b

Luffing-jib tower crane with jib angle error control

A luffing-jib tower crane, comprising a tower and a jib which is connected to the tower via a joint and is held by a luffing cable, wherein the length of the luffing cable can be changed by a drawing-in unit, by the luffing cable being wound onto or unwound from a cable drum of the drawing-in unit, wherein the angle of the jib with respect to the horizontal plane is measured by a first sensor winch is attached to the jib (first angular value), wherein a measuring device measures the length of the unwound part of the luffing cable, from which length the minimum angle of the jib with respect to the horizontal plane (second angular value) can be calculated, and the first angular value can be compared with the second angular value.




b

Counterweight block and assemblies for cranes

A counterweight block apparatus includes a pair of interconnecting counterweight blocks having top and bottom surfaces, the counterweight blocks forming a plane of interconnection along adjacent sides thereof; and a shear bar releasably secured between the adjacent sides of the interconnecting counterweight blocks, generally perpendicular to the plane of interconnection, to provide resistance to relative vertical movement of the interconnecting counterweight blocks along the plane of interconnection. In another aspect, each counterweight block includes in at least one side thereof an indentation from a top of the counterweight block to a depth more shallow than the thickness of the counterweight block, the indentation defining a lip for hand grabbing. An aperture may be formed through the rest of the thickness of the counterweigh block at each indentation, wherein a securing strap can be run through each aperture of a stacked plurality of counterweight blocks to secure them to each other.




b

Crane equipped with travelable counterweight unit

Disclosed is a crane comprising: a lower body; an upper slewing body; a counterweight unit including a plurality of wheels to travel on the ground in a turning direction equal to a slewing direction of the upper slewing body while being suspended from the upper slewing body; a steering actuator for rotating each of the wheels around a steering-rotation center axis to change the steering angle; and a steering control device for controlling the steering actuator. The steering control device includes: a slewing-identification-signal receiving section which receives a slewing identification signal for identification of the slewing direction of the upper slewing body; and an actuator operating section operates the steering actuator to orient each of the wheels to the inside of a tangent line to an orbit of the wheel at the steering-rotation center axis, based on the identified slewing direction identified from the slewing identification signal.




b

Hydraulic braking apparatus for a crane drive and crane

The present disclosure relates to a hydraulic braking apparatus for a crane drive for carrying out crane work, in particular a slewing gear, having at least one hydraulic stopping brake for braking the drive movement of the crane drive in an emergency situation, wherein at least one pressure regulation valve is provided for controlling at least one stopping brake to ensure a time-delayed braking torque build-up.




b

Method for mounting wind turbine blades to a wind turbine hub

A method for mounting a wind turbine blade to a wind turbine hub by use of a crane boom is provided. An orientation of the blade is kept substantially horizontal when the blade is lifted off the ground and mounted to the rotor hub. Control wires, which connect the blade via the crane boom to a winch arrangement, are used for keeping the blade orientation substantially horizontal in addition to at least one bearing wire for bearing the blade weight.




b

Gantry robot system

A gantry robot system includes a bridge assembly and a carriage assembly. The bridge assembly and/or a mounting plate supported by the carriage assembly can be rotationally skewed.




b

Cabling configuration for railless elevators

An elevator including a car is arranged in a shaft. A set of compensator cables are attached to a bottom of the car and engaged with a compensator drum. A set of hoist cables are attached to a top of the car and engaged with a hoist drum to move the car vertically in the shaft, wherein the set of compensator cables and the set of hoist cables are configured to only move the car vertically.




b

Fly jib for a crane and method of use

A fly jib for a crane having a load block includes a variable length beam to which a load can be connected. A rotation mechanism is connected to the variable length beam, and is connectable to the load block so that said rotational mechanism can selectively rotate the variable length beam with respect to the load block. A balance mechanism is connected to the variable length beam, the balance mechanism automatically keeps the variable length beam in a horizontal position.




b

Mobile lift crane with variable position counterweight

A mobile lift crane includes a carbody; a rotating bed; a boom; a moveable counterweight unit; at least one linear actuation device; and at least one arm pivotally connected at a first end to the rotating bed and at a second end to the linear actuation device. The arm and linear actuation device are connected between the rotating bed and the counterweight unit such that extension and retraction of the linear actuation device changes the position of the counterweight unit compared to the rotating bed. In one method of operation, the counterweight unit is never supported by the ground during crane pick, move and set operations other than indirectly by the ground engaging members on the carbody.




b

Beam structure

A beam structure of the present disclosure includes a baffle plate. A plurality of lap strips are attached around outer edges of the baffle plate. An adhesive layer is applied to outer surfaces of the lap strips. A plurality of sidewalls are assembled together around the adhesive layer, the lap strips and the baffle plate, thereby forming the beam structure. In an embodiment, the beam structure may be used as a boom assembly for a machine, such as an excavator machine.




b

Portable lifting system

A portable lifting system includes a moveable base component including a scissors lift assembly, and a crane assembly coupled the movable base component, the crane assembly including a support member and a boom coupled to the support member.




b

Device and method for mounting and dismantling a component of a wind turbine

The invention relates to a device for mounting and/or dismantling a component (10), in particular a rotor blade of a wind turbine (20) comprising a tower head (21). Said device comprises at least one guide element (30) that stretches between the tower head (21) and the ground (40) and has at least one supporting device (60) that is essentially fixed in the air, supporting at least a partial load of the weight of the component (10) during the transport of the latter (10) between the ground (40) and the wind turbine (20). At least one guy (70) leads from the supporting device (60) to the component (10), whereby the length of said guy between the supporting device (60) and the component (10) can be modified.




b

Device for selecting boom extension pattern

When an extension pattern selection device is activated, a normal mode is displayed on a screen of a monitor. An operator presses a manual mode switch key of an operation unit to switch the display mode of the screen from the normal mode to an extension pattern manual rearrangement mode. In the extension pattern manual rearrangement mode, the operator rearranges extension patterns so that frequently selected extension patterns P may be displayed at upper positions. Thus, the frequently selected extension patterns P are more preferentially displayed than the other extension patterns P.




b

Crane assembly

A crane assembly includes a main body, a boom extending from the main body, a cable, and a hook coupled to an end of the boom opposite to the main body by the cable, where the crane assembly is configured for lifting items via the hook. The crane assembly further includes a projection extending outward from the boom and curving toward the main body. The projection is configured to receive the hook over an end of the projection such that tension in the cable maintains the hook in place on the projection. Gravity is sufficient to release the hook from the projection when the boom is raised and the tension in the cable is released.




b

Adjustable underground meter installation

Various embodiments of the present invention provide adjustable pit liners for use in conjunction with pipelines installed underground. The pit liners provide surface access to devices in fluid communication with the pipeline. The adjustability of the pit liners facilitates installation of the pit liners before the final grade surrounding the pit is known. In various embodiments, a tubular structure having an upper section and a lower section is provided, wherein the upper section and the lower section are slideably connected in a telescoping relationship. A locking mechanism is also provided to releaseably lock the overall height of the tubular structure as desired.




b

Field adjustable gas valve and method of control

A valve unit includes a valve member that moves relative to a valve seat in response to a magnetic field generated by a coil. An input signal to the coil controls the extent of movement of the valve member relative to the valve seat, to control a gas flow rate therethrough. The gas valve unit also includes a setting adjustment device that provides a setting adjustment input utilized for calibrating or adjusting at least one gas flow rate. A valve controller is configured to receive an activation signal and to responsively send an input signal to the coil to move the valve member and establish at least one desired gas flow rate corresponding to the activation signal, wherein the valve controller is configured to adjust the input signal to the coil based on the setting adjustment input, to thereby enable field adjustment of at least one gas flow rate.




b

Distributor device for hydraulic power steering

A rotary distributor device for a hydraulic power steering, which receives oil from a pump and sends the oil selectively to a discharge or to an actuator of the steering in a desired direction, comprises a jacket, a slide, sealedly rotating in the jacket, a series of openings that cross the wall of the jacket, located in front of a series of corresponding openings which cross the wall of the slide, elastic member located between the jacket and the slide configured to maintain the openings of the jacket at the openings of the slide, in which each opening in the jacket includes, in succession starting from the outside, at least one radial hole, a slot lying in a radial plane, arranged symmetrically with respect to the axis of the hole, the width being smaller than the diameter of the hole, and the depth being such as to intersect the hole.




b

Valve for lab-on-a-chip systems, method for actuating and for producing valve

A substrate of a lab-on-a-chip system has two adjacent recesses, one serving as a flow channel and the other one being filled with an elastomer compound. In a first state, the elastomer compound and the substrate delimit the flow channel in a section. In a second state, the elastomer compound takes up the space in the recess in the substrate along a cross-section of the flow channel, thereby completely closing the flow channel. The substrate and the elastomer compound may be produced by injection molding techniques.




b

Hydraulically powered ball valve lift apparatus and method for downhole pump travelling valves

The Invention provided is a hydraulic powered down hole reciprocating pump traveling valve component to provided lifting hydraulics on the down stroke using the derived motion and pressure of petroleum liquids and gasses, such as oil, water and natural gas and also utilizing the frictional traveling forces driven by the surface equipment. Designed to utilize the elements within the pumping apparatus to obtain the hydraulic power within and transfer the energy's force to the exposed bottom end of the pressure locked traveling ball valve adjacent within the ball valve containment cage, providing ultimate lifting power to open the ball valve on the initiation of the down stroke. The component consist of a Hollow Hydraulic Power Shaft, Hollow Pressure Motion House, and a Fluid Cavity Power Drag Plunger.




b

Calibration of a chemical dispense system

In one implementation, a method for providing a fluid at a target pressure may include providing a fluid at a velocity to a supply line through a dispenser, measuring a pressure of the fluid flowing through the supply line, comparing the measured pressure with the target pressure, and adjusting the velocity based on the results of the comparison.




b

Inflatable device

An inflatable device is provided, comprising a carcass and an internal air intake mechanism assembly. The carcass defines a surface of the device and surrounds an inner volume of the device, and has an opening. The internal air intake mechanism assembly comprises a primary one way valve mechanism joined to the carcass to cover the opening. The primary one way valve mechanism extends into the inner volume and is configured for enabling air to be directed into inner volume from an environment external to the carcass, while preventing or limiting air flow from the inner to the external environment.




b

Double-handle faucet

The present invention discloses a double-handle faucet, comprising two valve seats, two spools, two inlet pins, two handles, an outlet pipe, a connecting tube, an upper panel, and a lower panel. The double-handle faucet further comprises two semi-cladding members. The two valve seats, the connecting tube, and the two semi-cladding members are all made of a plastic material. Each of the valve seats is provided with an upper annular flange and a lower annular flange. Each of the inlet pins is further provided with a connecting ring. Each of the semi-cladding members comprises two first enveloping parts and a second enveloping part. The two first enveloping parts are located at both sides and correspond to the positions of the valve seats. The second enveloping parts of the two valve seats together cover the outer side of the connecting tube. The two semi-cladding members oppositely cover the outer side of two valve seats to fasten the inlet pin and the valve seats. As compared with the prior art, the present invention not only avoids lead contamination, but also has a low cost.




b

Double-handle faucet

The present invention discloses a novel double-handle faucet comprising two valve seats, two spools, two inlet pins, two handles, an outlet pipe, a connecting tube, an upper panel, a lower panel, a cladding member, and two caps, the two valve seats, the connecting tube, the cladding member, and two caps are all made of a plastic material, each of the valve seats is provided with an upper annular flange and a lower annular flange, each of the inlet pins is further provided with a connecting ring, the cladding member comprises two first enveloping parts and a second enveloping part, the two first enveloping parts are located at both sides and are both provided with a chamber for accommodating the valve seats at respective side, the chamber is provided with a positioning step at the bottom, the connecting ring is abutted against the positioning step, the second enveloping part covers the outer side of the connecting tube, each of the caps is provided with a cover body and a circular engaging edge which is formed along the periphery of the cover body. As compared with the prior art, the present invention not only avoids lead contamination, but also has a low cost.




b

Non-return valve assembly of the pivoting flap type, typically for insertion in floor drains

A valve assembly (10) is to be used in conjunction with a tubular member having an internal surface surrounding a passage into which the valve assembly is to be sealingly inserted. The valve assembly includes a tubular body (25) having a longitudinal passage and an outer surface to be located adjacent the internal surface. A seal (29) is mounted on the outer surface to engage the internal surface to sealingly connect the tubular body with the tubular member. A movable valve member (33) is movable between an open position providing for the flow of water from an upstream end to a downstream end of the passage of the tubular body and a closed position closing the passage. Resilient means, such as a spring (34) urges the valve member to the closed position. The resilient means is configured to provide for displacement of the valve member toward the open position when pressure beyond a predetermined pressure is applied upon the movable valve member.




b

High pressure relief valve spring assembly

In one featured embodiment, a spring assembly for a valve comprises a spring, a spring seat including a cup-shaped portion for seating one end of the spring, and a ball received within a recess formed within the cup-shaped portion of the spring seat. The ball is defined by a ball diameter. A disc prevents the ball from contacting a piston. The disc is defined by an outer diameter and includes a center opening defined by an inner diameter. A ratio of the inner diameter to the ball diameter is between 0.60 and 0.65.




b

Vehicle mountable arm for valve operating machine

A valve operating device includes a mounting for attachment to a vehicle and an elongate arm, the free end of which is only moveable across the underlying ground. The joints of the arm pivot around vertical axes and the arm is locked into a desired orientation by a brake at each joint. A valve turning machine is at the free end of the arm. The brakes are engaged and released by a control on the valve turning machine.




b

Fuel transfer system controlled by float valves

A fuel transfer system for an aircraft includes an upper tank, a lower tank, a fuel transfer line connecting the upper tank to the lower tank, an upper fuel transfer line outlet in the lower tank, a lower fuel transfer line outlet in the lower tank, an upper float valve associated with the upper fuel transfer line outlet, and a lower float valve associated with the lower fuel transfer line outlet. The upper fuel transfer line outlet, which is in the lower tank, is in fluid communication with the upper tank. The lower fuel transfer line outlet, which is located in the lower tank, is in fluid communication with the upper tank.




b

Valve box platform

A valve box platform is disclosed. The valve box platform may include a peripheral wall having a receiving surface for receiving a valve box. A first recess may be positioned within the peripheral wall. The first recess may include a knockout portion selectively disclosed therein. The peripheral wall may also include a U-shaped recess having a rounded receiving portion with the U-shaped recess being aligned with the first recess.




b

Tubular structure and method for making the same

A tubular structure and method for making a tubular structure are provided, where the tubular structure includes at least one layer of braided strands. In general, at least one portion of the braided strands exhibits a braid pattern of crests and troughs (e.g., a wave pattern, which may include sinusoidal, square, and/or sawtooth waves) along a length of the tubular structure. The wave pattern can be created by rotating the mandrel onto which the tubular structure is braided during the braiding process, such as by angularly oscillating the mandrel about its longitudinal axis or about its transverse axis. As a result, the tubular structures may have increased radial strength, collapse resistance, torque transmission, column strength, and kink resistance. The tubular structures may be used in medical devices, such as stent-grafts, as well as in other medical and non-medical devices, such as in hoses, tubing, filters, and other devices.




b

Colored yarn object, process for producing the same, and fishing line

A yarn object which, even though made of ultra-high-molecular-weight polyethylene, can be satisfactorily prevented from color fading caused by contact with other objects or the like, can be produced easily at low cast, and can maintain high strength. The yarn object is colored with a colorant. The yarn object includes a core yarn 2 colored with a predetermined colorant and an outer-layer yarn 3 disposed on the periphery of the core yarn. The outer-layer yarn 3 is disposed in such a manner that the core yarn 2 is prevented from contacting with other objects. The outer-layer yarn 3 includes a transparent filament and a space 4 is formed between the outer-layer yarns 3. The color applied to the core yarn 2 is externally visible through the transparent outer-layer yarn 3 and the space therebetween 4.




b

Method and apparatus for braiding micro strands

A method and apparatus for fabricating microbraided structures is provided. A microbraiding device includes first and second carrier members that are movable with respect to each other. Each carrier includes a plurality of shelters. Spool-less strands of microfiber are retained in shuttles that are movable between the first and second shelters under magnetic forces. The microbraid structure is fabricated as the shuttles move between the first shelters, and as the first carrier member moves relative to the second carrier member.




b

Braided carbon nanotube threads and methods of manufacturing the same

A braided carbon nanotube thread includes at least three carbon nanotube filaments braided into a thread. The carbon nanotube filaments include a plurality of carbon nanotubes, each of the carbon nanotubes having a length L. The carbon nanotube filaments are braided such that the carbon nanotube thread has at least 8 intersections per the length L of each carbon nanotube. The carbon nanotube thread has a tensile strength greater than the tensile strength of the constituent carbon nanotube filaments.




b

Balloon with dividing fabric layers and method for braiding over three-dimensional forms

A medical balloon with a variable diameter that is reinforced with continuous fibers woven to form a fabric with a varying number of layers and fiber densities. Portions of the balloon having a relatively smaller diameter are reinforced with a fabric having a reduced fiber density and an increased number of layers to facilitate the placement of the layers. The fabric also includes a braiding pattern that facilitates the transition from a single layer fabric to a multiple layer fabric. Also described is a manufacturing method for the braiding and layering.




b

Device and method for treating vascular abnormalities

A vascular device is provided that includes a tubular structure and an occluding structure. The tubular structure has inner and outer layers, with the occluding structure located between the inner and outer layers. Each of the inner and outer layers may define a different pick count, and the tubular structure may include a leading edge at a transition between the pick counts. The leading edge may be disposed at the distal end of the vascular device when the device is deployed from a delivery device. Furthermore, the occluding structure may have first and second layers formed by the inversion or eversion of the occluding structure and the subsequent coupling of its free ends to form a continuous structure. Thus, any loose ends may be sealed to minimize unraveling and/or shifting of the occluding structure within the tubular structure. A method of making the vascular device is also provided.




b

Branched stent/graft and method of fabrication

Branched braided stent or graft devices and processes for fabrication of the devices are disclosed in which a trunk portion and two hinge leg portions are fabricated in one piece braided from a single plurality of filaments, whereby the legs contain the full plurality of filaments and the trunk portion contains a subset of the same plurality of filaments. The fabrication process involves braiding the hinged legs on a mandrel while retaining loops of filament between the hinged leg portions for subsequent braiding of the trunk portion of the stent or graft.




b

Self-expanding pseudo-braided intravascular device

A self-expanding, pseudo-braided device embodying a high expansion ratio and flexibility as well as comformability and improved radial force. The pseudo-braided device is particularly suited for advancement through and deployment within highly tortuous and very distal vasculature. Various forms of the pseudo-braided device are adapted for the repair of aneurysms and stenoses as well as for use in thrombectomies and embolic protection therapy.




b

Toothed cable, cable device provided with a toothed cable, and system for moving a moving object, said system provided with a toothed cable

A toothed cable is provided in which a strand can be securely joined to a core cable while maintaining flexibility of the strand. The toothed cable includes the core cable, a wire disposed spirally around the core cable at a fixed pitch, and the strand having a core thread and piles fixed to the core thread, the strand being disposed spirally along a groove having side walls and a bottom formed by the wire and the core cable. The toothed cable is obtained by a manufacturing method of disposing a meltable filament thread in the groove, disposing the strand in the groove with tension after the filament thread is disposed, melting the filament thread after the strand is disposed, and joining the strand to the core cable by solidifying the melted filament thread.




b

Braiding device for catheter having acuately varying pullwires

A braider for braiding wires to a tube comprising an iris assembly having stacked iris plates. Each of the iris plates includes a center aperture, a wire orifice disposed radially outward from the center aperture, and an arcuate channel. The iris plates are rotatable relative to each other to adjust a circumferential orientation of the wire orifices relative to each other. The arcuate channel(s) of each respective iris plate is coincident with the wire orifice(s) of the remaining iris(es). The braider comprises a feeder assembly configured for advancing the tube through the center apertures, and advancing the wires through the respective wire orifices. The braider further comprises a braiding assembly configured for braiding a plurality of filaments around the tube and the plurality of wires as they are fed through the iris assembly, thereby creating a braided tube assembly.




b

Braided prosthetic sockets with attachment plates and methods of manufacture

This invention provides new above knee (AK) and below the knee (BK) prosthetic sockets and implements specific manufacturing processes for the production of prosthetic sockets through the automated, computer controlled bi-axial and tri-axial braiding of sockets, over a mold or mandrel made of carved foam, plaster material or wax that is a replica of the patient's truncated limb, and is created by a Computer Aided Design (CAD) file controlling a Numerically Controlled (CNC) machine tool. This method of manufacture using aerospace fibers such as graphite or Kevlar, and high performance resins, is used to create a socket which is stronger and lighter weight than conventionally manufactured sockets. Braiding also allows incorporation of woven cloth, tapes and other reinforcements into the braiding process for added strength at selected areas. The method dramatically decreases the production time and cost of the prosthetic relative to conventional methods.




b

Automated systems and methods for making braided barbed sutures

A system for making braided barbed sutures includes a filament winding assembly, and a guide assembly including at least one barbed insert dispenser opening defining a passageway for orienting a barbed insert. The guide assembly is adapted to dispense at least one barbed insert from the dispenser opening into the filament winding assembly for winding a plurality of filaments around the at least one barbed insert for making a braided barbed suture. The passageway of the dispenser opening is adapted to allow longitudinal movement of the barbed insert relative to the passageway while simultaneously preventing twisting movement of the barbed insert relative to the passageway. As the barbed insert is being dispensed, the barbed insert dispenser opening is selectively rotatable for imparting rotation to the barbed insert as the filaments are wound about the barbed insert. The passageway may be an elongated slit having a greater width than height.




b

Closed tubular fibrous architecture and manufacturing method

A tubular fibrous architecture is disclosed. According to one aspect, the tubular fibrous architecture includes a closed tubular part in at least one of its ends or bottom. The closed tubular part includes an architecture in which a textile material, such as a thread, roving, ribbon or bundle of threads, is continuously output from the bottom. Each textile material that is output from the bottom is continuously wound about the tubular part. All of the textile materials at the junction between the bottom and the remainder of the tubular part are continuous and there is a continuous geometric transition between the bottom architecture and the architecture of the remainder of the tubular part such that the textile materials in the tubular part cross over. A method of making such a tubular fibrous architecture is also disclosed.




b

Machine for alternating tubular and flat braid sections and method of using the machine

A braider comprises a plurality of horngears. The horngears can be arranged for forming at least two closed paths for braiding. Each horngear has a driving gear and a hornplate. Each horngear can be selectably operated in a first mode, to rotate with the driving gear, and in a second mode, in which the driving gear rotates, but the hornplate does not. Bobbin carriers are positioned on some of the horngears. A track is configurable in: a first flat braiding mode with the carriers arranged on the horngears, so that there is one or more separate closed path for forming a first flat braid configuration; and a second flat braiding mode for forming a second flat braid configuration different from the first flat braid configuration. A switch is provided for changing a configuration of the track between the first and second flat braiding modes.




b

Method for operating a machine for plaiting reinforcing fibers

The invention relates to a method for the operation of a plaiting machine (1) that comprises a ring (2) carrying fiber spools (3) for plaiting layers (16, 22) of fibers (3) about a mandrel (13, 17) carried by a carrier (12) capable of movement along the axis (AX) of the ring (2), wherein after plaiting the fibers (3) are cut in order to withdraw the mandrel (13, 17), and that comprises: a hub (5, 6; 18) carried by the carrier (12) and secured to the mandrel (13; 17) while being mounted upstream therefrom; an operation for tightening the fibers (3) around the hub (5, 6; IS) with a link (11, 14) surrounding said fibers (3) after the mandrel (13, 17) has passed through the ring (2); and in which the fibers (3) are cut between the mandrel (13, 17) and the hub (5, 6; 18) before withdrawing the mandrel (13, 17).




b

Methods of manufacturing variable porosity flow diverting devices

Vascular treatment and methods include a plurality of self-expanding bulbs and a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Joints between woven structures and hypotubes include solder. Woven structures include patterns of radiopaque filaments measureable under x-ray. Structures are heat treated to include at least shapes at different temperatures. A catheter includes a hypotube including interspersed patterns of longitudinally spaced rows of kerfs. Heat treating systems include a detachable flange. Laser cutting systems include a fluid flow system.




b

3D braided composited tubes with throat sections and manufacture method thereof

A manufacture method of a three dimensional (3D) braided composite tube with a throat section includes: providing an assembled mandrel comprising an upper mandrel and a lower mandrel, and braiding an 3D braided inner layer on the upper mandrel; winding fiber yarns to form a fiber yarn layer over the 3D braided inner layer; tightening the 3D braided inner layer to the assembled mandrel by an appropriate tension force when winding; and infiltrating resin and increasing temperature to cure the resin for obtaining a composite tube with a narrower throat section. The present invention takes advantage of winding fiber yarn outer layer to keep the radius of the throat of the 3D braided inner layer to meet design requirement. Additionally, the hoop strength of the throat section is increased so that the metal shell can be made thinner to reduce the weight of the rocket nozzle.




b

Braiding mechanism and methods of use

A tubular braid and mechanisms for forming the braid are described. The mechanism for braiding includes a disc, a mandrel, a plurality of catch mechanisms, and a plurality of actuators. The disc defines a plane and a circumferential edge. The mandrel extends from a center of the disc and is adapted to hold a plurality of filaments extending radially from the mandrel toward the circumferential edge of the disc. The plurality of catch mechanisms are positioned circumferentially around the edge of the disc and are adapted to engage a filament. The plurality of actuators are configured to move relative to one another and are adapted to move the plurality of catch mechanisms in a substantially radial direction relative to the circumferential edge of the disc.




b

Braiding mechanism and methods of use

Devices and methods for forming a tubular braid comprising a plurality of filaments. The braiding machine includes a circular array of filament guiding members defining a plane; a mandrel defining an axis and adapted to carry one or more filaments extending from the mandrel to the circular array; a plurality of filaments extending from the mandrel in a radial array; a plurality of actuator mechanisms disposed operably about the disc; and a rotating mechanism adapted to rotate one or more filaments. The actuator mechanisms and rotating mechanism are configured to move each of the one or more filaments about the mandrel axis in a path comprising a series of arcs and radial movements. The braiding machine may alternately first and second annular members, a mandrel, first and second plurality of tubular wire guides, and a plurality of wires extending from the mandrel.




b

Braiding mechanism and methods of use

Devices and methods for forming a tubular braid comprising a plurality of filaments. The method for braiding includes the step of loading a plurality of filaments on a mandrel and extending the filaments radially from the mandrel, the plurality of filaments have a first subset and a second subset. Tension is applied to the plurality of filaments using a weight attached to each filament. The first subset of the plurality of filaments is engaged, moved circumferentially relative to the second subset, and then released. The second subset of filaments is then engaged and moved circumferentially relative to the first subset of filaments, such that a tubular braid of filaments is formed.




b

Process for manufacturing a mechanical member made of a composite having increased mechanical strength

A method of fabricating a mechanical member for aircraft, including a plurality of operations of braiding and depositing layers of braided reinforcing fibers on a mandrel (11) by using braiding machine. Each operation comprises braiding a braided layer and depositing it by moving the mandrel (11) along a central axis of the braiding machine. Each of the various superposed braided layers comprises both longitudinal fibers (12, 12G) that are parallel to a main direction of the mandrel (11), and interlacing fibers that are inclined. At least one operation is configured to form and deposit a braided layer having, in at least one cross-section of the member, a density of longitudinal fibers that differs depending on whether consideration is given to one angular region (S1) or another angular region (S2) of the same extent around the center of gravity (G) of the mandrel (11) in the section under consideration.




b

Magnetic resonance imaging compatible catheter

A method, consisting of passing a cylindrical carbon fiber through a press so as to produce a flat ribbon. The method further includes weaving multiple strands of the flat ribbon together to create a cylindrical braid.