b

Locally equivalent Floer complexes and unoriented link cobordisms. (arXiv:1911.03659v4 [math.GT] UPDATED)

We show that the local equivalence class of the collapsed link Floer complex $cCFL^infty(L)$, together with many $Upsilon$-type invariants extracted from this group, is a concordance invariant of links. In particular, we define a version of the invariants $Upsilon_L(t)$ and $ u^+(L)$ when $L$ is a link and we prove that they give a lower bound for the slice genus $g_4(L)$. Furthermore, in the last section of the paper we study the homology group $HFL'(L)$ and its behaviour under unoriented cobordisms. We obtain that a normalized version of the $upsilon$-set, introduced by Ozsv'ath, Stipsicz and Szab'o, produces a lower bound for the 4-dimensional smooth crosscap number $gamma_4(L)$.




b

Khintchine-type theorems for values of subhomogeneous functions at integer points. (arXiv:1910.02067v2 [math.NT] UPDATED)

This work has been motivated by recent papers that quantify the density of values of generic quadratic forms and other polynomials at integer points, in particular ones that use Rogers' second moment estimates. In this paper we establish such results in a very general framework. Namely, given any subhomogeneous function (a notion to be defined) $f: mathbb{R}^n o mathbb{R}$, we derive a necessary and sufficient condition on the approximating function $psi$ for guaranteeing that a generic element $fcirc g$ in the $G$-orbit of $f$ is $psi$-approximable; that is, $|fcirc g(mathbf{v})| le psi(|mathbf{v}|)$ for infinitely many $mathbf{v} in mathbb{Z}^n$. We also deduce a sufficient condition in the case of uniform approximation. Here, $G$ can be any closed subgroup of $operatorname{ASL}_n(mathbb{R})$ satisfying certain axioms that allow for the use of Rogers-type estimates.




b

Topology Identification of Heterogeneous Networks: Identifiability and Reconstruction. (arXiv:1909.11054v2 [math.OC] UPDATED)

This paper addresses the problem of identifying the graph structure of a dynamical network using measured input/output data. This problem is known as topology identification and has received considerable attention in recent literature. Most existing literature focuses on topology identification for networks with node dynamics modeled by single integrators or single-input single-output (SISO) systems. The goal of the current paper is to identify the topology of a more general class of heterogeneous networks, in which the dynamics of the nodes are modeled by general (possibly distinct) linear systems. Our two main contributions are the following. First, we establish conditions for topological identifiability, i.e., conditions under which the network topology can be uniquely reconstructed from measured data. We also specialize our results to homogeneous networks of SISO systems and we will see that such networks have quite particular identifiability properties. Secondly, we develop a topology identification method that reconstructs the network topology from input/output data. The solution of a generalized Sylvester equation will play an important role in our identification scheme.




b

On boundedness, gradient estimate, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. (arXiv:1909.04587v4 [math.AP] UPDATED)

In this work, we study dynamic properties of classical solutions to a homogenous Neumann initial-boundary value problem (IBVP) for a two-species and two-stimuli chemotaxis model with/without chemical signalling loop in a 2D bounded and smooth domain. We successfully detect the product of two species masses as a feature to determine boundedness, gradient estimates, blow-up and $W^{j,infty}(1leq jleq 3)$-exponential convergence of classical solutions for the corresponding IBVP. More specifically, we first show generally a smallness on the product of both species masses, thus allowing one species mass to be suitably large, is sufficient to guarantee global boundedness, higher order gradient estimates and $W^{j,infty}$-convergence with rates of convergence to constant equilibria; and then, in a special case, we detect a straight line of masses on which blow-up occurs for large product of masses. Our findings provide new understandings about the underlying model, and thus, improve and extend greatly the existing knowledge relevant to this model.




b

Multitype branching process with nonhomogeneous Poisson and generalized Polya immigration. (arXiv:1909.03684v2 [math.PR] UPDATED)

In a multitype branching process, it is assumed that immigrants arrive according to a nonhomogeneous Poisson or a generalized Polya process (both processes are formulated as a nonhomogeneous birth process with an appropriate choice of transition intensities). We show that the renormalized numbers of objects of the various types alive at time $t$ for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, some transient moment analysis when there are only two types of particles is provided. AMS 2000 subject classifications: Primary 60J80, 60J85; secondary 60K10, 60K25, 90B15.




b

Integrability of moduli and regularity of Denjoy counterexamples. (arXiv:1908.06568v4 [math.DS] UPDATED)

We study the regularity of exceptional actions of groups by $C^{1,alpha}$ diffeomorphisms on the circle, i.e. ones which admit exceptional minimal sets, and whose elements have first derivatives that are continuous with concave modulus of continuity $alpha$. Let $G$ be a finitely generated group admitting a $C^{1,alpha}$ action $ ho$ with a free orbit on the circle, and such that the logarithms of derivatives of group elements are uniformly bounded at some point of the circle. We prove that if $G$ has spherical growth bounded by $c n^{d-1}$ and if the function $1/alpha^d$ is integrable near zero, then under some mild technical assumptions on $alpha$, there is a sequence of exceptional $C^{1,alpha}$ actions of $G$ which converge to $ ho$ in the $C^1$ topology. As a consequence for a single diffeomorphism, we obtain that if the function $1/alpha$ is integrable near zero, then there exists a $C^{1,alpha}$ exceptional diffeomorphism of the circle. This corollary accounts for all previously known moduli of continuity for derivatives of exceptional diffeomorphisms. We also obtain a partial converse to our main result. For finitely generated free abelian groups, the existence of an exceptional action, together with some natural hypotheses on the derivatives of group elements, puts integrability restrictions on the modulus $alpha$. These results are related to a long-standing question of D. McDuff concerning the length spectrum of exceptional $C^1$ diffeomorphisms of the circle.




b

Equivariant Batalin-Vilkovisky formalism. (arXiv:1907.07995v3 [hep-th] UPDATED)

We study an equivariant extension of the Batalin-Vilkovisky formalism for quantizing gauge theories. Namely, we introduce a general framework to encompass failures of the quantum master equation, and we apply it to the natural equivariant extension of AKSZ solutions of the classical master equation (CME). As examples of the construction, we recover the equivariant extension of supersymmetric Yang-Mills in 2d and of Donaldson-Witten theory.




b

Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in R^{1+3}. (arXiv:1907.01126v2 [math.AP] UPDATED)

This paper is devoted to the study of the singularity phenomenon of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$. We find that there are two explicit lightlike self-similar solutions to a graph representation of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$, the geometry of them are two spheres. The linear mode unstable of those lightlike self-similar solutions for the radially symmetric membranes equation is given. After that, we show those self-similar solutions of the radially symmetric membranes equation are nonlinearly stable inside a strictly proper subset of the backward lightcone. This means that the dynamical behavior of those two spheres is as attractors. Meanwhile, we overcome the double roots case (the theorem of Poincar'{e} can't be used) in solving the difference equation by construction of a Newton's polygon when we carry out the analysis of spectrum for the linear operator.




b

Decentralized and Parallelized Primal and Dual Accelerated Methods for Stochastic Convex Programming Problems. (arXiv:1904.09015v10 [math.OC] UPDATED)

We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node in the class of methods with optimal number of communication steps takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique we show that all proposed methods with stochastic oracle can be additionally parallelized at each node.




b

Study of fractional Poincar'e inequalities on unbounded domains. (arXiv:1904.07170v2 [math.AP] UPDATED)

The central aim of this paper is to study (regional) fractional Poincar'e type inequalities on unbounded domains satisfying the finite ball condition. Both existence and non existence type results are established depending on various conditions on domains and on the range of $s in (0,1)$. The best constant in both regional fractional and fractional Poincar'e inequality is characterized for strip like domains $(omega imes mathbb{R}^{n-1})$, and the results obtained in this direction are analogous to those of the local case. This settles one of the natural questions raised by K. Yeressian in [ extit{Asymptotic behavior of elliptic nonlocal equations set in cylinders, Asymptot. Anal. 89, (2014), no 1-2}].




b

Grothendieck's inequalities for JB$^*$-triples: Proof of the Barton-Friedman conjecture. (arXiv:1903.08931v3 [math.OA] UPDATED)

We prove that, given a constant $K> 2$ and a bounded linear operator $T$ from a JB$^*$-triple $E$ into a complex Hilbert space $H$, there exists a norm-one functional $psiin E^*$ satisfying $$|T(x)| leq K , |T| , |x|_{psi},$$ for all $xin E$. Applying this result we show that, given $G > 8 (1+2sqrt{3})$ and a bounded bilinear form $V$ on the Cartesian product of two JB$^*$-triples $E$ and $B$, there exist norm-one functionals $varphiin E^{*}$ and $psiin B^{*}$ satisfying $$|V(x,y)| leq G |V| , |x|_{varphi} , |y|_{psi}$$ for all $(x,y)in E imes B$. These results prove a conjecture pursued during almost twenty years.




b

Gabriel-Roiter measure, representation dimension and rejective chains. (arXiv:1903.05555v2 [math.RT] UPDATED)

The Gabriel-Roiter measure is used to give an alternative proof of the finiteness of the representation dimension for Artin algebras, a result established by Iyama in 2002. The concept of Gabriel-Roiter measure can be extended to abelian length categories and every such category has multiple Gabriel-Roiter measures. Using this notion, we prove the following broader statement: given any object $X$ and any Gabriel-Roiter measure $mu$ in an abelian length category $mathcal{A}$, there exists an object $X'$ which depends on $X$ and $mu$, such that $Gamma = operatorname{End}_{mathcal{A}}(X oplus X')$ has finite global dimension. Analogously to Iyama's original results, our construction yields quasihereditary rings and fits into the theory of rejective chains.




b

Mirror Symmetry for Non-Abelian Landau-Ginzburg Models. (arXiv:1812.06200v3 [math.AG] UPDATED)

We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat type polynomials.




b

Bernoulli decomposition and arithmetical independence between sequences. (arXiv:1811.11545v2 [math.NT] UPDATED)

In this paper we study the following set[A={p(n)+2^nd mod 1: ngeq 1}subset [0.1],] where $p$ is a polynomial with at least one irrational coefficient on non constant terms, $d$ is any real number and for $ain [0,infty)$, $a mod 1$ is the fractional part of $a$. By a Bernoulli decomposition method, we show that the closure of $A$ must have full Hausdorff dimension.




b

Exotic Springer fibers for orbits corresponding to one-row bipartitions. (arXiv:1810.03731v2 [math.RT] UPDATED)

We study the geometry and topology of exotic Springer fibers for orbits corresponding to one-row bipartitions from an explicit, combinatorial point of view. This includes a detailed analysis of the structure of the irreducible components and their intersections as well as the construction of an explicit affine paving. Moreover, we compute the ring structure of cohomology by constructing a CW-complex homotopy equivalent to the exotic Springer fiber. This homotopy equivalent space admits an action of the type C Weyl group inducing Kato's original exotic Springer representation on cohomology. Our results are described in terms of the diagrammatics of the one-boundary Temperley-Lieb algebra (also known as the blob algebra). This provides a first step in generalizing the geometric versions of Khovanov's arc algebra to the exotic setting.




b

A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED)

In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.




b

On the Total Curvature and Betti Numbers of Complex Projective Manifolds. (arXiv:1807.11625v2 [math.DG] UPDATED)

We prove an inequality between the sum of the Betti numbers of a complex projective manifold and its total curvature, and we characterize the complex projective manifolds whose total curvature is minimal. These results extend the classical theorems of Chern and Lashof to complex projective space.




b

The 2d-directed spanning forest converges to the Brownian web. (arXiv:1805.09399v3 [math.PR] UPDATED)

The two-dimensional directed spanning forest (DSF) introduced by Baccelli and Bordenave is a planar directed forest whose vertex set is given by a homogeneous Poisson point process $mathcal{N}$ on $mathbb{R}^2$. If the DSF has direction $-e_y$, the ancestor $h(u)$ of a vertex $u in mathcal{N}$ is the nearest Poisson point (in the $L_2$ distance) having strictly larger $y$-coordinate. This construction induces complex geometrical dependencies. In this paper we show that the collection of DSF paths, properly scaled, converges in distribution to the Brownian web (BW). This verifies a conjecture made by Baccelli and Bordenave in 2007.




b

Extremal values of the Sackin balance index for rooted binary trees. (arXiv:1801.10418v5 [q-bio.PE] UPDATED)

Tree balance plays an important role in different research areas like theoretical computer science and mathematical phylogenetics. For example, it has long been known that under the Yule model, a pure birth process, imbalanced trees are more likely than balanced ones. Therefore, different methods to measure the balance of trees were introduced. The Sackin index is one of the most frequently used measures for this purpose. In many contexts, statements about the minimal and maximal values of this index have been discussed, but formal proofs have never been provided. Moreover, while the number of trees with maximal Sackin index as well as the number of trees with minimal Sackin index when the number of leaves is a power of 2 are relatively easy to understand, the number of trees with minimal Sackin index for all other numbers of leaves was completely unknown. In this manuscript, we fully characterize trees with minimal and maximal Sackin index and also provide formulas to explicitly calculate the number of such trees.




b

Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED)

The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations.




b

Local Moduli of Semisimple Frobenius Coalescent Structures. (arXiv:1712.08575v3 [math.DG] UPDATED)

We extend the analytic theory of Frobenius manifolds to semisimple points with coalescing eigenvalues of the operator of multiplication by the Euler vector field. We clarify which freedoms, ambiguities and mutual constraints are allowed in the definition of monodromy data, in view of their importance for conjectural relationships between Frobenius manifolds and derived categories. Detailed examples and applications are taken from singularity and quantum cohomology theories. We explicitly compute the monodromy data at points of the Maxwell Stratum of the A3-Frobenius manifold, as well as at the small quantum cohomology of the Grassmannian G(2,4). In the latter case, we analyse in details the action of the braid group on the monodromy data. This proves that these data can be expressed in terms of characteristic classes of mutations of Kapranov's exceptional 5-block collection, as conjectured by one of the authors.




b

Simulation of Integro-Differential Equation and Application in Estimation of Ruin Probability with Mixed Fractional Brownian Motion. (arXiv:1709.03418v6 [math.PR] UPDATED)

In this paper, we are concerned with the numerical solution of one type integro-differential equation by a probability method based on the fundamental martingale of mixed Gaussian processes. As an application, we will try to simulate the estimation of ruin probability with an unknown parameter driven not by the classical L'evy process but by the mixed fractional Brownian motion.




b

The classification of Rokhlin flows on C*-algebras. (arXiv:1706.09276v6 [math.OA] UPDATED)

We study flows on C*-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory for Rokhlin flows on C*-algebras satisfying certain technical properties, which hold for many C*-algebras covered by the Elliott program. As a consequence, we obtain the following further classification theorems for Rokhlin flows. Firstly, we extend the statement of Kishimoto's conjecture to the non-simple case: Up to cocycle conjugacy, a Rokhlin flow on a separable, nuclear, strongly purely infinite C*-algebra is uniquely determined by its induced action on the prime ideal space. Secondly, we give a complete classification of Rokhlin flows on simple classifiable $KK$-contractible C*-algebras: Two Rokhlin flows on such a C*-algebra are cocycle conjugate if and only if their induced actions on the cone of lower-semicontinuous traces are affinely conjugate.




b

Categorification via blocks of modular representations for sl(n). (arXiv:1612.06941v3 [math.RT] UPDATED)

Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $mathfrak{sl}_2$, where they use singular blocks of category $mathcal{O}$ for $mathfrak{sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $mathfrak{sl}_n$ over a field $ extbf{k}$ of characteristic $p$ with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig's conjectures for representations of Lie algebras in positive characteristic.




b

A Class of Functional Inequalities and their Applications to Fourth-Order Nonlinear Parabolic Equations. (arXiv:1612.03508v3 [math.AP] UPDATED)

We study a class of fourth order nonlinear parabolic equations which include the thin-film equation and the quantum drift-diffusion model as special cases. We investigate these equations by first developing functional inequalities of the type $ int_Omega u^{2gamma-alpha-eta}Delta u^alphaDelta u^eta dx geq cint_Omega|Delta u^gamma |^2dx $, which seem to be of interest on their own right.




b

Word problems for finite nilpotent groups. (arXiv:2005.03634v1 [math.GR])

Let $w$ be a word in $k$ variables. For a finite nilpotent group $G$, a conjecture of Amit states that $N_w(1) ge |G|^{k-1}$, where $N_w(1)$ is the number of $k$-tuples $(g_1,...,g_k)in G^{(k)}$ such that $w(g_1,...,g_k)=1$. Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit's conjecture, and prove that $N_w(g) ge |G|^{k-2}$, where $g$ is a $w$-value in $G$, for finite groups $G$ of odd order and nilpotency class 2. If $w$ is a word in two variables, we further show that $N_w(g) ge |G|$, where $g$ is a $w$-value in $G$ for finite groups $G$ of nilpotency class 2. In addition, for $p$ a prime, we show that finite $p$-groups $G$, with two distinct irreducible complex character degrees, satisfy the generalized Amit conjecture for words $w_k =[x_1,y_1]...[x_k,y_k]$ with $k$ a natural number; that is, for $g$ a $w_k$-value in $G$ we have $N_{w_k}(g) ge |G|^{2k-1}$.

Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.




b

Surjective endomorphisms of projective surfaces -- the existence of infinitely many dense orbits. (arXiv:2005.03628v1 [math.AG])

Let $f colon X o X$ be a surjective endomorphism of a normal projective surface. When $operatorname{deg} f geq 2$, applying an (iteration of) $f$-equivariant minimal model program (EMMP), we determine the geometric structure of $X$. Using this, we extend the second author's result to singular surfaces to the extent that either $X$ has an $f$-invariant non-constant rational function, or $f$ has infinitely many Zariski-dense forward orbits; this result is also extended to Adelic topology (which is finer than Zariski topology).




b

A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC])

We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle.




b

On the asymptotic behavior of solutions to the Vlasov-Poisson system. (arXiv:2005.03617v1 [math.AP])

We prove small data modified scattering for the Vlasov-Poisson system in dimension $d=3$ using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamic related to the scattering mass.




b

On products of groups and indices not divisible by a given prime. (arXiv:2005.03608v1 [math.GR])

Let the group $G = AB$ be the product of subgroups $A$ and $B$, and let $p$ be a prime. We prove that $p$ does not divide the conjugacy class size (index) of each $p$-regular element of prime power order $xin Acup B$ if and only if $G$ is $p$-decomposable, i.e. $G=O_p(G) imes O_{p'}(G)$.




b

The Fourier Transform Approach to Inversion of lambda-Cosine and Funk Transforms on the Unit Sphere. (arXiv:2005.03607v1 [math.FA])

We use the classical Fourier analysis to introduce analytic families of weighted differential operators on the unit sphere. These operators are polynomial functions of the usual Beltrami-Laplace operator. New inversion formulas are obtained for totally geodesic Funk transforms on the sphere and the correpsonding lambda-cosine transforms.




b

Steiner symmetry in the minimization of the principal positive eigenvalue of an eigenvalue problem with indefinite weight. (arXiv:2005.03581v1 [math.AP])

In cite{CC} the authors, investigating a model of population dynamics, find the following result. Let $Omegasubset mathbb{R}^N$, $Ngeq 1$, be a bounded smooth domain. The weighted eigenvalue problem $-Delta u =lambda m u $ in $Omega$ under homogeneous Dirichlet boundary conditions, where $lambda in mathbb{R}$ and $min L^infty(Omega)$, is considered. The authors prove the existence of minimizers $check m$ of the principal positive eigenvalue $lambda_1(m)$ when $m$ varies in a class $mathcal{M}$ of functions where average, maximum, and minimum values are given. A similar result is obtained in cite{CCP} when $m$ is in the class $mathcal{G}(m_0)$ of rearrangements of a fixed $m_0in L^infty(Omega)$. In our work we establish that, if $Omega$ is Steiner symmetric, then every minimizer in cite{CC,CCP} inherits the same kind of symmetry.




b

On abelianity lines in elliptic $W$-algebras. (arXiv:2005.03579v1 [math-ph])

We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $mathcal{A}_{q,p}(widehat{gl}(N)_{c})$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.




b

Graded 2-generated axial algebras. (arXiv:2005.03577v1 [math.RA])

Axial algebras are non-associative algebras generated by semisimple idempotents whose adjoint actions obey a fusion law. Axial algebras that are generated by two such idempotents play a crucial role in the theory. We classify all primitive 2-generated axial algebras whose fusion laws have two eigenvalues and all graded primitive 2-generated axial algebras whose fusion laws have three eigenvalues. This represents a significant broadening in our understanding of axial algebras.




b

Connectedness of square-free Groebner Deformations. (arXiv:2005.03569v1 [math.AC])

Let $Isubseteq S=K[x_1,ldots,x_n]$ be a homogeneous ideal equipped with a monomial order $<$. We show that if $operatorname{in}_<(I)$ is a square-free monomial ideal, then $S/I$ and $S/operatorname{in}_<(I)$ have the same connectedness dimension. We also show that graphs related to connectedness of these quotient rings have the same number of components. We also provide consequences regarding Lyubeznik numbers. We obtain these results by furthering the study of connectedness modulo a parameter in a local ring.




b

Off-diagonal estimates for bi-commutators. (arXiv:2005.03548v1 [math.CA])

We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calder'on-Zygmund operators, and characterize their $L^{p_1}L^{p_2} o L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2) eq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method.




b

Special subvarieties of non-arithmetic ball quotients and Hodge Theory. (arXiv:2005.03524v1 [math.AG])

Let $Gamma subset operatorname{PU}(1,n)$ be a lattice, and $S_Gamma$ the associated ball quotient. We prove that, if $S_Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.




b

Asymptotic behavior of Wronskian polynomials that are factorized via $p$-cores and $p$-quotients. (arXiv:2005.03516v1 [math.CA])

In this paper we consider Wronskian polynomials labeled by partitions that can be factorized via the combinatorial concepts of $p$-cores and $p$-quotients. We obtain the asymptotic behavior for these polynomials when the $p$-quotient is fixed while the size of the $p$-core grows to infinity. For this purpose, we associate the $p$-core with its characteristic vector and let all entries of this vector simultaneously tend to infinity. This result generalizes the Wronskian Hermite setting which is recovered when $p=2$.




b

Twisted quadrics and algebraic submanifolds in R^n. (arXiv:2005.03509v1 [math-ph])

We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of [Aschieri et al.,Class. Quantum Gravity 23 (2006), 1883], whereby the commutative pointwise product is replaced by the $star$-product determined by a Drinfel'd twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds $M_c$ that are level sets of the $f^a(x)$, where $f^a(x)=0$ are the polynomial equations solved by the points of $M$, employing twists based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the $M_c$. The twisted Cartan calculus is automatically equivariant under twisted $Xi_t$. If we endow $mathbb{R}^n$ with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted $M$ is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and $star$-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $mathbb{R}^3$ except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [the latter are twisted (anti-)de Sitter spaces $dS_2,AdS_2$].




b

A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France. (arXiv:2005.03499v1 [q-bio.PE])

A reaction-diffusion model was developed describing the spread of the COVID-19 virus considering the mean daily movement of susceptible, exposed and asymptomatic individuals. The model was calibrated using data on the confirmed infection and death from France as well as their initial spatial distribution. First, the system of partial differential equations is studied, then the basic reproduction number, R0 is derived. Second, numerical simulations, based on a combination of level-set and finite differences, shown the spatial spread of COVID-19 from March 16 to June 16. Finally, scenarios of unlockdown are compared according to variation of distancing, or partially spatial lockdown.




b

Continuity in a parameter of solutions to boundary-value problems in Sobolev spaces. (arXiv:2005.03494v1 [math.CA])

We consider the most general class of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of an arbitrary order whose solutions and right-hand sides belong to appropriate Sobolev spaces. For parameter-dependent problems from this class, we prove a constructive criterion for their solutions to be continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of these solutions to the solution of the nonperturbed problem.




b

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




b

Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG])

In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field.




b

Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG])

We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression.




b

On the connection problem for the second Painlev'e equation with large initial data. (arXiv:2005.03440v1 [math.CA])

We consider two special cases of the connection problem for the second Painlev'e equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers.




b

Aspiration can promote cooperation in well-mixed populations as in regular graphs. (arXiv:2005.03421v1 [q-bio.PE])

Classical studies on aspiration-based dynamics suggest that a dissatisfied individual changes strategy without taking into account the success of others. This promotes defection spreading. The imitation-based dynamics allow individuals to imitate successful strategies without taking into account their own-satisfactions. In this article, we propose to study a dynamic based on aspiration which takes into account imitation of successful strategies for dissatisfied individuals. This helps cooperative members to resist. Individuals compare their success to their desired satisfaction level before making a decision to update their strategies. This mechanism helps individuals with a minimum of self-satisfaction to maintain their strategies. If an individual is dissatisfied, it will learn from others by choosing successful strategies. We derive an exact expression of the fixation probability in well-mixed populations as in structured populations in networks. As a result, we show that selection may favor cooperation more than defection in well-mixed populations as in populations ranged over a regular graph. We show that the best scenario is a graph with small connectivity.




b

Sums of powers of integers and hyperharmonic numbers. (arXiv:2005.03407v1 [math.NT])

In this paper, we derive a formula for the sums of powers of the first $n$ positive integers that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Moreover, as a by-product, we express the Bernoulli polynomials in terms of the hyperharmonic polynomials and the Stirling numbers of the second kind.




b

Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA])

In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation.




b

A closer look at the non-Hopfianness of $BS(2,3)$. (arXiv:2005.03396v1 [math.GR])

The Baumslag Solitar group $BS(2,3)$, is a so-called non-Hopfian group, meaning that it has an epimorphism $phi$ onto itself, that is not injective. In particular this is equivalent to saying that $BS(2,3)$ has a quotient that is isomorphic to itself. As a consequence the Cayley graph of $BS(2,3)$ has a quotient that is isomorphic to itself up to change of generators. We describe this quotient on the graph-level and take a closer look at the most common epimorphism $phi$. We show its kernel is a free group of infinite rank with an explicit set of generators.




b

Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph])

We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data.