b

Ferrocene-containing conductive polymer, organic memory device using the same and fabrication method of the organic memory device

Disclosed are a ferrocene-containing conductive polymer, an organic memory device using the conductive polymer and a method for fabricating the organic memory device. The conductive polymer may include a fluorenyl repeating unit, a thienyl repeating unit and a diarylferrocenyl repeating unit. The organic memory device may possess the advantages of rapid switching time, decreased operating voltage, decreased fabrication costs and increased reliability. Based on these advantages, the organic memory device may be used as a highly integrated, large-capacity memory device.




b

Biocompatible material and uses thereof

The present invention relates to a biocompatible ceramic material comprising Baghdadite (Ca3ZrSi2O9), and a method for its preparation. Preferably the Baghdadite is synthetically prepared. The present invention also relates to an implantable medical device comprising biocompatible Baghdadite, and a method for its production. The present invention further relates to a method for improving the long term stability of an implantable medical device and an implantable drug delivery device comprising Baghdadite. Further, the present invention relates to the use of comprising biocompatible Baghdadite in the regeneration or resurfacing of tissue.




b

Ultra-broad bandwidth laser glasses for short-pulse and high peak power lasers

The invention relates to glasses for use in solid laser applications, particularly short-pulsed, high peak power laser applications. In particular, the invention relates to a method for broadening the emission bandwidth of rare earth ions used as lasing ions in solid laser glass mediums, especially phosphate-based glass compositions, using Nd and Yb as co-dopants. The invention further relates to a laser system using a Nd-doped and Yb-doped phosphate laser glass, and a method of generating a laser beam pulse using such a laser system.




b

Bismuth borate glass encapsulant for LED phosphors

Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.




b

Substrate for magnetic disk and magnetic disk

The shape and number of surface defects are controlled so that the occurrence of failure is suppressed in an HDD device in which a magnetic head with a very small flying height, such as a DFH head, is mounted. A magnetic disk substrate is characterized in that when laser light with a wavelength of 405 nm and a laser power of 25 mW is irradiated with a spot size of 5 μm and scattered light from the substrate is detected, the number of defects detected to have a size of 0.1 μm to not more than 0.3 μm is less than 50 per 24 cm2 and, with respect to the defects, there is no defect in which, in a bearing curve obtained by a bearing curve plot method using an atomic force microscope, a portion from an apex of the defect to 45% thereof is located in an area of defect height higher than a virtual line connecting from the apex of the defect to 45% thereof.




b

Melt composition for the production of man-made vitreous fibres

The invention relates to a melt composition for the production of man-made vitreous fibers and man-made vitreous fibers comprising the following oxides, by weight of composition: SiO239-43 weight %Al2O320-23 weight %TiO2up to 1.5 weight %Fe2O35-9 weight %, preferably 5-8 weight %CaO8-18 weight %MgO5-7 weight %Na2Oup to 10 weight %, preferably 2-7 weight %K2Oup to 10 weight %, preferably 3-7 weight %P2O5up to 2%MnOup to 2%R2Oup to 10 weight % wherein the proportion of Fe(2+) is greater than 80% based on total Fe and is preferably at least 90%, more preferably at least 95% and most preferably at least 97% based on total Fe.




b

Glass for magnetic recording media substrates, magnetic recording media substrates, magnetic recording media and method for preparation thereof

A glass for a magnetic recording medium substrate permitting the realization of a magnetic recording medium substrate affording good chemical durability and having an extremely flat surface, a magnetic recording medium substrate comprised of this glass, a magnetic recording medium equipped with this substrate, and methods of manufacturing the same. The glass is an oxide glass not including As or F.




b

Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding, method for producing such a cooktop, and use of such a cooktop

A glass ceramic as cooktop for induction heating having improved colored display capability and heat shielding is provided. The cooktop includes a transparent, dyed glass ceramic plate having high-quartz mixed crystals as a predominant crystal phase. The glass ceramic contains none of the chemical refining agents arsenic oxide and/or antimony oxide and has a transmittance values greater than 0.4% at at least one wavelength in the blue spectrum between 380 and 500 nm, a transmittance >2% at 630 nm, a transmittance of less than 45% at 1600 nm, and a light transmittance of less than 2.5% in the visible spectrum.




b

Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method

A liquid composition is provided for forming a thin film in the form of a mixed composite metal oxide in which a composite oxide B containing copper (Cu) and a composite oxide C containing manganese (Mn) are mixed into a composite metal oxide A represented with the general formula: Ba1-xSrxTiyO3, wherein the molar ratio B/A of the composite oxide B to the composite metal oxide A is within the range of 0.002




b

Zeolite separation membrane, method for producing the same, and bonding agent

A separation membrane according to the present invention is characterized by having a porous tube containing an alumina as a main component and an attachment member disposed in a connection position of the porous tube, wherein the porous tube and the attachment member are bonded by a ceramic oxide-based bonding agent containing 17 to 48 wt % of SiO2, 2 to 8 wt % of Al2O3, 24 to 60 wt % of BaO, and 0.5 to 5 wt % of ZnO as essential components and containing at least one of La2O3, CaO, and SrO, and a thin zeolite layer is formed on a surface of the porous tube. The attachment member is bonded to the porous tube before the formation of the zeolite layer. Therefore, the bonding agent can have a melting temperature higher than 600° C., which is the upper heatproof temperature limit of the zeolite. Thus, the ceramic oxide material for the bonding agent can be selected from a wider range of compositions such as glass compositions (without limitations on the glass softening temperature).




b

Method for producing magnetic disk, and glass substrate for information recording medium

To provide a method for producing a magnetic disk, whereby a magnetic recording layer is formed at a high temperature. A method for producing a magnetic disk, which comprises a step of forming a magnetic recording layer on a glass substrate having a temperature of at least 550° C., wherein the glass substrate comprises, as represented by mol percentage, from 62 to 74% of SiO2, from 6 to 18% of Al2O3, from 2 to 15% of B2O3 and from 8 to 21%, in total, of at least one component selected from MgO, CaO, SrO and BaO, provided that the total content of the above seven components is at least 95%, and further contains less than 1%, in total, of at least one component selected from Li2O, Na2O and K2O, or contains none of these three components.




b

Glass batch materials having a core-shell structure

A plurality of soda-lime glass batch materials are formed into granules that include a core and a shell surrounding the core. The core comprises a first portion of the plurality of glass batch materials, and the shell comprises a remaining portion of the plurality of glass batch materials. These core-shell granules can be melted in a glass furnace to produce molten soda-lime glass in less time and at a lower temperature than conventional soda-lime glass batch preparations.




b

Photovoltaic cell having a substrate glass made of aluminosilicate glass

A photovoltaic cell, for example a thin-film photovoltaic cell, having a substrate glass made of aluminosilicate glass, has a glass composition which has SiO2 and Al2O3 as well as the alkali metal oxide Na2O and the alkaline earth oxides CaO, MgO, and BaO, and optionally further components. The glass composition includes 10 to 16 wt.-% Na2O, >0 to 1 to 10 wt.-% BaO, and the ratio of CaO:MgO is in the range of 0.5 to 1.7. The aluminosilicate glass used is crystallization stable because of the selected quotient of CaO/MgO and has a transformation temperature >580° C. and a processing temperature




b

Oxide sintered body and sputtering target

Provided is an oxide sintered body suitably used for the production of an oxide semiconductor film for a display device, wherein the oxide sintered body has both high conductivity and relative density, and is capable of depositing an oxide semiconductor film having high carrier mobility. This oxide sintered body is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide, and when an EPMA in-plane compositional mapping is performed on the oxide sintered body the percentage of the area in which Sn concentration is 10 to 50 mass % in the measurement area is 70 area percent or more.




b

Process for producing α-olefin polymer, α-olefin polymer, and lubricating oil composition

Provided is a method of producing an α-olefin polymer including a step of polymerizing one or more kinds of α-olefins each having 6 to 20 carbon atoms with a catalyst obtained by using a specific transition metal compound. By the method, an α-olefin polymer having a viscosity suitable for use in a lubricating oil can be produced on an industrial scale with ease, and further, the characteristics of the product can be widely changed through the control of reaction conditions.




b

Glass ceramic body, substrate for mounting light-emitting element, and light emitting device

To provide a glass ceramic body wherein the deterioration of the reflectance due to black coloration is suppressed, and the unevenness of the firing shrinkage is suppressed. A glass ceramic body comprising a glass matrix and alumina particles dispersed therein, wherein the glass matrix is not crystallized, a ceramic part composed of the dispersed alumina particles has an α-alumina crystal structure and a crystal structure other than the α-alumina crystal structure.




b

Powdered NiaM1bM2c(O)x(OH)y compounds, method for the production thereof and use thereof in batteries

The invention is directed to a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is at least one element selected from the group consisting of Fe, Co, Zn, Cu and mixtures thereof, M2 is at least one element selected from the group consisting of Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si and mixtures thereof, 0.3≦a≦0.83, 0.1≦b≦0.5, 0.01≦c≦0.5, 0.01≦x≦0.99 and 1.01≦y≦1.99, wherein the ratio of tapped density measured in accordance with ASTM B 527 to the D50 of the particle size distribution measured in accordance with ASTM B 822 is at least 0.2 g/cm3·μm. The invention is also directed to a method for the production of the pulverulent compound and the use as a precursor material for producing lithium compounds for use in lithium secondary batteries.




b

Alumino-borosilicate glass for the confinement of radioactive liquid effluents, and method for treating radioactive liquid effluents

An alumino-borosilicate glass for the confinement, isolation of a radioactive liquid effluent of medium activity, and a method for treating a radioactive liquid effluent of medium activity, wherein calcination of said effluent is carried out in order to obtain a calcinate, and a vitrification adjuvant is added to said calcinate.




b

Glass composition for producing high strength and high modulus fibers

A glass composition including SiO2 in an amount from 74.5 to 80.0% by weight, Al2O3 in an amount from 5.0 to 9.5%>> by weight, MgO in an amount from 8.75 to 14.75% by weight, CaO in an amount from 0.0 to 3.0% by weight, Li2O in an amount from 2.0 to 3.25% by weight, Na2O in an amount from 0.0 to 2.0% by weight is provided. Glass fibers formed from the inventive composition may be used in applications that require high strength, high stiffness, and low weight. Such applications include woven fabrics for use in forming wind blades, armor plating, and aerospace structures.




b

Glass substrate for flat panel display and method for manufacturing same

A substrate for p-Si TFT flat panel displays made of a glass having a high low-temperature-viscosity characteristic temperature and manufactured while avoiding erosion/wear of a melting tank during melting through direct electrical heating. The glass substrate comprises 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-20 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-0.8 mass % of R2O, wherein R2O is total amount of Li2O, Na2O, and K2O, and 0-0.3 mass % of Sb2O3, and substantially does not comprise As2O3, wherein the mass ratio CaO/RO is equal to or greater than 0.65, the mass ratio (SiO2+Al2O3)/B2O3 is in a range of 7-30, and the mass ratio (SiO2+Al2O3)/RO is equal to or greater than 5. A related method involves melting glass raw materials blended to provide the glass composition; a forming step of forming the molten glass into a flat-plate glass; and an annealing step of annealing the flat-plate glass.




b

Strengthened borosilicate glass containers with improved damage tolerance

According to one embodiment, a glass container may include a body formed from a Type I, Class B glass composition according to ASTM Standard E438-92. The body may have an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. The body may also include a compressively stressed layer extending into the wall thickness from at least one of the outer surface and the inner surface. A lubricous coating may be positioned on at least a portion of the outer surface of the body, wherein the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.




b

Tempered glass substrate and method of producing the same

A tempered glass substrate has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 70% of SiO2, 12 to 21% of Al2O3, 0 to 3.5% of Li2O, 10 to 20% of Na2O, 0 to 15% of K2O, and 0 to 4.5% of TiO2, wherein the tempered glass substrate has a plate thickness of 1.5 mm or less, and an internal tensile stress in the tempered glass substrate is 15 to 150 MPa.




b

Oxide sintered body and sputtering target

Provided are an oxide sintered body and a sputtering target that are ideal for the production of an oxide semiconductor film for a display device. The oxide sintered body and sputtering target that are provided have both high conductivity and high relative density, are capable of forming an oxide semiconductor film having a high carrier mobility, and in particular, have excellent direct-current discharge stability in that long-term, stable discharge is possible, even when used by the direct-current sputtering method. The oxide sintered body of the invention is an oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group consisting of Al, Hf, Ni, Si, Ga, In, and Ta. When the in-plane specific resistance and the specific resistance in the direction of depth are approximated by Gaussian distribution, the distribution coefficient σ of the specific resistance is 0.02 or less.




b

Powder comprising stabilized zirconia granules and a binder having Tg of 25C or lower

The invention relates to a granulated powder intended, in particular, for the production of ceramic sintered parts, said powder having the following chemical weight composition, based on dry matter, namely: a zirconia stabiliser selected from the group containing Y2O3, Sc2O3, MgO, CaO, CeO2, and mixtures thereof, the weight content of stabiliser, based on the total zirconia and stabiliser content, being between 2% and 20% and the MgO+CaO content being less than 5% based on the total zirconia and stabiliser content; at least 1% of a first binder having a glass transition temperature less than or equal to 25° C.; 0-4% of an additional binder having a glass transition temperature greater than 25° C.; 5-50% alumina; 0-4% of a temporary additive different from the first binder and the additional binder, the total content of the first binder, the additional binder and the temporary additive being less than 9%; less than 2% impurities; and ZrO2 to make up 100%. According to the invention, the median diameter D50 of the powder is between 80 and 130 μm, the percentile D99.5 is less than 500 μm and the relative density of the granules is between 30% and 60%.




b

Separation of components from a multi-component hydrocarbon stream which includes ethylene

A process to separate a multi-component hydrocarbon stream which includes ethylene and other components with at least some of the components being present in a number of phases, is provided. The process includes in a first flash stage, flashing the multi-component hydrocarbon stream, from an elevated pressure and temperature to a pressure in the range of 10-18 bar(a), producing a first ethylene-containing vapor stream at a pressure in the range of 10-18 bar(a) and a multi-phase stream which includes some ethylene. In a second flash stage, the multi-phase stream is flashed to a pressure of less than 6 bar(a), producing a second vapor stream at a pressure of less than 6 bar(a) and a bottoms stream. The first ethylene-containing vapor stream is removed from the first flash stage, the second vapor stream is removed from the second flash stage and the bottoms stream is removed from the second flash stage.




b

Lubricant composition for an internal combustion engine and method for lubricating an internal combustion engine

A lubricating oil composition for an internal combustion engine contains: a base oil including a component (A) of a polyalphaolefin having a kinematic viscosity at 100 degrees C. of 5.5 mm2/s or less, a CCS viscosity at −35 degrees C. of 3000 mPa·s or less and a NOACK of 12 mass % or less and a component (B) of a mineral oil having a viscosity index of 120 or more; and polyisobutylene having a mass average molecular weight of 500,000 or more. A content of the composition (A) is 25 mass % or more of a total amount of a lubricating oil.




b

Lubricant composition for an internal combustion engine and method for lubricating an internal combustion engine

A lubricating oil composition for an internal combustion engine contains a component (A) of a polyalphaolefin having a kinematic viscosity at 100 degrees C. of 5.5 mm2/s or less, a CCS viscosity at −35 degrees C. of 3000 mPA·s or less and a NOACK of 12 mass % or less, and a component (B) of a mineral oil having a viscosity index of 120 or more. The component (A) is contained at a content of 10 mass % or more of a total amount of the composition.




b

Initial hydrotreating of naphthenes with subsequent high temperature reforming

A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.




b

Co-current catalyst flow with feed for fractionated feed recombined and sent to high temperature reforming reactors

A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.




b

Method for controlling 2-phenyl isomer content of linear alkylbenzene and catalyst used in the method

A method for controlling 2-isomer content in linear alkylbenzene obtained by alkylating benzene with olefins and catalyst used in the method.




b

Catalysts, processes for preparing the catalysts, and processes for transalkylating aromatic hydrocarbon compounds

A catalyst comprising an aluminosilicate zeolite having an MOR framework type, an acidic MFI molecular sieve component having a Si/Al2 molar ratio of less than 80, a metal component comprising one or more elements selected from groups VIB, VIIB, VIII, and IVA, an inorganic oxide binder, and a fluoride component.




b

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using basic molecular sieves

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with a basic catalyst to convert a portion of the weakly basic nitrogen compounds to basic nitrogen compounds. The method also includes contacting the hydrocarbon feed stream with an acidic adsorbent to adsorb the basic nitrogen compounds from the stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




b

System and process for flushing residual fluid from transfer lines in simulated moving bed adsorption

A process according to various approaches includes flushing an intermediate transfer line between a raffinate stream transfer line and a desorbent stream transfer line away from the adsorptive separation chamber to remove residual fluid including desorbent from intermediate transfer line. The process may include directing the residual fluid flushed from the intermediate transfer line to a recycle stream to introduce the residual fluid into the adsorptive separation chamber.




b

Method for increasing thermal stability of a fuel composition using a solid phosphoric acid catalyst

This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.




b

Demulsifying of hydrocarbon feeds

In various aspects, the invention provides for processing a hydrocarbon feed having hydrocarbon and emulsified aqueous components demulsifying into hydrocarbon and aqueous phases over an initial demulsification time, with an active agent to form a treated feed. The active agent has an active agent solubility in the hydrocarbon component and in the aqueous component, the aqueous component has an aqueous component solubility in the hydrocarbon component. The active agent solubility in the hydrocarbon component is greater than the aqueous component solubility in the hydrocarbon component. The active agent solubility in the aqueous component is greater than the active agent solubility in the hydrocarbon component. The active agent solubility in the aqueous component is greater than the active agent solubility in the hydrocarbon component. A treated demulsified hydrocarbon phase separates from the active agent and the aqueous component in a modified demulsification time that is shorter than the initial demulsification time.




b

Selective oligomerization of isobutene

A process for oligomerizing isobutene comprises contacting a feedstock comprising isobutene with a catalyst comprising a MCM-22 family molecular sieve under conditions effective to oligomerize the isobutene, wherein said conditions including a temperature from about 45° C. to less than 140° C. The isobutene may be a component of a hydrocarbon feedstock containing at least one additional C4 alkene. In certain aspects, isobutene oligomers are separated from a first effluent of the oligomerization to produce a second effluent comprising at least one n-butene. The second effluent can be contacted with an alkylation catalyst to produce sec-butylbenzene.




b

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using acidic clay

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with acidic clay to produce a hydrocarbon effluent stream having a lower weakly basic nitrogen compound content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




b

Biomass feed system including gas assist

An improved biomass feed system and processes for transporting biomass to downstream processing locations are disclosed. The system uses a pressurized gas to assist in the transporting of the biomass to the conversion reactor.




b

Co-processing of biomass and synthetic polymer based materials in a pyrolysis conversion process

Disclosed is a process for biomass conversion which includes co-processing the biomass with thermoplastic and non-thermoplastic polymer based materials in a catalytic pyrolysis reactor to convert such to liquid hydrocarbons; wherein hydrogen atoms originating with the polymer materials can remove oxygen from oxygenated hydrocarbons produced in the conversion of the biomass in the reactor.




b

Catalyst for metathesis of ethylene and 2-butene and/or double bond isomerization

A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.




b

Method for the manufacture of branched saturated hydrocarbons

The invention relates to a method for the manufacture of branched saturated hydrocarbons, said method comprising the steps where a feed comprising olefins having at least 10 carbons is simultaneously hydrogenated and isomerized in the presence of hydrogen at a temperature of 100-400° C., under hydrogen partial pressure of 0.01-10 MPa, in the presence of a catalyst comprising a metal selected from the metals of Group VIIIb of the Periodic Table of Elements, a molecular sieve selected from ten member ring molecular sieves, twelve member ring molecular sieves and mesoporous molecular sieves embedded with zeolite, and a carrier, to yield branched saturated hydrocarbons.




b

Negative active material, method of preparing the same, and lithium battery including the same

Provided are a negative active material, a method of preparing the same, and a lithium battery including the negative active material. The negative active material includes a carbonaceous core that has a sulfur content of about 10 ppm to 900 ppm; and an amorphous carbon layer continuously formed on a surface of the carbonaceous core, wherein the carbonaceous core has a crystalloid plate structure, and a crystallite size measured from a full width at half maximum of the peak with respect to the surface (002) of about 10 nm to about 45 nm in an X-ray diffraction spectrum of the carbonaceous core. The lithium battery including a negative electrode including the negative active material has improved capacity characteristics and ring lifetime characteristics.




b

Sensor for biomolecules

A sensor for biomolecules includes a silicon fin comprising undoped silicon; a source region adjacent to the silicon fin, the source region comprising heavily doped silicon; a drain region adjacent to the silicon fin, the drain region comprising heavily doped silicon of a doping type that is the same doping type as that of the source region; and a layer of a gate dielectric covering an exterior portion of the silicon fin between the source region and the drain region, the gate dielectric comprising a plurality of antibodies, the plurality of antibodies configured to bind with the biomolecules, such that a drain current flowing between the source region and the drain region varies when the biomolecules bind with the antibodies.




b

Method of fabricating Ag-doped Te-based nano-material and memory device using the same

A nano-ionic memory device is provided. The memory device includes a substrate, a chemically inactive lower electrode provided on the substrate, a solid electrolyte layer provided on the lower electrode and including a silver (Ag)-doped telluride (Te)-based nano-material, and an oxidizable upper electrode provided on the electrolyte layer.




b

Silica-supported oligomeric hybrid materials

A particle-polymer hybrid material can include: a substance having the structure of Formula 1 Z(Y-FP)m, wherein Z is a particle smaller than 1 mm; m is an integer; Y is a linker including a silicon atom linked to the particle; FP is a functionalized polymer having: a first structure derived from a first norbornene compound linked to the Y; and one or more repeating units linked to the first structure, each unit being derived from a second norbornene compound and having a functional group.




b

Carbon nanotube devices with unzipped low-resistance contacts

A method of creating a semiconductor device is disclosed. An end of a carbon nanotube is unzipped to provide a substantially flat surface. A contact of the semiconductor device is formed. The substantially flat surface of the carbon nanotube is coupled to the contact to create the semiconductor device. An energy gap in the unzipped end of the carbon nanotube may be less than an energy gap in a region of the carbon nanotube outside of the unzipped end region.




b

Biomolecular sensor with plural metal plates and manufacturing method thereof

Disclosed are a biomolecular sensor and a method of fabricating the same having high sensitivity and resolution by using a plurality of metal plates that change electrical properties of a plurality of nanostructures according to the attachment of biomolecules. The biomolecular sensor includes a substrate, first and second electrodes disposed to be spaced apart from each other on the substrate, a plurality of nanostructures disposed on the substrate to connect the first and second electrodes to each other, and a plurality of metal plates that change electrical properties of the plurality of nanostructures according to the attachment of biomolecules.




b

Nanoparticles comprising antibacterial ligands

Materials and Methods are disclosed for producing nanoparticles linked to antibacterial ligands, including antibiotics and/or molecules which bind to bacterial markers, and for the use of the nanoparticles for the treatment of conditions treatable by the antibiotic ligands.




b

Nanocrystals and amorphous nanoparticles and method for production of the same by a low energy process

A process for the production of nanocrystals or amorphous nanoparticles of actives (nanomaterials), especially from the peels of grapes. A dispersion of a micrometer-sized material in a solution of surfactant or a steric stabilizer is first provided. The macrosuspension is then stirred for at least 1 minute at a rotational speed above 500 rpm using a rotor-stator mixer. The stirred mixture is passed through a jet stream or piston-gas type high pressure homogenizer. The nanomaterials produced can be incorporated into formulations for use as nutraceutical, nutritional supplement, or as supportive treatment in medical therapy. The active can be derived from the peels of grapes.




b

Water-borne paints based on epoxy resins

An aqueous epoxy resin system AB is described comprising an aqueously dispersed epoxy resin A having, on the average, at least one epoxy group per molecule, and a water-soluble or water-dispersible curing agent B which comprises the reaction product of an amine B1 having at least one primary and/or at least one secondary amino group, an adduct B2 of a polyalkylene ether polyol B21 and an epoxide component B22, and an aromatic compound B3 having at least one acidic group selected from the group consisting of hydroxyl and carboxyl groups, which system can be applied by rolling, spraying or brushing to provide corrosion protection on base metals.