end Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization By www.jneurosci.org Published On :: 2017-05-24 Catherine MankiwMay 24, 2017; 37:5221-5231Development Plasticity Repair Full Article
end {Delta}9-Tetrahydrocannabinol and Cannabinol Activate Capsaicin-Sensitive Sensory Nerves via a CB1 and CB2 Cannabinoid Receptor-Independent Mechanism By www.jneurosci.org Published On :: 2002-06-01 Peter M. ZygmuntJun 1, 2002; 22:4720-4727Behavioral Full Article
end A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function By www.jneurosci.org Published On :: 2008-01-02 John D. CahoyJan 2, 2008; 28:264-278Cellular Full Article
end Social Laughter Triggers Endogenous Opioid Release in Humans By www.jneurosci.org Published On :: 2017-06-21 Sandra ManninenJun 21, 2017; 37:6125-6131BehavioralSystemsCognitive Full Article
end Endothelial Adora2a Activation Promotes Blood-Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance By www.jneurosci.org Published On :: 2019-05-22 Masaki YamamotoMay 22, 2019; 39:4179-4192Neurobiology of Disease Full Article
end Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein 3-Green Fluorescent Protein) By www.jneurosci.org Published On :: 2003-04-01 Tatiana StepanovaApr 1, 2003; 23:2655-2664Cellular Full Article
end Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;1 By www.jneurosci.org Published On :: 1992-07-01 KM HarrisJul 1, 1992; 12:2685-2705Articles Full Article
end Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics By www.jneurosci.org Published On :: 1989-08-01 KM HarrisAug 1, 1989; 9:2982-2997Articles Full Article
end Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse By www.jneurosci.org Published On :: 1996-05-15 Joshua A. GordonMay 15, 1996; 16:3274-3286Articles Full Article
end Calcium Influx via the NMDA Receptor Induces Immediate Early Gene Transcription by a MAP Kinase/ERK-Dependent Mechanism By www.jneurosci.org Published On :: 1996-09-01 Zhengui XiaSep 1, 1996; 16:5425-5436Articles Full Article
end Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type By www.jneurosci.org Published On :: 1998-12-15 Guo-qiang BiDec 15, 1998; 18:10464-10472Articles Full Article
end A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function By www.jneurosci.org Published On :: 2008-01-02 John D. CahoyJan 2, 2008; 28:264-278Cellular Full Article
end Facility Attendant By www.eastgwillimbury.ca Published On :: Mon, 02 Dec 2019 18:50:24 GMT Full Article
end È ora di accendere tutti i motori By www.bis.org Published On :: 2019-06-30T10:30:00Z Italian translation of the speech by Mr Agustín Carstens, General Manager of the BIS, on the occasion of the Bank's Annual General Meeting, Basel, 30 June 2019. Full Article
end È ora di accendere tutti i motori, afferma la BRI nella sua Relazione economica annuale By www.bis.org Published On :: 2019-06-30T10:30:00Z Italian translation of the BIS press release on the presentation of the Annual Economic Report 2019, 30 June 2019. Full Article
end Nuevos baches en la senda de la normalización: Informe Trimestral del BPI By www.bis.org Published On :: 2018-12-16T17:00:00Z Spanish translation of the BIS press release about the BIS Quarterly Review, December 2018 Full Article
end Aprendizajes derivados de veinticinco años de autonomía del Banco de México By www.bis.org Published On :: 2019-11-22T14:45:00Z Discurso del Dr. Agustín Carstens, Director General del Banco de Pagos Internacionales, en la Celebración del 25 Aniversario de la Autonomía del Banco de México, Ciudad de México, 22 de noviembre de 2019. Full Article
end End-of-day stock quote: WTFC: 38.64 By www.snl.com Published On :: Fri, 08 May 2020 04:00:00 GMT Price ($):38.64Change ($):2.39Change (%):6.59Volume:517,584High ($):38.92Low ($):37.14 Full Article
end Wintrust Financial Corporation Announces Cash Dividends, Increasing Quarterly Common Stock Dividend Rate 12% By www.snl.com Published On :: Thu, 23 Jan 2020 22:32:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
end Wintrust Financial Corporation Announces Cash Dividends By www.snl.com Published On :: Thu, 23 Apr 2020 20:23:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
end EndeavourOS 2020: Possibly the Best Arch Linux Option By www.technewsworld.com Published On :: 2020-05-01T06:00:00-07:00 EndeavourOS is a rolling release Arch Linux-based distribution with some handy new features that improve the user experience. This latest version comes with graphical install options and preconfigured desktop environments. Several new in-house utilities improve package management and error reporting. There are lots of installation tips with the Calamares installer, which has a new look and feel. Full Article
end Zoho's Noble Endeavor By www.crmbuyer.com Published On :: 2020-03-25T04:00:00-07:00 Edge conditions and the change they drive are fascinating. Some people use the word "margin" because it's at the margin that things change. A situation exists more or less in equilibrium with the rest of its environment until in one way or another the stresses become so great that change happens. We have lots of metaphors, like "tipping point" and "the straw that broke the camel's back." Full Article
end Lessons from 25 years of the Bank of Mexico's independence By www.bis.org Published On :: 2019-11-29T09:00:00Z Speech by Dr Agustín Carstens at the celebration of 25 years of Bank of Mexico independence, Mexico City, 22 November 2019. Full Article
end Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2+ Eurydendroid Neurons in Larval Zebrafish Cerebellum By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning. SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates. Full Article
end Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro. These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes. SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein. Full Article
end Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39 By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39. However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf. Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness. SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic. Full Article
end Contribution of NPY Y5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA. SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons. Full Article
end Rapid Release of Ca2+ from Endoplasmic Reticulum Mediated by Na+/Ca2+ Exchange By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Phototransduction in Drosophila is mediated by phospholipase C (PLC) and Ca2+-permeable TRP channels, but the function of endoplasmic reticulum (ER) Ca2+ stores in this important model for Ca2+ signaling remains obscure. We therefore expressed a low affinity Ca2+ indicator (ER-GCaMP6-150) in the ER, and measured its fluorescence both in dissociated ommatidia and in vivo from intact flies of both sexes. Blue excitation light induced a rapid (tau ~0.8 s), PLC-dependent decrease in fluorescence, representing depletion of ER Ca2+ stores, followed by a slower decay, typically reaching ~50% of initial dark-adapted levels, with significant depletion occurring under natural levels of illumination. The ER stores refilled in the dark within 100–200 s. Both rapid and slow store depletion were largely unaffected in InsP3 receptor mutants, but were much reduced in trp mutants. Strikingly, rapid (but not slow) depletion of ER stores was blocked by removing external Na+ and in mutants of the Na+/Ca2+ exchanger, CalX, which we immuno-localized to ER membranes in addition to its established localization in the plasma membrane. Conversely, overexpression of calx greatly enhanced rapid depletion. These results indicate that rapid store depletion is mediated by Na+/Ca2+ exchange across the ER membrane induced by Na+ influx via the light-sensitive channels. Although too slow to be involved in channel activation, this Na+/Ca2+ exchange-dependent release explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors exposed to Ca2+-free solutions. SIGNIFICANCE STATEMENT Phototransduction in Drosophila is mediated by phospholipase C, which activates TRP cation channels by an unknown mechanism. Despite much speculation, it is unknown whether endoplasmic reticulum (ER) Ca2+ stores play any role. We therefore engineered flies expressing a genetically encoded Ca2+ indicator in the photoreceptor ER. Although NCX Na+/Ca2+ exchangers are classically believed to operate only at the plasma membrane, we demonstrate a rapid light-induced depletion of ER Ca2+ stores mediated by Na+/Ca2+ exchange across the ER membrane. This NCX-dependent release was too slow to be involved in channel activation, but explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors bathed in Ca2+-free solutions. Full Article
end Nitric Oxide Signaling Strengthens Inhibitory Synapses of Cerebellar Molecular Layer Interneurons through a GABARAP-Dependent Mechanism By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Nitric oxide (NO) is an important signaling molecule that fulfills diverse functional roles as a neurotransmitter or diffusible second messenger in the developing and adult CNS. Although the impact of NO on different behaviors such as movement, sleep, learning, and memory has been well documented, the identity of its molecular and cellular targets is still an area of ongoing investigation. Here, we identify a novel role for NO in strengthening inhibitory GABAA receptor-mediated transmission in molecular layer interneurons of the mouse cerebellum. NO levels are elevated by the activity of neuronal NO synthase (nNOS) following Ca2+ entry through extrasynaptic NMDA-type ionotropic glutamate receptors (NMDARs). NO activates protein kinase G with the subsequent production of cGMP, which prompts the stimulation of NADPH oxidase and protein kinase C (PKC). The activation of PKC promotes the selective strengthening of α3-containing GABAARs synapses through a GABA receptor-associated protein-dependent mechanism. Given the widespread but cell type-specific expression of the NMDAR/nNOS complex in the mammalian brain, our data suggest that NMDARs may uniquely strengthen inhibitory GABAergic transmission in these cells through a novel NO-mediated pathway. SIGNIFICANCE STATEMENT Long-term changes in the efficacy of GABAergic transmission is mediated by multiple presynaptic and postsynaptic mechanisms. A prominent pathway involves crosstalk between excitatory and inhibitory synapses whereby Ca2+-entering through postsynaptic NMDARs promotes the recruitment and strengthening of GABAA receptor synapses via Ca2+/calmodulin-dependent protein kinase II. Although Ca2+ transport by NMDARs is also tightly coupled to nNOS activity and NO production, it has yet to be determined whether this pathway affects inhibitory synapses. Here, we show that activation of NMDARs trigger a NO-dependent pathway that strengthens inhibitory GABAergic synapses of cerebellar molecular layer interneurons. Given the widespread expression of NMDARs and nNOS in the mammalian brain, we speculate that NO control of GABAergic synapse efficacy may be more widespread than has been appreciated. Full Article
end Ependymal Vps35 Promotes Ependymal Cell Differentiation and Survival, Suppresses Microglial Activation, and Prevents Neonatal Hydrocephalus By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Hydrocephalus is a pathologic condition associated with various brain diseases, including Alzheimer's disease (AD). Dysfunctional ependymal cells (EpCs) are believed to contribute to the development of hydrocephalus. It is thus of interest to investigate EpCs' development and function. Here, we report that vacuolar protein sorting-associated protein 35 (VPS35) is critical for EpC differentiation, ciliogenesis, and survival, and thus preventing neonatal hydrocephalus. VPS35 is abundantly expressed in EpCs. Mice with conditional knock-out (cKO) of Vps35 in embryonic (Vps35GFAP-Cre and Vps35Emx1-Cre) or postnatal (Vps35Foxj1-CreER) EpC progenitors exhibit enlarged lateral ventricles (LVs) and hydrocephalus-like pathology. Further studies reveal marked reductions in EpCs and their cilia in both Vps35GFAP-Cre and Vps35Foxj1-CreER mutant mice. The reduced EpCs appear to be due to impairments in EpC differentiation and survival. Additionally, both Vps35GFAP-Cre and Vps35Foxj1-CreER neonatal pups exhibit increased cell proliferation and death largely in a region close to LV-EpCs. Many microglia close to the mutant LV-EpC region become activated. Depletion of the microglia by PLX3397, an antagonist of colony-stimulating factor 1 receptor (CSF1R), restores LV-EpCs and diminishes the pathology of neonatal hydrocephalus in Vps35Foxj1-CreER mice. Taken together, these observations suggest unrecognized functions of Vps35 in EpC differentiation, ciliogenesis, and survival in neonatal LV, and reveal pathologic roles of locally activated microglia in EpC homeostasis and hydrocephalus development. SIGNIFICANCE STATEMENT This study reports critical functions of vacuolar protein sorting-associated protein 35 (VPS35) not only in promoting ependymal cell (EpC) differentiation, ciliogenesis, and survival, but also in preventing local microglial activation. The dysfunctional EpCs and activated microglia are likely to induce hydrocephalus. Full Article
end Molecular Mechanisms of Non-ionotropic NMDA Receptor Signaling in Dendritic Spine Shrinkage By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Structural plasticity of dendritic spines is a key component of the refinement of synaptic connections during learning. Recent studies highlight a novel role for the NMDA receptor (NMDAR), independent of ion flow, in driving spine shrinkage and LTD. Yet little is known about the molecular mechanisms that link conformational changes in the NMDAR to changes in spine size and synaptic strength. Here, using two-photon glutamate uncaging to induce plasticity at individual dendritic spines on hippocampal CA1 neurons from mice and rats of both sexes, we demonstrate that p38 MAPK is generally required downstream of non-ionotropic NMDAR signaling to drive both spine shrinkage and LTD. In a series of pharmacological and molecular genetic experiments, we identify key components of the non-ionotropic NMDAR signaling pathway driving dendritic spine shrinkage, including the interaction between NOS1AP (nitric oxide synthase 1 adaptor protein) and neuronal nitric oxide synthase (nNOS), nNOS enzymatic activity, activation of MK2 (MAPK-activated protein kinase 2) and cofilin, and signaling through CaMKII. Our results represent a large step forward in delineating the molecular mechanisms of non-ionotropic NMDAR signaling that can drive shrinkage and elimination of dendritic spines during synaptic plasticity. SIGNIFICANCE STATEMENT Signaling through the NMDA receptor (NMDAR) is vitally important for the synaptic plasticity that underlies learning. Recent studies highlight a novel role for the NMDAR, independent of ion flow, in driving synaptic weakening and dendritic spine shrinkage during synaptic plasticity. Here, we delineate several key components of the molecular pathway that links conformational signaling through the NMDAR to dendritic spine shrinkage during synaptic plasticity. Full Article
end Waste less food – and help end hunger By www.fao.org Published On :: Mon, 03 Jun 2013 00:00:00 GMT Wednesday 5 June marks World Environment Day and an opportunity for everyone to take action on the critical issue of food waste and losses. “Think. Eat. Save” is the theme, echoing the name of the campaign launched recently by FAO and UNEP, which encourages people to reduce their “foodprint” by making more informed choices. Every year 1.3 billion tonnes of food [...] Full Article
end 7 things you should know about FAO and the Post-2015 development agenda By www.fao.org Published On :: Thu, 03 Apr 2014 00:00:00 GMT As FAO launches dedicated webpages on post-2015, here are seven things to know about the process and how FAO is playing its part. 7 - Post-2015 development agenda - The name refers to the process through which Member States agree on a new global development framework to succeed the Millennium Development Goals (MDGs), eight goals that followed the UN Millennium Declaration [...] Full Article
end Spotlight: Seven bee-friendly fruits and veggies By www.fao.org Published On :: Wed, 16 Sep 2015 00:00:00 GMT Bees pollinate a third of what we eat and play a vital role in sustaining the planet’s ecosystems. Some 84% of the crops grown for human consumption need bees or other insects to pollinate them to increase their yields and quality. Bee pollination not only results in a higher number of fruits, berries or seeds, it may also give a [...] Full Article
end Recommended: 7 free e-learning courses to bookmark By www.fao.org Published On :: Thu, 03 Mar 2016 00:00:00 GMT E-learning was quite the buzzword a couple of decades ago – then when the internet started in earnest it became even more so. Today e-learning is mainstreamed in many organization, including FAO with more than 400 000 learners taking advantage of FAO’s offerings. FAO’s e-learning center offers free interactive courses – in English, French and Spanish - on topics ranging [...] Full Article
end Empowering women to end hunger and poverty By www.fao.org Published On :: Wed, 01 Mar 2017 00:00:00 GMT In the varied and vital roles they play – as farmers, farm workers, entrepreneurs, caregivers and community leaders – rural women form the backbone of rural societies. Almost everywhere, they make crucial contributions to food production, food processing and marketing. Indeed, because women produce, process and prepare much of the food available, they are critical to the food security of [...] Full Article
end Schools – the beginning of the end of malnutrition By www.fao.org Published On :: Mon, 12 Mar 2018 00:00:00 GMT Schools are an ideal setting for teaching basic skills in food, nutrition and health. In many communities, they may be the only place where children acquire these important life skills. Primary schools, in particular, are suitable vehicles for nutrition education. They not only influence children but also target girls, who tend to leave schools earlier. Nutrition lessons can be simple, [...] Full Article
end Americans Think National Parks Are Worth Way More Than We Spend On Them By www.smithsonianmag.com Published On :: Fri, 15 Jul 2016 13:00:00 +0000 An independent survey finds that although NPS's annual budget is around $3 billion, Americans are willing to pay much more Full Article
end A Brief History of Smokey Bear, the Forest Service's Legendary Mascot By www.smithsonianmag.com Published On :: Wed, 10 Jul 2019 13:00:00 +0000 How the beloved figure has become a lightning rod in a heated environmental debate Full Article
end Legendary Nature 25-cent Coins : Orca [33s] By www.youtube.com Published On :: A quick and easy way to get all three commemorative coins A unique keepsake to honour Canada's legendary wildlife No tax + free shipping* Order [...] Full Article
end How—and When—Will the COVID-19 Pandemic End? By www.smithsonianmag.com Published On :: Fri, 27 Mar 2020 21:01:30 +0000 Americans have some time before social distancing measures can let up—and every day counts Full Article
end Indonesian Volcano 'Anak Krakatau' Fired Lava and Ash Into the Sky Last Weekend By www.smithsonianmag.com Published On :: Tue, 14 Apr 2020 19:44:04 +0000 This eruption is the longest since 2018 when the volcano caused a deadly tsunami Full Article
end Cook These Quarantine-Friendly World War I Recipes By www.smithsonianmag.com Published On :: Thu, 16 Apr 2020 11:00:00 +0000 An online exhibition from the National WWI Museum and Memorial features recipes detailed in 1918 cookbook Full Article
end Flamingos in Captivity Pick Favorite Friends Among the Flock By www.smithsonianmag.com Published On :: Thu, 16 Apr 2020 19:45:49 +0000 These cliques wear pink every day of the week Full Article
end Like Dolphins and Whales, Ancient Crocodiles Evolved to Spend Their Time at Sea By www.smithsonianmag.com Published On :: Wed, 22 Apr 2020 14:31:54 +0000 Researchers tracked changes in the crocodilian creatures’ inner ears to learn how they moved into the sea Full Article
end The Ancient Battlefield That Launched the Legend of Hannibal By www.smithsonianmag.com Published On :: Fri, 24 Apr 2020 16:11:57 +0000 Two years before the Carthaginian general crossed the Alps, he won a decisive victory at the Battle of the Tagus Full Article
end Researchers Uncover New Evidence That Warrior Women Inspired Legend of Mulan By www.smithsonianmag.com Published On :: Wed, 29 Apr 2020 15:07:57 +0000 Nearly 2,000 years ago, women who rode horseback and practiced archery may have roamed the steppes of Mongolia Full Article