b

Unitary elastic mold and cutter combination

A unitary elastic mold and cutter combination configured to mold and cut moldable material is disclosed herein. The mold and cutter combination comprises an elastic mold cavity having an elastic bottom wall with an embossed inner surface and an elastic sidewall extending from and unitary with a perimeter of the bottom wall. An elastic cutting blade extends from and is unitary with the sidewall of the mold cavity and is configured to cut moldable material and maintain a substantially consistent perimeter upon cutting. The cutting blade comprises a cutting edge disposed between an inner cutting blade surface and an outer cutting blade surface. The mold and cutter combination may have an elasticity sufficient to release molded material therefrom by hand stretching, wherein the cutting edge, inner cutting blade surface, and the inner surface of the sidewall of the mold cavity are stretched by an amount sufficient to release the molded material.




b

Method and assembly for forming a component by isostatic pressing

A method of forming a component (30) by isostatic pressing, the method comprising: providing a canister (4) suitable for isostatic pressing, the canister comprising first and second membranes (14, 16) which, in use, are disposed within the canister (4); the first and second membranes (14, 16) defining a component cavity (24) disposed between the first and second membranes (14, 16), a first tool cavity (26) disposed between the first membrane (14) and an adjacent wall (10) of the canister (4), and a second tool cavity (28) disposed between the second membrane (16) and another adjacent wall (12) of the canister (4); filling the component cavity (24) with the component powder for forming the component (30); filling the first and second tool cavities (26, 28) with a second tool powder; and isostatically pressing the canister (4) to form the component (30).




b

Branching core-pin assembly and system for forming branching channels

A core-pin assembly composed of a primary core-pin and at least one secondary core-pin. The primary core-pin has a primary core-pin body defining at least one element for coupling with a mating end of at least one secondary core-pin. The secondary core-pin has a mating end and a secondary core-pin body. The mating end is configured to fit with the element defined in the primary core-pin body such that the primary core-pin and the secondary core-pin(s) reversibly join together to form a branching structure. The assembly may further include at least one tertiary core-pin and the secondary core-pin body may define at least one element for coupling with a mating end of at least one tertiary core-pin. The mating end of the tertiary core pin is configured to fit with the secondary core-pin body such that the primary core-pin, secondary and tertiary core-pin(s) reversibly join together forming a branching structure.




b

Apparatus and method of shaping plastics material pre-forms into plastics material containers with air extraction guided through a surge chamber

An apparatus and method for the shaping of plastics material pre-forms into plastics material containers with at least one blow moulding station which is arranged on a conveying device rotatable about a pre-set axis of rotation (D). The blow moulding station has a blow mould and this blow mould forms a cavity in the interior of which the plastics material pre-forms are capable of being expanded by being acted upon with a gaseous medium to form the plastics material containers, with a stressing device, which acts upon the plastics material pre-forms with the gaseous medium in order to expand them, and with a clean room, which surrounds the blow moulding station at least in part. The clean room is bounded off from an environment by at least two walls which are movable relative to one another.




b

Systems for spacing and transferring objects between operative stations

Systems for spacing and transferring objects between operative stations are provided. Such systems can be used with ovens for preforms for plastic material, in blowing or stretch-blowing machines and for other applications in the packaging field. Such systems provide spacing and transferring of objects advancing in procession on transport elements, from a minimum pitch to a preset pitch larger than said minimum pitch, and for transferring said spaced objects to handling elements.




b

Burner with improved heat recuperator

A burner and an improved heat recuperator for a burner. The heat recuperator has a tubular body including a plurality of fins extending radially outward from the tubular body. The plurality of fins are disposed in a plurality of segments arranged longitudinally along the tubular body with the plurality of fins in each segment being disposed about a circumference of the tubular body. Adjacent segments of fins being circumferentially offset with one another.




b

Apparatus for combusting a fuel at high pressure and high temperature, and associated system

A combustor apparatus is provided, comprising a mixing arrangement for mixing a carbonaceous fuel with enriched oxygen and a working fluid to form a fuel mixture. A combustion chamber is at least partially defined by a porous perimetric transpiration member, at least partially surrounded by a pressure containment member. The combustion chamber has longitudinally spaced apart inlet and outlet portions. The fuel mixture is received by the inlet portion for combustion within the combustion chamber at a combustion temperature to form a combustion product. The combustion chamber directs the combustion product longitudinally toward the outlet portion. The transpiration member is configured to substantially uniformly direct a transpiration substance therethrough toward the combustion chamber, such that the transpiration substance is directed to flow helically about the perimeter and longitudinally between the inlet and outlet portions, for buffering interaction between the combustion product and the transpiration member. Associated systems are also provided.




b

Combustion device for a gas turbine configured to suppress thermo-acoustical pulsations

A combustion device (1) for a gas turbine includes portions (12) having an inner and an outer wall (13, 14) with an interposed noise absorption plate (15) having a plurality of holes (16). The combustion device (1) further has first passages (17) connecting zones between the inner wall (13) and the plate (15) to the inside of the combustion device (1) and second passages (21) for cooling the inner wall (13). The portions (12) also have an inner layer (22) between the inner wall (13) and the plate (15) defining inner chambers (23), each connected to at least a first passage (17), and an outer layer (24) between the outer wall (14) and the plate (15) defining outer chambers (25) connected to the inner chambers (23) via the holes (16) of the plate (15).




b

Method and device for diluted combustion

A burner for diluted combustion includes a fuel nozzle for supplying fuel to a combustion chamber, at least one air nozzle for supplying air to the combustion chamber, and at least one oxygen nozzle for supplying oxygen to the combustion chamber. The air nozzle and oxygen nozzle are spatially separated from each other.




b

Inshot burner flame retainer

A burner insert for use with a burner is provided. The burner insert includes a cylindrical body member having an inlet end and an outlet end. The cylindrical body includes a central passage and a plurality of openings disposed about the central passage. One or more fins are axially disposed within the central passage. A plurality of rib members are coupled to the body, each of the plurality of rib members axially disposed within one of the plurality of openings.




b

Integrated polymeric-ceramic membrane based oxy-fuel combustor

Integrated polymeric-ceramic membrane-based oxy-fuel combustor. The combustor includes a polymer membrane structure for receiving air at an input and for delivering oxygen-enriched air at an outlet. An oxygen transport reactor including a ceramic ion transport membrane receives the oxygen-enriched air from the polymer membrane structure to generate oxygen for combustion with a fuel introduced into the oxygen transport reactor.




b

Method for combustion of a low-grade fuel

Method for combustion of a fuel uses an existing air burner (1), including a first supply opening (5) for fuel and a second supply opening (7) for air, which supply openings (5,7) open out into a combustion zone (3). The method is characterised in that a gaseous fuel with an LHV (Lower Heating Value) of less than 7.5 MJ/Nm3 is supplied through the second supply opening (7), in that an oxidant including at least 85 percent by weight oxygen is also supplied to the combustion zone (3) through a supply device for oxidant, and in that the gaseous fuel is caused to be combusted with the oxidant in the combustion zone (3).




b

Apparatus and method for solid fuel chemical looping combustion

The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn3O4, or Co3O4, or utilized with a CO/H2 reducing oxygen carrier such as Fe2O3.




b

Combustor and method for supplying fuel to a combustor

A combustor includes an end cap having an upstream surface axially separated from a downstream surface. A cap shield circumferentially surrounds the upstream and downstream surfaces, tubes extend from the upstream surface through the downstream, and a plenum is inside the end cap. A first baffle extends radially across the plenum toward the cap shield, and a plate extends radially inside the plenum between the first baffle and the upstream surface. A method for supplying fuel to a combustor includes flowing a working fluid through tubes, flowing a fuel into a plenum between upstream and downstream surfaces, radially distributing the fuel along a first baffle, and axially flowing the fuel across a plate that extends radially inside the plenum.




b

Burner

The invention relates to a burner comprising several substantially concentric channels, one (1) of which is arranged outside of all fuel supply conduits and is delimited by two pipes (2,3), whose axes (4) are placed in a parallel position and which are movable with respect to each other. According to said invention, diverting members (6) used for imparting a tangential component (7) to a fluid flowing in the channel (1) are carried by the first pipe (2) and are fixed thereto, the second pipe (3) comprises a drive portion (9) for driving the fluid outside the diverting members (6) and the angle of tangential deviation of the fluid at the downstream end (8) of the channel (1) depends on the axial position of the second pipe (3) with respect to the first pipe (2).




b

Utilizing a diluent to lower combustion instabilities in a gas turbine engine

A method of influencing combustion dynamics, including measuring a combustion dynamics parameter, and controlling a diluent flow (26) delivered to a fuel flow (32) upstream of a pilot burner fuel outlet (40) in response to the measured combustion dynamics parameter.




b

Top-firing hot blast stove

There is provided a top-firing hot blast stove capable of enhancing combustion efficiency in burner system, supplying high-temperature combustion gas to an entire checker chamber, and suppressing damage on a refractory material on an inner wall of a burner duct. A top-firing hot blast stove 10 has a burner system including: a burner 1 for passing fuel gas or combustion air to each of three or more pipe lines in a multiple pipe line structure; and a burner duct 2. A core pipe line 1b and a central pipe line 1c include a swirling flow generating means provided for generating a swirling flow of the fuel gas or the combustion air, while an outermost pipe line 1d carries a linear flow of the fuel gas or the combustion air, so that combustion gas HG including a linear component HG″ and a swirling component HG' is generated in the burner duct 2. The combustion gas HG is supplied to a combustion chamber 3 from at least one or more of the burner systems in an inflow direction which does not pass through a center position of the combustion chamber 3.




b

Signal conditioner for use in a burner control system

A signal conditioner for use with a controller and a burner receives an input signal from the controller. A conversion circuit generates a primary output signal corresponding to the input signal to control the burner. The signal conditioner also includes a delay circuit. The delay circuit overrides the primary output signal generated by the conversion circuit and substitutes a delay signal to the burner at a predetermined level for a predetermined time. The signal conditioner may also include a temperature override circuit, which receives a temperature of air from the burner. If the temperature is above or below established limits, the temperature override circuit substitutes a temperature override signal to the burner.




b

Multi-gas burner head with sucked or blown air

The finding concerns a multi-gas burner head with sucked or blown air, from which the mixture of fuel gas and comburent air comes out and the combustion occurs. Such a head is made from a metallic sheet in which there is at least one row of aligned slits (2), substantially rectangular-shaped; such a sheet is folded so as to have a series of flat flaps (3) in succession, each of the slits being arranged so as to be closed like a “sandwich” between two flat portions of the sheet, once the flaps of the structure are mutually compressed. The gas mixture is intended to pass from the bottom (5) of the flaps and then through the slits and finally to come out at two side by side crests (6) of the structure where the combustion occurs.




b

Engine and combustion system

One embodiment of the present invention is an engine. Another embodiment is a unique combustion system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and combustion systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.




b

Exhaust aftertreatment burner with preheated combustion air

A burner for an exhaust aftertreatment system may include a housing assembly and an ignition device. The housing assembly may include an inner shell surrounded by intermediate and outer shells. The inner shell may at least partially define a combustion chamber. The housing assembly may include an airflow passage having an opening extending through the outer shell. The airflow passage may extend between the outer shell and the intermediate shell as well as between the intermediate shell and the inner shell. The airflow passage may provide fluid communication between the opening and the combustion chamber. The ignition device may be at least partially disposed within the housing assembly and may ignite fuel received from a fuel source and air received from the airflow passage to produce a flame in the combustion chamber. The airflow passage may be in a heat transfer relationship with the flame in the combustion chamber.




b

Automated setup process for metered combustion control systems

A method is provided for the automated setup of a metered combustion control system for controlling operation of a boiler combustion system. The automated setup process includes both commissioning and controller tuning, rather than tuning the carbon monoxide and/or oxygen trim controller after the commissioning process has been completed. The oxygen trim controller or the carbon monoxide trim controller is used to identify the air/fuel ratio.




b

Residual gas burner

The present invention relates to a residual gas burner (13) for a fuel cell system (1) having to educt gas feeds (11, 12) for feeding an educt gas each to a combustion chamber (14) of the residual gas burner (13). An improved operation of the residual gas burner (13) is obtained when the educt gas feeds (11, 12) each comprise outlet openings (22, 27), wherein the outlet openings (22, 27) face the combustion chamber (14) and the outlet openings (22, 27) of one of the educt gas feeds (11, 12) face a first bottom surface (29) of the other educt gas feed (11, 12). In addition, the invention relates to a fuel cell system (1) having such a residual gas burner (13).




b

Combustion chamber and method for damping pulsations

A combustion chamber is provided and includes a combustion device and a supply circuit arranged to feed fuel at a plurality of locations of the combustion device. The supply circuit includes manifolds collecting fuel to be distributed among at least some of the locations, ducts extending from the manifolds and feeding the locations. Some of the ducts carry valves having a plurality of predetermined working positions, each working position corresponding to a different fuel flow through the valve.




b

Systems and methods for detecting combustor casing flame holding in a gas turbine engine

In a gas turbine engine that includes a compressor and a combustor, wherein the combustor includes a primary fuel injector within a fuel nozzle and a secondary fuel injector that is upstream of the fuel nozzle and configured to inject fuel into a flow annulus of the combustor, a method for detecting a flame holding condition about a fuel injector. The method may include the steps of: detecting an upstream pressure upstream of the secondary fuel injector; detecting a downstream pressure downstream of the secondary fuel injector; determining a measured pressure difference between the upstream pressure and the downstream pressure; and comparing the measured pressure difference to an expected pressure difference.




b

Combustor

A combustor includes a casing that surrounds at least a portion of the combustor and includes an end cover at one end of the combustor. An end cap axially separated from the end cover is configured to extend radially across at least a portion of the combustor and includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface to provide fluid communication through the end cap. A cap shield extends axially from the end cover and circumferentially surrounds and supports the end cap.




b

Flue gas recirculation method and system for combustion systems

A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.




b

Combustible fluid cutting safety system

Embodiments of the present invention provide components and a system for providing a safer environment for using a cutting torch. The system includes a cutting torch and a control box. There is communication from the user to the control box to allow fluids to flow to the torch. The control box includes closed biased valve(s) such that if there is a condition where there is no instruction from the torch to the control box and/or power is lost, the valves will shut, preventing fluid from flowing into the torch.




b

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Method of producing gallium phthalocyanine crystal and method of producing electrophotographic photosensitive member using the method of producing gallium phthalocyanine crystal

Provided is a method of producing an electrophotographic photosensitive member having improved sensitivity and capable of outputting an image having less image defects due to a ghost phenomenon not only under a normal-temperature, normal-humidity environment but also under a low-temperature, low-humidity environment as a particularly severe condition. The method of producing a gallium phthalocyanine crystal includes subjecting a gallium phthalocyanine and a specific amine compound, which are added to a solvent, to a milling treatment to perform crystal transformation of the gallium phthalocyanine. In addition, the gallium phthalocyanine crystal is used in the photosensitive layer of the electrophotographic photosensitive member.




b

Micro-truss structures having in-plane structural members

An enhanced self-writing method for generating in-plane (horizontally-oriented) polymer lightguides that includes disposing one or more light deflecting structures in or on the upper surface of a uncured layer that deflect incident collimated light beams in a transverse direction (i.e., parallel to the uncured layer top layer surface), whereby the deflected collimated light beam polymerizes a corresponding elongated portion of the uncured material in a self-propagating manner to form in-plane polymer lightguides. When used in the fabrication of micro-truss structures, the in-plane polymer lightguides are linked to diagonal polymer lightguides to form superior truss configurations, such as that of the ideal octet-truss structure. Non-polymerized portions of the uncured layer are removed to expose the micro-truss structure for further processing.




b

Reader fabrication method employing developable bottom anti-reflective coating

Disclosed are methods for making read sensors using developable bottom anti-reflective coating and amorphous carbon (a-C) layers as junction milling masks. The methods described herein provide an excellent chemical mechanical polishing or planarization (CMP) stop, and improve control in reader critical physical parameters, shield to shield spacing (SSS) and free layer track width (FLTW).




b

Method of fabricating substrate for organic light-emitting device

A substrate for an organic light-emitting device which can improve the light extraction efficiency of an organic light-emitting device while realizing an intended level of transmittance, a method of fabricating the same, and an organic light-emitting device having the same. Light emitted from the OLED is emitted outward through the substrate. The substrate includes a substrate body and a number of crystallized particles disposed inside the substrate body, the number of crystallized particles forming a pattern inside the substrate body.




b

Method for producing cleaning blade

In a method for producing a cleaning blade, a first composition obtained by causing a reaction of diphenylmethane diisocyanate and a first aliphatic polyester polyol which has a number-average molecular weight of 2000 to 3500 and is used in an amount of 20 to 40 mol % relative to the diphenylmethane diisocyanate and a second composition containing a urethane rubber-synthesizing catalyst and a second aliphatic polyester polyol which has a number-average molecular weight of 2000 to 3500 and is the same as or different from the first aliphatic polyester polyol are mixed so that a relationship between a number of moles (MNCO [mol]) of an NCO group in the first composition and a number of moles (MOH [mol]) of an OH group in the second composition satisfies 0.05≦MOH/MNCO≦0.20.




b

Mask and method of manufacturing a substrate using the mask

A mask includes a substantially transparent portion. The mask further includes a halftone portion abutting the substantially transparent portion, a light transmittance of the halftone portion being greater than 0% and less than 100%. The mask further includes a blocking portion abutting the halftone portion, a light transmittance of the blocking portion being less than the light transmittance of the halftone portion.




b

Positive photosensitive resin composition, photosensitive resin film prepared by using the same, and semiconductor device including the photosensitive resin film

Disclosed is a positive photosensitive resin composition that includes (A) an alkali soluble resin prepared by a phosphorous-containing diamine represented by the following Chemical Formula 1, (B) a photosensitive diazoquinone compound, and (C) a solvent. A photosensitive resin film prepared using the same and a semiconductor device including the photosensitive resin film are also disclosed. In Chemical Formula 1, each substituent is the same as defined in the detailed description.




b

Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member

Provided are an electrophotographic photosensitive member in which leakage doesn't easily occur, a process cartridge and an electrophotographic apparatus each including the electrophotographic photosensitive member, and a method of manufacturing the electrophotographic photosensitive member. The electrophotographic photosensitive member includes a conductive layer including titanium oxide particle coated with tin oxide doped with a hetero element. When an absolute value of a maximum current amount flowing through the conductive layer in a case of performing a test of applying −1.0 kV including DC voltage to the conductive layer is defined as Ia, and an absolute value of a current amount flowing through the conductive layer in a case where a decrease ratio of a current amount per minute reaches 1% or less for the first time is defined as Ib, the relations of Ia≦6000 and 10≦Ib are satisfied. A volume resistivity of the conductive layer before the test is 1.0×108 Ω·cm to 5.0×1012 Ω·cm.




b

Solution of gallium phthalocyanine method for preparing the same method for producing gallium phthalocyanine crystal method for purifying composition containing gallium phthalocyanine and method for producing electrophotographic photosensitive member

A solution of a gallium phthalocyanine contains a compound of formula (1) and a gallium phthalocyanine of formula (2), H2N—CH2—R1—CH2—NH2 (1) wherein R1 represents a single bond, or a substituted or unsubstituted alkylene group having 1 to 10 main-chain carbon atoms, a substituent of the substituted alkylene group is an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms and being substituted with an amino group, or a hydroxy group, one of the carbon atoms in the main chain of the alkylene group may be replaced with an oxygen atom, a sulfur atom, or a bivalent group represented by the formula —NR2—, and R2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms and being substituted with an amino group, and wherein X1 represents a chlorine atom or hydroxy group.




b

Polymerizable tertiary ester compound, polymer, resist composition, and patterning process

The present invention provides a polymerizable tertiary ester compound represented by the following general formula (1a) or (1b). There is provided a polymerizable ester compound useful as a monomer for a base resin of a resist composition having a high resolution and a reduced pattern edge roughness in photolithography using a high-energy beam such as an ArF excimer laser light as a light source, especially in immersion lithography, a polymer containing a polymer of the ester compound, a resist composition containing the polymer as a base resin, and a patterning process using the resist composition.




b

Developable bottom antireflective coating composition and pattern forming method using thereof

The present invention relates to a developable bottom antireflective coating (BARC) composition and a pattern forming method using the BARC composition. The BARC composition includes a first polymer having a first carboxylic acid moiety, a hydroxy-containing alicyclic moiety, and a first chromophore moiety; a second polymer having a second carboxylic acid moiety, a hydroxy-containing acyclic moiety, and a second chromophore moiety; a crosslinking agent; and a radiation sensitive acid generator. The first and second chromophore moieties each absorb light at a wavelength from 100 nm to 400 nm. In the patterning forming method, a photoresist layer is formed over a BARC layer of the BARC composition. After exposure, unexposed regions of the photoresist layer and the BARC layer are selectively removed by a developer to form a patterned structure in the photoresist layer. The BARC composition and the pattern forming method are especially useful for implanting levels.




b

Method for forming patterns of semiconductor device by using mixed assist feature system

A method for forming patterns of a semiconductor device includes providing a photomask that includes an array of contact holes in an active region, a plurality of first dummy contact holes for restricting pattern distortion of the contact holes in an area outside of the array of the contact holes, a plurality of first assist features for restricting pattern distortion of the first dummy contact holes disposed inside a corresponding one of the first dummy contact holes, and an array of second assist features for additionally restricting pattern distortion of the first dummy contact holes. The array of second assist features is disposed outside of the first dummy contact holes. The method also includes forming an array of contact holes and first dummy contact holes on a wafer by using the photomask as an exposure mask.




b

Method of producing gallium phthalocyanine crystal and method of producing electrophotographic photosensitive member using the method of producing gallium phthalocyanine crystal

Provided is a method of producing an electrophotographic photosensitive member having improved sensitivity and capable of outputting an image having less image defects due to a ghost phenomenon not only under a normal-temperature, normal-humidity environment but also under a low-temperature, low-humidity environment as a particularly severe condition. The method of producing a gallium phthalocyanine crystal includes subjecting a gallium phthalocyanine and a specific amine compound, which are added to a solvent, to a milling treatment to perform crystal transformation of the gallium phthalocyanine. In addition, the gallium phthalocyanine crystal is used in the photosensitive layer of the electrophotographic photosensitive member.




b

Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device

A mask blank for use in the manufacture of a binary mask adapted to be applied with ArF excimer laser exposure light has, on a transparent substrate, a light-shielding film for forming a transfer pattern. The light-shielding film has a laminated structure of a lower layer and an upper layer and has an optical density of 2.8 or more for exposure light and a thickness of 45 nm or less. The lower layer is made of a material in which the total content of a transition metal and silicon is 90 at % or more, and has a thickness of 30 nm or more. The upper layer has a thickness of 3 nm or more and 6 nm or less. The phase difference between exposure light transmitted through the light-shielding film and exposure light transmitted in air for a distance equal to the thickness of the light-shielding film is 30 degrees or less.




b

Reverb generator

A reverb generator comprises a delay circuit for delaying an input audio signal, a feed back path connecting an output port of the delay circuit to its input port, and a phase shifter connected in series to the delay circuit. The phase shifter produces a dispersion in the spectrum of the input audio signal in accordance with frequency dependent delay characteristic in such a manner that the delay time is large in a low frequency range and small in a higher frequency range. By including the phase shifter in the feed back path, one can obtain an output audio signal having a spectrum which is repeatedly subjected to dispersion, thus simulating the effect of dispersion due to the multiple reflections taking place in an actual concert hall.




b

Adjustable tremolo tail piece

A stringed musical instrument comprises means by which the relation between displacement of a hinged string mounting member, such as a tremolo tail piece on which the tuners of the instrument are disposed, and the alteration of pitch of the strings thereof can be adjusted for each of the strings independently of the others. According to another feature of the invention the linear tuner blocks may be selectively released from engagement with the adjuster screws thereof for facilitating quick string mounting operations.




b

Pedal Mechanism for a bass drum

A pedal mechanism for a bass drum, including a pivoted primary platform connected to a beater ball so that, when the primary platform is depressed, the beater ball moves to contact a drum; and a resiliently mounted secondary platform in operative contact with the primary platform, the arrangement being such that, in use, the toe of the drummer depresses the primary platform directly and the heel of the drummer depresses the primary platform through the secondary platform.




b

Tuning method and apparatus for keyboard musical instrument

A tuning apparatus for a keyboard musical instrument, having a load applicator for applying a load of a predetermined value to a string set up in place, a calculating device for calculating a deviation between a displacement value of the string produced when the load is applied to the string and a preset value of displacement predetermined to give a required frequency of vibration, and a rotating device for turning a tuning pin until the deviation calculated by the calculating device is reduced to zero.




b

Music synthesizer with multiple movable bars

A variable control device accessory for a music synthesizer having a horizontally disposed keyboard. The device is positioned in front of the keyboard. It has a plurality of movable bars, at least of one of which is capable of being pivotally and slidably moved by the wrist of a player while all the others are only slidable. The bars modulate selected light beams focussed on light responsive mechanisms to produce variably dependent analog signals as inputs to the music synthesizer.




b

Structure of rotary valve assembly used in wind instrument

A rotary valve assembly incorporated in a brass instrument for changing a pitch of a tone comprises a rotary valve housed in a valve casing having two groups of aeroports, and the rotary valve is provided with two air passages, one of which interconnects the aeroports in the first group and the other of which interconnects one aeroport of the first group and one aeroport of the second group, so that various arrangements are possible for the aeroports.




b

Rotary valves for brass wind instruments

A rotary valve for brass wind instruments with improved lubricating and durability properties is provided. The valve body 2 or both the valve body 2 and casing 1 of the rotary valve comprise(s) a machinable ceramic-resin composite material. The rotary valve can be readily produced by a method which comprises impregnating a machinable ceramic article containing substantially continuous micropores with a liquid resin material and hardening the resin material; machine-processing the resulting machinable ceramic-resin composite article into a shape of the valve body or shapes of the valve body and casing; and assembling the valve body into a rotary valve having the valve body 2 of the composite material rotatably contained in the casing 1 of the composite material or a metal material.




b

Rotating earth globe having music box spring motor that plays music and rotates globe

Apparatus and method for rotating an object using a music box mechanism having a spring motor. Apparatus includes a mechanical motor having a spring coupled between a body and a shaft of the music box where the shaft and the body are mounted for rotation relative to each other. The spring is windable by a user to store mechanical potential energy and when released, unwindable to release the stored energy and cause relative rotation between the body and the shaft. A base adapted for stationary placement against a surface such as a table or desktop or a wall or other stationary surface is fixedly coupled to or integrally formed with the shaft of the music box motor. An object such as a spherical planetary object or globe or any other object is connected to the body and includes an aperture or hole through which the base extends to the shaft. This aperture permits the object to rotate about the shaft without interference so that the body and the object rotate about the shaft as the spring unwinds. Connection of the winding mechanism shaft to the fixed base causes the body of the music box and attached object such as the globe to rotate.