ng Machine Learning Techniques for Classifying the Mutagenic Origins of Point Mutations [Methods, Technology, [amp ] Resources] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g., CpG hypermutability. We have evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more complicated case. We contrasted single nucleotide variants originating from the multitude of mutagenic processes that normally operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method, we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced and spontaneous mutation variant classes. A logistic regression classifier exhibited strong performance at discriminating between the different mutation classes. Concordance between the feature set of the best classifier and information content analyses suggest our results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is freely available under an open-source license. Full Article
ng Phenotypic Plasticity: From Theory and Genetics to Current and Future Challenges [Perspectives] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Phenotypic plasticity is defined as the property of organisms to produce distinct phenotypes in response to environmental variation. While for more than a century, biologists have proposed this organismal feature to play an important role in evolution and the origin of novelty, the idea has remained contentious. Plasticity is found in all domains of life, but only recently has there been an increase in empirical studies. This contribution is intended as a fresh view and will discuss current and future challenges of plasticity research, and the need to identify associated molecular mechanisms. After a brief summary of conceptual, theoretical, and historical aspects, some of which were responsible for confusion and contention, I will formulate three major research directions and predictions for the role of plasticity as a facilitator of novelty. These predictions result in a four-step model that, when properly filled with molecular mechanisms, will reveal plasticity as a major factor of evolution. Such mechanistic insight must be complemented with comparative investigations to show that plasticity has indeed created novelty and innovation. Together, such studies will help develop a true developmental evolutionary biology. Full Article
ng Phosphoflow Protocol for Signaling Studies in Human and Murine B Cell Subpopulations [NOVEL IMMUNOLOGICAL METHODS] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points Method for highly sensitive detection of phosphorylation in B cell subpopulations. B cell subpopulations show different phosphorylation levels upon BCR stimulation. Full Article
ng Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q [INNATE IMMUNITY AND INFLAMMATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points ApoE was found in complex with C4d in RA patient SF. Deposited ApoE activates complement whereas ApoE in solution is inhibitory. Posttranslational modifications alter ApoE's capacity to bind FH and C4BP. Full Article
ng Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points L. donovani induces histone lysine methyltransferases/demethylases in the host. L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization. Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host. Full Article
ng Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points CMV coinfection promotes the generation of CD57+ CD4 Tmem in PLWH. CD2/LFA-3 costimulation enhances the functionality of CD57+ CD4 Tmem. IL-15 and TNF enhance chemoattraction of CD57+ CD4 Tmem to CX3CL1+ endothelial cells. Full Article
ng Molecular Drivers of Lymphocyte Organization in Vertebrate Mucosal Surfaces: Revisiting the TNF Superfamily Hypothesis [IMMUNOGENETICS] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Lymphotoxin axis is not essential for formation of O-MALT in ectotherms and birds. Vertebrate O-MALT structures are enriched in neuroactive ligand/receptor genes. Mammalian PPs and LNs are enriched in genes involved in olfactory transduction. Full Article
ng Innate-like CD27+CD45RBhigh {gamma}{delta} T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs [IMMUNE SYSTEM DEVELOPMENT] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points E4 is an enhancer element that regulates transcriptions of TCR genes. E4–/– mice have fewer CD27+CD45RBhigh V2+ T cells in peripheral organs. Attenuation of TCR signal impairs homeostasis of T cells in peripheral organs. Full Article
ng IRAK-M Regulates Monocyte Trafficking to the Lungs in Response to Bleomycin Challenge [IMMUNE REGULATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points TLR signaling pathway regulates expression of monocyte chemoattractant CCR2. IRAK-M is an important regulator of monocyte trafficking to the lung in fibrosis. Full Article
ng The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine. Full Article
ng LuxS/AI-2 Quorum Sensing System in Edwardsiella piscicida Promotes Biofilm Formation and Pathogenicity [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 LuxS/AI-2 is an important quorum sensing system which affects the growth, biofilm formation, virulence, and metabolism of bacteria. LuxS is encoded by the luxS gene, but how this gene is associated with a diverse array of physiological activities in Edwardsiella piscicida (E. piscicida) is not known. Here, we constructed an luxS gene mutant strain, the luxS strain, to identify how LuxS/AI-2 affects pathogenicity. The results showed that LuxS was not found in the luxS gene mutant strain, and this gene deletion decreased E. piscicida growth compared to that of the wild-type strain. Meanwhile, the wild-type strain significantly increased penetration and motility in mucin compared to levels with the luxS strain. The 50% lethal dose (LD50) of the E. piscicida luxS strain for zebrafish was significantly higher than that of the wild-type strain, which suggested that the luxS gene deletion could attenuate the strain’s virulence. The AI-2 activities of EIB202 were 56-fold higher than those in the luxS strain, suggesting that the luxS gene promotes AI-2 production. Transcriptome results demonstrated that between cells infected with the luxS strain and those infected with the wild-type strain 46 genes were significantly differentially regulated, which included 34 upregulated genes and 12 downregulated genes. Among these genes, the largest number were closely related to cell immunity and signaling systems. In addition, the biofilm formation ability of EIB202 was significantly higher than that of the luxS strain. The supernatant of EIB202 increased the biofilm formation ability of the luxS strain, which suggested that the luxS gene and its product LuxS enhanced biofilm formation in E. piscicida. All results indicate that the LuxS/AI-2 quorum sensing system in E. piscicida promotes its pathogenicity through increasing a diverse array of physiological activities. Full Article
ng Immune Profile of the Nasal Mucosa in Patients with Cutaneous Leishmaniasis [Fungal and Parasitic Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Localized skin lesions are characteristic of cutaneous leishmaniasis (CL); however, Leishmania (Viannia) species, which are responsible for most CL cases in the Americas, can spread systemically, sometimes resulting in mucosal disease. Detection of Leishmania has been documented in healthy mucosal tissues (conjunctiva, tonsils, and nasal mucosa) and healthy skin of CL patients and in individuals with asymptomatic infection in areas of endemicity of L. (V.) panamensis and L. (V.) braziliensis transmission. However, the conditions and mechanisms that favor parasite persistence in healthy mucosal tissues are unknown. In this descriptive study, we compared the cell populations of the nasal mucosa (NM) of healthy donors and patients with active CL and explored the immune gene expression signatures related to molecular detection of Leishmania in this tissue in the absence of clinical signs or symptoms of mucosal disease. The cellular composition and gene expression profiles of NM samples from active CL patients were similar to those of healthy volunteers, with a predominance of epithelial over immune cells, and within the CD45+ cell population, a higher frequency of CD66b+ followed by CD14+ and CD3+ cells. In CL patients with molecular evidence of Leishmania persistence in the NM, genes characteristic of an anti-inflammatory and tissue repair responses (IL4R, IL5RA, POSTN, and SATB1) were overexpressed relative to NM samples from CL patients in which Leishmania was not detected. Here, we report the first immunological description of subclinically infected NM tissues of CL patients and provide evidence of a local anti-inflammatory environment favoring parasite persistence in the NM. Full Article
ng Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections. Full Article
ng Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during In Vivo Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion [Cellular Microbiology: Pat By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor. Full Article
ng Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling [Molecular Pathogenesis] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Peptidoglycan, the sugar-amino acid polymer that composes the bacterial cell wall, requires a significant expenditure of energy to synthesize and is highly immunogenic. To minimize the loss of an energetically expensive metabolite and avoid host detection, bacteria often recycle their peptidoglycan, transporting its components back into the cytoplasm, where they can be used for subsequent rounds of new synthesis. The peptidoglycan-recycling substrate binding protein (SBP) MppA, which is responsible for recycling peptidoglycan fragments in Escherichia coli, has not been annotated for most intracellular pathogens. One such pathogen, Chlamydia trachomatis, has a limited capacity to synthesize amino acids de novo and therefore must obtain oligopeptides from its host cell for growth. Bioinformatics analysis suggests that the putative C. trachomatis oligopeptide transporter OppABCDF (OppABCDFCt) encodes multiple SBPs (OppA1Ct, OppA2Ct, and OppA3Ct). Intracellular pathogens often encode multiple SBPs, while only one, OppA, is encoded in the E. coli opp operon. We hypothesized that the putative OppABCDF transporter of C. trachomatis functions in both oligopeptide transport and peptidoglycan recycling. We coexpressed the putative SBP genes (oppA1Ct, oppA2Ct, oppA3Ct) along with oppBCDFCt in an E. coli mutant lacking the Opp transporter and determined that all three chlamydial OppA subunits supported oligopeptide transport. We also demonstrated the in vivo functionality of the chlamydial Opp transporter in C. trachomatis. Importantly, we found that one chlamydial SBP, OppA3Ct, possessed dual substrate recognition properties and is capable of transporting peptidoglycan fragments (tri-diaminopimelic acid) in E. coli and in C. trachomatis. These findings suggest that Chlamydia evolved an oligopeptide transporter to facilitate the acquisition of oligopeptides for growth while simultaneously reducing the accumulation of immunostimulatory peptidoglycan fragments in the host cell cytosol. The latter property reflects bacterial pathoadaptation that dampens the host innate immune response to Chlamydia infection. Full Article
ng Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 x 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 x 103 CFU (50 LD50) of virulent Y. pestis. This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development. Full Article
ng A Point Mutation in carR Is Involved in the Emergence of Polymyxin B-Sensitive Vibrio cholerae O1 El Tor Biotype by Influencing Gene Transcription [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Antimicrobial peptides play an important role in host defense against Vibrio cholerae. Generally, the V. cholerae O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by carRS, regulating the lipid A modification of El Tor vibrios, and found that only carR contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains. We designated the two alleles present in PB-resistant and -sensitive strains carRr and carRs alleles, respectively, and replaced the carRs allele of a sensitive strain with the carRr allele, using an allelic-exchange approach. The sensitive strain then became resistant. The PB-resistant strain N16961 was made susceptible to PB in a similar fashion. Our in silico CarR protein models suggested that the D89N substitution in the more stable CarRs protein brings the two structural domains of CarR closer, constricting the DNA binding cleft. This probably reduces the expression of the carR-regulated almEFG operon, inducing PB susceptibility. Expression of almEFG in PB-sensitive strains was found to be downregulated under natural culturing conditions. In addition, the expression of carR and almEG decreased in all strains with increased concentrations of extracellular Ca2+ but increased with a rise in pH. The downregulation of almEFG in CarRs strains confirmed that the G265A mutation is responsible for the emergence of PB-sensitive El Tor strains. Full Article
ng Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism [Cellular Microbiology: Pathogen-Host Cell Molecular Inte By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression. Full Article
ng Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa. However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa. However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa. Full Article
ng Palmitoylated Cysteines in Chikungunya Virus nsP1 Are Critical for Targeting to Cholesterol-Rich Plasma Membrane Microdomains with Functional Consequences for Viral Genome Replication [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication. IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host. Full Article
ng Interleukin-1 Receptor-Associated Kinase (IRAK) Signaling in Kaposi Sarcoma-Associated Herpesvirus-Induced Primary Effusion Lymphoma [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1β) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1β stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-B activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1β. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway. IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL. Full Article
ng Bottleneck Size-Dependent Changes in the Genetic Diversity and Specific Growth Rate of a Rotavirus A Strain [Genetic Diversity and Evolution] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 RNA viruses form a dynamic distribution of mutant swarms (termed "quasispecies") due to the accumulation of mutations in the viral genome. The genetic diversity of a viral population is affected by several factors, including a bottleneck effect. Human-to-human transmission exemplifies a bottleneck effect, in that only part of a viral population can reach the next susceptible hosts. In the present study, two lineages of the rhesus rotavirus (RRV) strain of rotavirus A were serially passaged five times at a multiplicity of infection (MOI) of 0.1 or 0.001, and three phenotypes (infectious titer, cell binding ability, and specific growth rate) were used to evaluate the impact of a bottleneck effect on the RRV population. The specific growth rate values of lineages passaged under the stronger bottleneck (MOI of 0.001) were higher after five passages. The nucleotide diversity also increased, which indicated that the mutant swarms of the lineages under the stronger bottleneck effect were expanded through the serial passages. The random distribution of synonymous and nonsynonymous substitutions on rotavirus genome segments indicated that almost all mutations were selectively neutral. Simple simulations revealed that the presence of minor mutants could influence the specific growth rate of a population in a mutant frequency-dependent manner. These results indicate a stronger bottleneck effect can create more sequence spaces for minor sequences. IMPORTANCE In this study, we investigated a bottleneck effect on an RRV population that may drastically affect the viral population structure. RRV populations were serially passaged under two levels of a bottleneck effect, which exemplified human-to-human transmission. As a result, the genetic diversity and specific growth rate of RRV populations increased under the stronger bottleneck effect, which implied that a bottleneck created a new space in a population for minor mutants originally existing in a hidden layer, which includes minor mutations that cannot be distinguished from a sequencing error. The results of this study suggest that the genetic drift caused by a bottleneck in human-to-human transmission explains the random appearance of new genetic lineages causing viral outbreaks, which can be expected according to molecular epidemiology using next-generation sequencing in which the viral genetic diversity within a viral population is investigated. Full Article
ng PIWIL4 Maintains HIV-1 Latency by Enforcing Epigenetically Suppressive Modifications on the 5' Long Terminal Repeat [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 Although substantial progress has been made in depicting the molecular pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection, the comprehensive mechanism of HIV-1 latency and the most promising therapeutic strategies to effectively reactivate the HIV-1 latent reservoir to achieve a functional cure for AIDS remain to be systematically illuminated. Here, we demonstrated that piwi (P element-induced Wimpy)-like RNA-mediated gene silencing 4 (PIWIL4) played an important role in suppressing HIV-1 transcription and contributed to the latency state in HIV-1-infected cells through its recruitment of various suppressive factors, including heterochromatin protein 1α/β/, SETDB1, and HDAC4. The knockdown of PIWIL4 enhanced HIV-1 transcription and reversed HIV-1 latency in both HIV-1 latently infected Jurkat T cells and primary CD4+ T lymphocytes and resting CD4+ T lymphocytes from HIV-1-infected individuals on suppressive combined antiretroviral therapy (cART). Furthermore, in the absence of PIWIL4, HIV-1 latently infected Jurkat T cells were more sensitive to reactivation with vorinostat (suberoylanilide hydroxamic acid, or SAHA), JQ1, or prostratin. These findings indicated that PIWIL4 promotes HIV-1 latency by imposing repressive marks at the HIV-1 5' long terminal repeat. Thus, the manipulation of PIWIL4 could be a novel strategy for developing promising latency-reversing agents (LRAs). IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. During this process, the suppression of HIV-1 transcription plays an essential role in promoting HIV-1 latency. In this study, we found that PIWIL4 repressed HIV-1 promoter activity and maintained HIV-1 latency. In particular, we report that PIWIL4 can regulate gene expression through its association with the suppressive activity of HDAC4. Therefore, we have identified a new function for PIWIL4: it is not only a suppressor of endogenous retrotransposons but also plays an important role in inhibiting transcription and leading to latent infection of HIV-1, a well-known exogenous retrovirus. Our results also indicate a novel therapeutic target to reactivate the HIV-1 latent reservoir. Full Article
ng Identification and Cloning of a New Western Epstein-Barr Virus Strain That Efficiently Replicates in Primary B Cells [Genome Replication and Regulation of Viral Gene Expression] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 The Epstein-Barr virus (EBV) causes human cancers, and epidemiological studies have shown that lytic replication is a risk factor for some of these tumors. This fits with the observation that EBV M81, which was isolated from a Chinese patient with nasopharyngeal carcinoma, induces potent virus production and increases the risk of genetic instability in infected B cells. To find out whether this property extends to viruses found in other parts of the world, we investigated 22 viruses isolated from Western patients. While one-third of the viruses hardly replicated, the remaining viruses showed variable levels of replication, with three isolates replicating at levels close to that of M81 in B cells. We cloned one strongly replicating virus into a bacterial artificial chromosome (BAC); the resulting recombinant virus (MSHJ) retained the properties of its nonrecombinant counterpart and showed similarities to M81, undergoing lytic replication in vitro and in vivo after 3 weeks of latency. In contrast, B cells infected with the nonreplicating Western B95-8 virus showed early but abortive replication accompanied by cytoplasmic BZLF1 expression. Sequencing confirmed that rMSHJ is a Western virus, being genetically much closer to B95-8 than to M81. Spontaneous replication in rM81- and rMSHJ-infected B cells was dependent on phosphorylated Btk and was inhibited by exposure to ibrutinib, opening the way to clinical intervention in patients with abnormal EBV replication. As rMSHJ contains the complete EBV genome and induces lytic replication in infected B cells, it is ideal to perform genetic analyses of all viral functions in Western strains and their associated diseases. IMPORTANCE The Epstein-Barr virus (EBV) infects the majority of the world population but causes different diseases in different countries. Evidence that lytic replication, the process that leads to new virus progeny, is linked to cancer development is accumulating. Indeed, viruses such as M81 that were isolated from Far Eastern nasopharyngeal carcinomas replicate strongly in B cells. We show here that some viruses isolated from Western patients, including the MSHJ strain, share this property. Moreover, replication of both M81 and of MSHJ was sensitive to ibrutinib, a commonly used drug, thereby opening an opportunity for therapeutic intervention. Sequencing of MSHJ showed that this virus is quite distant from M81 and is much closer to nonreplicating Western viruses. We conclude that Western EBV strains are heterogeneous, with some viruses being able to replicate more strongly and therefore being potentially more pathogenic than others, and that the virus sequence information alone cannot predict this property. Full Article
ng Differential Outcomes following Optimization of Simian-Human Immunodeficiency Viruses from Clades AE, B, and C [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 Simian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes. We constructed six Env375 variants (M, H, W, Y, F, and S) for each SHIV, and we performed a pool competition study in rhesus monkeys to define the optimal variant for each SHIV prior to generating large-scale challenge stocks. We identified SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH as the optimal variants. SHIV-SF162p3S could not be improved, as it already contained the optimal Env375 residue. SHIV-AE16W exhibited a similar replicative capacity to the parental SHIV-AE16 stock. In contrast, SHIV-325cH demonstrated a 2.6-log higher peak and 1.6-log higher setpoint viral loads than the parental SHIV-325c stock. These data demonstrate the diversity of potential outcomes following Env375 modification in SHIVs. Moreover, the clade C SHIV-325cH challenge stock may prove useful for evaluating prophylactic or therapeutic interventions against clade C HIV-1. IMPORTANCE We sought to enhance the infectivity of three SHIV stocks by optimization of a key residue in human immunodeficiency virus type 1 (HIV-1) Env (Env375). We developed the following three new simian-human immunodeficiency virus (SHIV) stocks: SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH. SHIV-SF162p3S could not be optimized, SHIV-AE16W proved comparable to the parental virus, and SHIV-325cH demonstrated markedly enhanced replicative capacity compared with the parental virus. Full Article
ng Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Macrophages in the lung detect and respond to influenza A virus (IAV), determining the nature of the immune response. Using terminal-depth cap analysis of gene expression (CAGE), we quantified transcriptional activity of both host and pathogen over a 24-h time course of IAV infection in primary human monocyte-derived macrophages (MDMs). This method allowed us to observe heterogenous host sequences incorporated into IAV mRNA, "snatched" 5' RNA caps, and corresponding RNA sequences from host RNAs. In order to determine whether cap-snatching is random or exhibits a bias, we systematically compared host sequences incorporated into viral mRNA ("snatched") against a complete survey of all background host RNA in the same cells, at the same time. Using a computational strategy designed to eliminate sources of bias due to read length, sequencing depth, and multimapping, we were able to quantify overrepresentation of host RNA features among the sequences that were snatched by IAV. We demonstrate biased snatching of numerous host RNAs, particularly small nuclear RNAs (snRNAs), and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then used a systems approach to describe the transcriptional landscape of the host response to IAV, observing many new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments. IMPORTANCE Infection with influenza A virus (IAV) infection is responsible for an estimated 500,000 deaths and up to 5 million cases of severe respiratory illness each year. In this study, we looked at human primary immune cells (macrophages) infected with IAV. Our method allows us to look at both the host and the virus in parallel. We used these data to explore a process known as "cap-snatching," where IAV snatches a short nucleotide sequence from capped host RNA. This process was believed to be random. We demonstrate biased snatching of numerous host RNAs, including those associated with snRNA transcription, and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then describe the transcriptional landscape of the host response to IAV, observing new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments. Full Article
ng Loss of IKK Subunits Limits NF-{kappa}B Signaling in Reovirus-Infected Cells [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Viruses commonly antagonize innate immune pathways that are primarily driven by nuclear factor kappa B (NF-B), interferon regulatory factor (IRF), and the signal transducer and activator of transcription proteins (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased transcriptome sequencing (RNA-seq)-based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that, while vgRNA and reovirus infection both induce a similar IRF-dependent gene expression program, gene expression driven by the NF-B family of transcription factors is lower in infected cells. Potent agonists of NF-B such as tumor necrosis factor alpha (TNF-α) and vgRNA failed to induce NF-B-dependent gene expression in infected cells. We demonstrate that NF-B signaling is blocked due to loss of critical members of the inhibitor of kappa B kinase (IKK) complex, NF-B essential modifier (NEMO), and IKKβ. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-B, thereby preventing gene expression. Our study demonstrates that reovirus infection selectively blocks NF-B, likely to counteract its antiviral effects and promote efficient viral replication. IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-B family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-B is inactive. Further, we demonstrate that NF-B is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-B function. Based on previous evidence that active NF-B limits reovirus infection, we conclude that inactivating NF-B is a viral strategy to produce a cellular environment that is favorable for virus replication. Full Article
ng Heterogeneous Nuclear Ribonucleoprotein L Negatively Regulates Foot-and-Mouth Disease Virus Replication through Inhibition of Viral RNA Synthesis by Interacting with the Internal Ribosome Entry Site in the 5' Untranslated Region [Virus-Cell Interactio By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex. IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections. Full Article
ng A New Gorilla Adenoviral Vector with Natural Lung Tropism Avoids Liver Toxicity and Is Amenable to Capsid Engineering and Vector Retargeting [Gene Delivery] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs. IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting. Full Article
ng Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-{kappa}B Pathway, Inhibiting Hallmark NF-{kappa}B-Induced Proinflammatory Gene Expression [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 The nuclear factor kappa B (NF-B) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-B, illustrated by proteasome-dependent degradation of the inhibitory NF-B regulator IB and nuclear translocation and phosphorylation of the NF-B subunit p65. PRV-induced persistent activation of NF-B does not result in expression of negative feedback loop genes, like the gene for IBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-B activation. Hence, PRV infection triggers persistent NF-B activation in an unorthodox way and dramatically modulates the NF-B signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-B signaling, which may aid the virus in modulating early proinflammatory responses in the infected host. IMPORTANCE The NF-B transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-B, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-B activation shares some mechanistic features with canonical NF-B activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IB kinase (IKK) and even renders infected cells resistant to canonical NF-B activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-B activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-B activation. Full Article
ng Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins [Vaccines and Antiviral Agents] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system. IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine. Full Article
ng Long Noncoding RNA NRAV Promotes Respiratory Syncytial Virus Replication by Targeting the MicroRNA miR-509-3p/Rab5c Axis To Regulate Vesicle Transportation [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Respiratory syncytial virus (RSV) is an enveloped RNA virus which is responsible for approximately 80% of lower respiratory tract infections in children. Current lines of evidence have supported the functional involvement of long noncoding RNA (lncRNA) in many viral infectious diseases. However, the overall biological effect and clinical role of lncRNAs in RSV infection remain unclear. In this study, lncRNAs related to respiratory virus infection were obtained from the lncRNA database, and we collected 144 clinical sputum specimens to identify lncRNAs related to RSV infection. Quantitative PCR (qPCR) detection indicated that the expression of lncRNA negative regulator of antiviral response (NRAV) in RSV-positive patients was significantly lower than that in uninfected patients, but lncRNA psoriasis-associated non-protein coding RNA induced by stress (PRINS), nuclear paraspeckle assembly transcript 1 (NEAT1), and Nettoie Salmonella pas Theiler’s (NeST) showed no difference in vivo and in vitro. Meanwhile, overexpression of NRAV promoted RSV proliferation in A549 and BEAS-2B cells, and vice versa, indicating that the downregulation of NRAV was part of the host antiviral defense. RNA fluorescent in situ hybridization (FISH) confirmed that NRAV was mainly located in the cytoplasm. Through RNA sequencing, we found that Rab5c, which is a vesicle transporting protein, showed the same change trend as NRAV. Subsequent investigation revealed that NRAV was able to favor RSV production indirectly by sponging microRNA miR-509-3p so as to release Rab5c and facilitate vesicle transportation. The study provides a new insight into virus-host interaction through noncoding RNA, which may contribute to exploring potential antivirus targets for respiratory virus. IMPORTANCE The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection. Full Article
ng Glycoprotein 5 Is Cleaved by Cathepsin E during Porcine Reproductive and Respiratory Syndrome Virus Membrane Fusion [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Porcine reproductive and respiratory syndrome (PRRS) is a serious viral disease affecting the global swine industry. Its causative agent, PRRS virus (PRRSV), is an enveloped virus, and therefore membrane fusion between its envelope and host cell target membrane is critical for viral infection. Though much research has focused on PRRSV infection, the detailed mechanisms involved in its membrane fusion remain to be elucidated. In the present study, we performed confocal microscopy in combination with a constitutively active (CA) or dominant negative (DN) mutant, specific inhibitors, and small interfering RNAs (siRNAs), as well as multiple other approaches, to explore PRRSV membrane fusion. We first observed that PRRSV membrane fusion occurred in Rab11-recycling endosomes during early infection using labeled virions and subcellular markers. We further demonstrated that low pH and cathepsin E in Rab11-recycling endosomes are critical for PRRSV membrane fusion. Moreover, PRRSV glycoprotein 5 (GP5) is identified as being cleaved by cathepsin E during this process. Taken together, our findings provide in-depth information regarding PRRSV pathogenesis, which support a novel basis for the development of antiviral drugs and vaccines. IMPORTANCE PRRS, caused by PRRSV, is an economically critical factor in pig farming worldwide. As PRRSV is a lipid membrane-wrapped virus, merging of the PRRSV envelope with the host cell membrane is indispensable for viral infection. However, there is a lack of knowledge on its membrane fusion. Here, we first explored when and where PRRSV membrane fusion occurs. Furthermore, we determined which host cell factors were involved in the process. Importantly, PRRSV GP5 is shown to be cleaved by cathepsin E during membrane fusion. Our work not only provides information on PRRSV membrane fusion for the first time but also deepens our understanding of the molecular mechanisms of PRRSV infection, which provides a foundation for future applications in the prevention and control of PRRS. Full Article
ng Characterization and Genomic Analysis of ValSw3-3, a New Siphoviridae Bacteriophage Infecting Vibrio alginolyticus [Genetic Diversity and Evolution] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 A novel lytic bacteriophage, ValSw3-3, which efficiently infects pathogenic strains of Vibrio alginolyticus, was isolated from sewage water and characterized by microbiological and in silico genomic analyses. Transmission electron microscopy indicated that ValSw3-3 has the morphology of siphoviruses. This phage can infect four species in the Vibrio genus and has a latent period of 15 min and a burst size of 95 ± 2 PFU/infected bacterium. Genome sequencing results show that ValSw3-3 has a 39,846-bp double-stranded DNA genome with a GC content of 43.1%. The similarity between the genome sequences of ValSw3-3 and those of other phages recorded in the GenBank database was below 50% (42%), suggesting that ValSw3-3 significantly differs from previously reported phages at the DNA level. Multiple genome comparisons and phylogenetic analysis based on the major capsid protein revealed that phage ValSw3-3 is grouped in a clade with five other phages, including Listonella phage phiHSIC (GenBank accession no. NC_006953.1), Vibrio phage P23 (MK097141.1), Vibrio phage pYD8-B (NC_021561.1), Vibrio phage 2E1 (KX507045.1), and Vibrio phage 12G5 (HQ632860.1), and is distinct from all known genera within the Siphoviridae family that have been ratified by the International Committee on Taxonomy of Viruses (ICTV). An in silico proteomic comparison of diverse phages from the Siphoviridae family supported this clustering result and suggested that ValSw3-3, phiHSIC, P23, pYD8-B, 2E1, and 12G5 should be classified as a novel genus cluster of Siphoviridae. A subsequent analysis of core genes also revealed the common genes shared within this new cluster. Overall, these results provide a characterization of Vibrio phage ValSw3-3 and support our proposal of a new viral genus within the family Siphoviridae. IMPORTANCE Phage therapy has been considered a potential alternative to antibiotic therapy in treating bacterial infections. For controlling the vibriosis-causing pathogen Vibrio alginolyticus, well-documented phage candidates are still lacking. Here, we characterize a novel lytic Vibrio phage, ValSw3-3, based on its morphology, host range and infectivity, growth characteristics, stability under various conditions, and genomic features. Our results show that ValSw3-3 could be a potent candidate for phage therapy to treat V. alginolyticus infections due to its stronger infectivity and better pH and thermal stability than those of previously reported Vibrio phages. Moreover, genome sequence alignments, phylogenetic analysis, in silico proteomic comparison, and core gene analysis all support that this novel phage, ValSw3-3, and five unclassified phages form a clade distant from those of other known genera ratified by the ICTV. Thus, we propose a new viral genus within the Siphoviridae family to accommodate this clade, with ValSw3-3 as a representative member. Full Article
ng Priming of Antiviral CD8 T Cells without Effector Function by a Persistently Replicating Hepatitis C-Like Virus [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Immune-competent animal models for the hepatitis C virus (HCV) are nonexistent, impeding studies of host-virus interactions and vaccine development. Experimental infection of laboratory rats with a rodent hepacivirus isolated from Rattus norvegicus (RHV) is a promising surrogate model due to its recapitulation of HCV-like chronicity. However, several aspects of rat RHV infection remain unclear, for instance, how RHV evades host adaptive immunity to establish persistent infection. Here, we analyzed the induction, differentiation, and functionality of RHV-specific CD8 T cell responses that are essential for protection against viral persistence. Virus-specific CD8 T cells targeting dominant and subdominant major histocompatibility complex class I epitopes proliferated considerably in liver after RHV infection. These populations endured long term yet never acquired antiviral effector functions or selected for viral escape mutations. This was accompanied by the persistent upregulation of programmed cell death-1 and absent memory cell formation, consistent with a dysfunctional phenotype. Remarkably, transient suppression of RHV viremia with a direct-acting antiviral led to the priming of CD8 T cells with partial effector function, driving the selection of a viral escape variant. These data demonstrate an intrinsic abnormality within CD8 T cells primed by rat RHV infection, an effect that is governed at least partially by the magnitude of early virus replication. Thus, this model could be useful in investigating mechanisms of CD8 T cell subversion, leading to the persistence of hepatotropic pathogens such as HCV. IMPORTANCE Development of vaccines against hepatitis C virus (HCV), a major cause of cirrhosis and cancer, has been stymied by a lack of animal models. The recent discovery of an HCV-like rodent hepacivirus (RHV) enabled the development of such a model in rats. This platform recapitulates HCV hepatotropism and viral chronicity necessary for vaccine testing. Currently, there are few descriptions of RHV-specific responses and why they fail to prevent persistent infection in this model. Here, we show that RHV-specific CD8 T cells, while induced early at high magnitude, do not develop into functional effectors capable of controlling virus. This defect was partially alleviated by short-term treatment with an HCV antiviral. Thus, like HCV, RHV triggers dysfunction of virus-specific CD8 T cells that are vital for infection resolution. Additional study of this evasion strategy and how to mitigate it could enhance our understanding of hepatotropic viral infections and lead to improved vaccines and therapeutics. Full Article
ng Correction for Pilat et al., Treg-mediated prolonged survival of skin allografts without immunosuppression [Corrections] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 IMMUNOLOGY AND INFLAMMATION Correction for “Treg-mediated prolonged survival of skin allografts without immunosuppression,” by Nina Pilat, Mario Wiletel, Anna M. Weijler, Romy Steiner, Benedikt Mahr, Joanna Warren, Theresa M. Corpuz, Thomas Wekerle, Kylie E. Webster, and Jonathan Sprent, which was first published June 13, 2019; 10.1073/pnas.1903165116 (Proc. Natl. Acad. Sci.... Full Article
ng Sample multiplexing for targeted pathway proteomics in aging mice [Systems Biology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Pathway proteomics strategies measure protein expression changes in specific cellular processes that carry out related functions. Using targeted tandem mass tags-based sample multiplexing, hundreds of proteins can be quantified across 10 or more samples simultaneously. To facilitate these highly complex experiments, we introduce a strategy that provides complete control over... Full Article
ng Testing for dependence on tree structures [Statistics] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Tree structures, showing hierarchical relationships and the latent structures between samples, are ubiquitous in genomic and biomedical sciences. A common question in many studies is whether there is an association between a response variable measured on each sample and the latent group structure represented by some given tree. Currently, this... Full Article
ng Procedural justice training reduces police use of force and complaints against officers [Social Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Existing research shows that distrust of the police is widespread and consequential for public safety. However, there is a shortage of interventions that demonstrably reduce negative police interactions with the communities they serve. A training program in Chicago attempted to encourage 8,480 officers to adopt procedural justice policing strategies. These... Full Article
ng Demographic science aids in understanding the spread and fatality rates of COVID-19 [Social Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Governments around the world must rapidly mobilize and make difficult policy decisions to mitigate the coronavirus disease 2019 (COVID-19) pandemic. Because deaths have been concentrated at older ages, we highlight the important role of demography, particularly, how the age structure of a population may help explain differences in fatality rates... Full Article
ng Asking young children to “do science” instead of “be scientists” increases science engagement in a randomized field experiment [Psychological and Cognitive Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Subtle features of common language can imply to young children that scientists are a special and distinct kind of person—a way of thinking that can interfere with the development of children’s own engagement with science. We conducted a large field experiment (involving 45 prekindergarten schools, 130 teachers, and over 1,100... Full Article
ng Reduced perceptual narrowing in synesthesia [Psychological and Cognitive Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Synesthesia is a neurologic trait in which specific inducers, such as sounds, automatically elicit additional idiosyncratic percepts, such as color (thus “colored hearing”). One explanation for this trait—and the one tested here—is that synesthesia results from unusually weak pruning of cortical synaptic hyperconnectivity during early perceptual development. We tested the... Full Article
ng Single-cell O2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells [Physiology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2... Full Article
ng Detecting electronic coherences by time-domain high-harmonic spectroscopy [Physics] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Ultrafast spectroscopy is capable of monitoring electronic and vibrational states. For electronic states a few eV apart, an X-ray laser source is required. We propose an alternative method based on the time-domain high-order harmonic spectroscopy where a coherent superposition of the electronic states is first prepared by the strong optical... Full Article
ng In utero MRI identifies consequences of early-gestation alcohol drinking on fetal brain development in rhesus macaques [Neuroscience] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 One factor that contributes to the high prevalence of fetal alcohol spectrum disorder (FASD) is binge-like consumption of alcohol before pregnancy awareness. It is known that treatments are more effective with early recognition of FASD. Recent advances in retrospective motion correction for the reconstruction of three-dimensional (3D) fetal brain MRI... Full Article
ng A viral toolkit for recording transcription factor-DNA interactions in live mouse tissues [Neuroscience] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Transcription factors (TFs) enact precise regulation of gene expression through site-specific, genome-wide binding. Common methods for TF-occupancy profiling, such as chromatin immunoprecipitation, are limited by requirement of TF-specific antibodies and provide only end-point snapshots of TF binding. Alternatively, TF-tagging techniques, in which a TF is fused to a DNA-modifying enzyme... Full Article
ng A minor population of macrophage-tropic HIV-1 variants is identified in recrudescing viremia following analytic treatment interruption [Microbiology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses... Full Article
ng Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro [Microbiology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in... Full Article
ng Inner Workings: Molecular biologists offer “wartime service” in the effort to test for COVID-19 [Medical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 As the novel coronavirus spreads, communities across the United States are struggling to offer public testing. The need is urgent. Testing got off to a delayed start in the United States as a result of technical missteps and a slow response from government officials. Now cities across the country are... Full Article
ng A genome-wide association study identifies key modulators of complement factor H binding to malondialdehyde-epitopes [Immunology and Inflammation] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Genetic variants within complement factor H (CFH), a major alternative complement pathway regulator, are associated with the development of age-related macular degeneration (AMD) and other complementopathies. This is explained with the reduced binding of CFH or its splice variant factor H-like protein 1 (FHL-1) to self-ligands or altered self-ligands (e.g.,... Full Article