apr 2020 08:09 EDT A. M. Savchuk and I. V. Sadovnichaya Trans. Moscow Math. Soc. 80 (2020), 235-250. Abstract, references and article information Full Article