ar

Encyclopedia of molecular pharmacology

9783030215736 (electronic bk.)




ar

Emerging and transboundary animal viruses

9789811504020 (electronic bk.)




ar

Early onset scoliosis : a clinical casebook

9783319715803 (electronic bk.)




ar

Dietary sugar, salt and fat in human health

9780128169193 (electronic bk.)




ar

Development of biopharmaceutical drug-device products

9783030314156 (electronic bk.)




ar

Deep learning in medical image analysis : challenges and applications

9783030331283 (electronic bk.)




ar

DICTIONARY OF CONSTRUCTION, SURVEYING, AND CIVIL ENGINEERING

9780192568632 (electronic bk.)




ar

Current microbiological research in Africa : selected applications for sustainable environmental management

9783030352967 (electronic bk.)




ar

Critical care : architecture and urbanism for a broken planet

9780262352871 (electronic bk.)




ar

Crafting qualitative research : beyond positivist traditions

Prasad, Pushkala, author.
9781315715070 (e-book)




ar

Cotton production and uses : agronomy, crop protection, and postharvest technologies

9789811514722




ar

Conservation genetics in mammals : integrative research using novel approaches

9783030333348 (electronic bk.)




ar

Consequences of microbial interactions with hydrocarbons, oils, and lipids : biodegradation and bioremediation

9783319445359 (electronic bk.)




ar

Computational processing of the Portuguese language : 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings

PROPOR (Conference) (14th : 2020 : Evora, Portugal)
9783030415051 (electronic bk.)




ar

Children’s Palliative Care: An International Case-Based Manual

9783030273750 978-3-030-27375-0




ar

Characterization of nanoencapsulated food ingredients

9780128156681 (electronic bk.)




ar

Cellular internet of things : from massive deployments to critical 5G applications

Liberg, Olof, 1943- author.
9780081029039 (electronic bk.)




ar

Carotenoids : properties, processing and applications

9780128173145 (electronic bk.)




ar

Breakfast cereals and how they are made : raw materials, processing, and production

9780128120446 (electronic bk.)




ar

Brassica improvement : molecular, genetics and genomic perspectives

9783030346942 (electronic bk.)




ar

Biology and ecology of venomous marine cnidarians

Santhanam, Ramasamy, 1946- author
9789811516030 (electronic bk.)




ar

Binary code fingerprinting for cybersecurity : application to malicious code fingerprinting

Alrabaee, Saed, authior
9783030342388 (electronic bk.)




ar

Basic Electrocardiography

Petty, Brent G. author. aut http://id.loc.gov/vocabulary/relators/aut
9783030328863 978-3-030-32886-3




ar

Arctic plants of Svalbard : what we learn from the green in the treeless white world

Lee, Yoo Kyung, author
9783030345600 (electronic bk.)




ar

Anatomical chart company atlas of pathophysiology

Atlas of pathophysiology.
9781496370921




ar

Anaerobic utilization of hydrocarbons, oils, and lipids

9783319503912 (electronic bk.)




ar

Advances in virus research.

9780123850348 (electronic bk.)




ar

Advances in parasitology.

9780123742292 (electronic bk.)




ar

Advanced age geriatric care : a comprehensive guide

9783319969985 (electronic bk.)




ar

A handbook of nuclear applications in humans' lives

Tabbakh, Farshid, author.
9781527544512 (electronic bk.)




ar

100 cases in clinical pharmacology, therapeutics and prescribing

Layne, Kerry, author.
9780429624537 electronic book





ar

InBios receives Emergency Use Authorization for its Smart Detect...

InBios International, Inc. announces the U.S. Food and Drug Administration (FDA) issued an emergency use authorization (EUA) for its diagnostic test that can be used immediately by CLIA...

(PRWeb April 08, 2020)

Read the full story at https://www.prweb.com/releases/inbios_receives_emergency_use_authorization_for_its_smart_detect_sars_cov_2_rrt_pcr_kit_for_detection_of_the_virus_causing_covid_19/prweb17036897.htm





ar

New Partnerships Emerge for COVID-19 Relief: Dade County Farm Bureau...

Harvested produce crops feed Florida Department of Corrections’ (FDC) more than 87,000 inmates; action saves food costs while reducing COVID-19 related supply chain impacts.

(PRWeb April 20, 2020)

Read the full story at https://www.prweb.com/releases/new_partnerships_emerge_for_covid_19_relief_dade_county_farm_bureau_teams_with_state_leaders_to_launch_farm_to_inmate_program/prweb17052045.htm





ar

Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo

Jere Koskela, Paul A. Jenkins, Adam M. Johansen, Dario Spanò.

Source: The Annals of Statistics, Volume 48, Number 1, 560--583.

Abstract:
We study weighted particle systems in which new generations are resampled from current particles with probabilities proportional to their weights. This covers a broad class of sequential Monte Carlo (SMC) methods, widely-used in applied statistics and cognate disciplines. We consider the genealogical tree embedded into such particle systems, and identify conditions, as well as an appropriate time-scaling, under which they converge to the Kingman $n$-coalescent in the infinite system size limit in the sense of finite-dimensional distributions. Thus, the tractable $n$-coalescent can be used to predict the shape and size of SMC genealogies, as we illustrate by characterising the limiting mean and variance of the tree height. SMC genealogies are known to be connected to algorithm performance, so that our results are likely to have applications in the design of new methods as well. Our conditions for convergence are strong, but we show by simulation that they do not appear to be necessary.




ar

Markov equivalence of marginalized local independence graphs

Søren Wengel Mogensen, Niels Richard Hansen.

Source: The Annals of Statistics, Volume 48, Number 1, 539--559.

Abstract:
Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with $m$-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance, in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with $mu $-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. Several graphs may encode the same set of independence relations and this means that in many cases only an equivalence class of graphs can be identified from observational data. For statistical applications, it is therefore pivotal to characterize graphs that induce the same independence relations. Our main result is that for directed mixed graphs with $mu $-separation each equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with dashed and solid edges. This graph encodes all information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph.




ar

Averages of unlabeled networks: Geometric characterization and asymptotic behavior

Eric D. Kolaczyk, Lizhen Lin, Steven Rosenberg, Jackson Walters, Jie Xu.

Source: The Annals of Statistics, Volume 48, Number 1, 514--538.

Abstract:
It is becoming increasingly common to see large collections of network data objects, that is, data sets in which a network is viewed as a fundamental unit of observation. As a result, there is a pressing need to develop network-based analogues of even many of the most basic tools already standard for scalar and vector data. In this paper, our focus is on averages of unlabeled, undirected networks with edge weights. Specifically, we (i) characterize a certain notion of the space of all such networks, (ii) describe key topological and geometric properties of this space relevant to doing probability and statistics thereupon, and (iii) use these properties to establish the asymptotic behavior of a generalized notion of an empirical mean under sampling from a distribution supported on this space. Our results rely on a combination of tools from geometry, probability theory and statistical shape analysis. In particular, the lack of vertex labeling necessitates working with a quotient space modding out permutations of labels. This results in a nontrivial geometry for the space of unlabeled networks, which in turn is found to have important implications on the types of probabilistic and statistical results that may be obtained and the techniques needed to obtain them.




ar

Optimal prediction in the linearly transformed spiked model

Edgar Dobriban, William Leeb, Amit Singer.

Source: The Annals of Statistics, Volume 48, Number 1, 491--513.

Abstract:
We consider the linearly transformed spiked model , where the observations $Y_{i}$ are noisy linear transforms of unobserved signals of interest $X_{i}$: egin{equation*}Y_{i}=A_{i}X_{i}+varepsilon_{i},end{equation*} for $i=1,ldots ,n$. The transform matrices $A_{i}$ are also observed. We model the unobserved signals (or regression coefficients) $X_{i}$ as vectors lying on an unknown low-dimensional space. Given only $Y_{i}$ and $A_{i}$ how should we predict or recover their values? The naive approach of performing regression for each observation separately is inaccurate due to the large noise level. Instead, we develop optimal methods for predicting $X_{i}$ by “borrowing strength” across the different samples. Our linear empirical Bayes methods scale to large datasets and rely on weak moment assumptions. We show that this model has wide-ranging applications in signal processing, deconvolution, cryo-electron microscopy, and missing data with noise. For missing data, we show in simulations that our methods are more robust to noise and to unequal sampling than well-known matrix completion methods.




ar

Efficient estimation of linear functionals of principal components

Vladimir Koltchinskii, Matthias Löffler, Richard Nickl.

Source: The Annals of Statistics, Volume 48, Number 1, 464--490.

Abstract:
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},dots,X_{n}$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma $. The complexity of the problem is characterized by its effective rank $mathbf{r}(Sigma):=frac{operatorname{tr}(Sigma)}{|Sigma |}$, where $mathrm{tr}(Sigma)$ denotes the trace of $Sigma $ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma $. Under the assumption that $mathbf{r}(Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality.




ar

The multi-armed bandit problem: An efficient nonparametric solution

Hock Peng Chan.

Source: The Annals of Statistics, Volume 48, Number 1, 346--373.

Abstract:
Lai and Robbins ( Adv. in Appl. Math. 6 (1985) 4–22) and Lai ( Ann. Statist. 15 (1987) 1091–1114) provided efficient parametric solutions to the multi-armed bandit problem, showing that arm allocation via upper confidence bounds (UCB) achieves minimum regret. These bounds are constructed from the Kullback–Leibler information of the reward distributions, estimated from specified parametric families. In recent years, there has been renewed interest in the multi-armed bandit problem due to new applications in machine learning algorithms and data analytics. Nonparametric arm allocation procedures like $epsilon $-greedy, Boltzmann exploration and BESA were studied, and modified versions of the UCB procedure were also analyzed under nonparametric settings. However, unlike UCB these nonparametric procedures are not efficient under general parametric settings. In this paper, we propose efficient nonparametric procedures.




ar

Sparse high-dimensional regression: Exact scalable algorithms and phase transitions

Dimitris Bertsimas, Bart Van Parys.

Source: The Annals of Statistics, Volume 48, Number 1, 300--323.

Abstract:
We present a novel binary convex reformulation of the sparse regression problem that constitutes a new duality perspective. We devise a new cutting plane method and provide evidence that it can solve to provable optimality the sparse regression problem for sample sizes $n$ and number of regressors $p$ in the 100,000s, that is, two orders of magnitude better than the current state of the art, in seconds. The ability to solve the problem for very high dimensions allows us to observe new phase transition phenomena. Contrary to traditional complexity theory which suggests that the difficulty of a problem increases with problem size, the sparse regression problem has the property that as the number of samples $n$ increases the problem becomes easier in that the solution recovers 100% of the true signal, and our approach solves the problem extremely fast (in fact faster than Lasso), while for small number of samples $n$, our approach takes a larger amount of time to solve the problem, but importantly the optimal solution provides a statistically more relevant regressor. We argue that our exact sparse regression approach presents a superior alternative over heuristic methods available at present.




ar

Bootstrap confidence regions based on M-estimators under nonstandard conditions

Stephen M. S. Lee, Puyudi Yang.

Source: The Annals of Statistics, Volume 48, Number 1, 274--299.

Abstract:
Suppose that a confidence region is desired for a subvector $ heta $ of a multidimensional parameter $xi =( heta ,psi )$, based on an M-estimator $hat{xi }_{n}=(hat{ heta }_{n},hat{psi }_{n})$ calculated from a random sample of size $n$. Under nonstandard conditions $hat{xi }_{n}$ often converges at a nonregular rate $r_{n}$, in which case consistent estimation of the distribution of $r_{n}(hat{ heta }_{n}- heta )$, a pivot commonly chosen for confidence region construction, is most conveniently effected by the $m$ out of $n$ bootstrap. The above choice of pivot has three drawbacks: (i) the shape of the region is either subjectively prescribed or controlled by a computationally intensive depth function; (ii) the region is not transformation equivariant; (iii) $hat{xi }_{n}$ may not be uniquely defined. To resolve the above difficulties, we propose a one-dimensional pivot derived from the criterion function, and prove that its distribution can be consistently estimated by the $m$ out of $n$ bootstrap, or by a modified version of the perturbation bootstrap. This leads to a new method for constructing confidence regions which are transformation equivariant and have shapes driven solely by the criterion function. A subsampling procedure is proposed for selecting $m$ in practice. Empirical performance of the new method is illustrated with examples drawn from different nonstandard M-estimation settings. Extension of our theory to row-wise independent triangular arrays is also explored.




ar

Statistical inference for model parameters in stochastic gradient descent

Xi Chen, Jason D. Lee, Xin T. Tong, Yichen Zhang.

Source: The Annals of Statistics, Volume 48, Number 1, 251--273.

Abstract:
The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions. Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests. Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.




ar

Adaptive risk bounds in univariate total variation denoising and trend filtering

Adityanand Guntuboyina, Donovan Lieu, Sabyasachi Chatterjee, Bodhisattva Sen.

Source: The Annals of Statistics, Volume 48, Number 1, 205--229.

Abstract:
We study trend filtering, a relatively recent method for univariate nonparametric regression. For a given integer $rgeq1$, the $r$th order trend filtering estimator is defined as the minimizer of the sum of squared errors when we constrain (or penalize) the sum of the absolute $r$th order discrete derivatives of the fitted function at the design points. For $r=1$, the estimator reduces to total variation regularization which has received much attention in the statistics and image processing literature. In this paper, we study the performance of the trend filtering estimator for every $rgeq1$, both in the constrained and penalized forms. Our main results show that in the strong sparsity setting when the underlying function is a (discrete) spline with few “knots,” the risk (under the global squared error loss) of the trend filtering estimator (with an appropriate choice of the tuning parameter) achieves the parametric $n^{-1}$-rate, up to a logarithmic (multiplicative) factor. Our results therefore provide support for the use of trend filtering, for every $rgeq1$, in the strong sparsity setting.




ar

Envelope-based sparse partial least squares

Guangyu Zhu, Zhihua Su.

Source: The Annals of Statistics, Volume 48, Number 1, 161--182.

Abstract:
Sparse partial least squares (SPLS) is widely used in applied sciences as a method that performs dimension reduction and variable selection simultaneously in linear regression. Several implementations of SPLS have been derived, among which the SPLS proposed in Chun and Keleş ( J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 (2010) 3–25) is very popular and highly cited. However, for all of these implementations, the theoretical properties of SPLS are largely unknown. In this paper, we propose a new version of SPLS, called the envelope-based SPLS, using a connection between envelope models and partial least squares (PLS). We establish the consistency, oracle property and asymptotic normality of the envelope-based SPLS estimator. The large-sample scenario and high-dimensional scenario are both considered. We also develop the envelope-based SPLS estimators under the context of generalized linear models, and discuss its theoretical properties including consistency, oracle property and asymptotic distribution. Numerical experiments and examples show that the envelope-based SPLS estimator has better variable selection and prediction performance over the SPLS estimator ( J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 (2010) 3–25).




ar

Model assisted variable clustering: Minimax-optimal recovery and algorithms

Florentina Bunea, Christophe Giraud, Xi Luo, Martin Royer, Nicolas Verzelen.

Source: The Annals of Statistics, Volume 48, Number 1, 111--137.

Abstract:
The problem of variable clustering is that of estimating groups of similar components of a $p$-dimensional vector $X=(X_{1},ldots ,X_{p})$ from $n$ independent copies of $X$. There exists a large number of algorithms that return data-dependent groups of variables, but their interpretation is limited to the algorithm that produced them. An alternative is model-based clustering, in which one begins by defining population level clusters relative to a model that embeds notions of similarity. Algorithms tailored to such models yield estimated clusters with a clear statistical interpretation. We take this view here and introduce the class of $G$-block covariance models as a background model for variable clustering. In such models, two variables in a cluster are deemed similar if they have similar associations will all other variables. This can arise, for instance, when groups of variables are noise corrupted versions of the same latent factor. We quantify the difficulty of clustering data generated from a $G$-block covariance model in terms of cluster proximity, measured with respect to two related, but different, cluster separation metrics. We derive minimax cluster separation thresholds, which are the metric values below which no algorithm can recover the model-defined clusters exactly, and show that they are different for the two metrics. We therefore develop two algorithms, COD and PECOK, tailored to $G$-block covariance models, and study their minimax-optimality with respect to each metric. Of independent interest is the fact that the analysis of the PECOK algorithm, which is based on a corrected convex relaxation of the popular $K$-means algorithm, provides the first statistical analysis of such algorithms for variable clustering. Additionally, we compare our methods with another popular clustering method, spectral clustering. Extensive simulation studies, as well as our data analyses, confirm the applicability of our approach.




ar

Robust sparse covariance estimation by thresholding Tyler’s M-estimator

John Goes, Gilad Lerman, Boaz Nadler.

Source: The Annals of Statistics, Volume 48, Number 1, 86--110.

Abstract:
Estimating a high-dimensional sparse covariance matrix from a limited number of samples is a fundamental task in contemporary data analysis. Most proposals to date, however, are not robust to outliers or heavy tails. Toward bridging this gap, in this work we consider estimating a sparse shape matrix from $n$ samples following a possibly heavy-tailed elliptical distribution. We propose estimators based on thresholding either Tyler’s M-estimator or its regularized variant. We prove that in the joint limit as the dimension $p$ and the sample size $n$ tend to infinity with $p/n ogamma>0$, our estimators are minimax rate optimal. Results on simulated data support our theoretical analysis.




ar

Sparse SIR: Optimal rates and adaptive estimation

Kai Tan, Lei Shi, Zhou Yu.

Source: The Annals of Statistics, Volume 48, Number 1, 64--85.

Abstract:
Sliced inverse regression (SIR) is an innovative and effective method for sufficient dimension reduction and data visualization. Recently, an impressive range of penalized SIR methods has been proposed to estimate the central subspace in a sparse fashion. Nonetheless, few of them considered the sparse sufficient dimension reduction from a decision-theoretic point of view. To address this issue, we in this paper establish the minimax rates of convergence for estimating the sparse SIR directions under various commonly used loss functions in the literature of sufficient dimension reduction. We also discover the possible trade-off between statistical guarantee and computational performance for sparse SIR. We finally propose an adaptive estimation scheme for sparse SIR which is computationally tractable and rate optimal. Numerical studies are carried out to confirm the theoretical properties of our proposed methods.