b

Optical brighteners and compositions comprising the same

Novel compounds based on distyryl-biphenyl are provided. The compounds conform to the general structure The compounds are useful as optical brighteners. Compositions, such as laundry care compositions, containing such compounds are also provided.




b

Bluing composition and method for treating textile articles using the same

A bluing composition concentrate comprises an aqueous medium and at least one colorant that exhibits a blue or violet shade when deposited onto a textile material. The concentrate can be used to produce a bluing composition, and the bluing composition can be used to treat textile materials in such a way as to decrease the visually-perceived yellow coloration of textile articles that can occur with repeated use and laundering.




b

Dye composition using a 2-hydroxynaphthalene, (acylamino)phenol or quinoline coupler in a fatty-substance-rich medium, dyeing process and device therefor

The present invention relates to a cosmetic composition for dyeing keratin fibers, in particular human keratin fibers such as the hair, comprising: a) one or more fatty substances; b) one or more surfactants; c) one or more oxidation bases; d) one or more couplers based on 2-hydroxynaphthalene derivatives or particular phenol derivatives, acylaminophenol derivatives or quinoline derivatives; f) one or more basifying agents; e) optionally one or more chemical oxidizing agents; and the fatty substance content representing in total at least 25% by weight relative to the total weight of the formulation. The present invention also relates to a process using this composition, and to a multi-compartment device that is suitable for performing the said process.




b

Foam dyeing agent for keratinous fibers with improved color uptake

The present application provides preparations for changing the color of keratinic fibers, containing in a cosmetically acceptable carrier, at least one color-changing agent, at least one soap, at least one non-ionic surfactant of formula (I), in which R1 denotes an alkyl or alkenyl residue having 5 to 21 carbon atoms, R2 denotes a C2-C4 monohydroxyalkyl residue, and R3 denotes hydrogen, a C1-C4 alkyl residue or a C2-C4 monohydroxyalkyl residue, and at least one propellant wherein the preparation is in the form of a foam, and a proportion of gas in the foam is at least 50% by volume.




b

PHASE LOCKED LOOP AND ASSOCIATED METHOD FOR LOOP GAIN CALIBRATION

A phase locked loop (PLL) includes a controllable oscillator, a charge pump, a type II loop filter, a frequency divider, a phase error processing circuit, a phase frequency detector and a phase alignment circuit. The controllable oscillator generates an oscillating signal. The charge pump circuit generates a charge pump output in a calibration mode. The type II loop filter generates a first control signal to the controllable oscillator according to the charge pump output. The frequency divider performs frequency division upon the oscillating signal for generating a feedback signal. The phase error processing circuit outputs an adjusting signal by comparing a reference signal with the feedback signal. The phase frequency detector generates a detection signal by comparing the feedback signal and the reference signal. The phase alignment circuit generates a second control signal in the calibration mode.




b

FINE DELAY STRUCTURE WITH PROGRAMMABLE DELAY RANGES

A circuit includes a first node, a first inverter connected to the first node and a second node. A variable resistive element is connected to the second node and a third node. A first switch is connected to the second node, a first capacitive element is connected in series with the first switch and the third node, a second switch connected to the second node, a second capacitive element is connected in series with the second switch and the third node, and a second inverter is connected to the third node and a fourth node.




b

DOUBLE FREQUENCY-SHIFT KEYING MODULATING DEVICE

A double frequency-shift keying modulating device includes a modulation module. The modulation module receives an oscillating signal and a digital signal, and generates a modulation output signal that has a first frequency. The first frequency is associated with a frequency of the oscillating signal and varies periodically at a second frequency. The second frequency is associated with the digital signal and the frequency of the oscillating signal.




b

System and Method for a Switchable Capacitance

In accordance with an embodiment, an adjustable capacitance circuit comprising a first branch comprising plurality of transistors having load paths coupled in series with a first capacitor. A method of operating the adjustable capacitance circuit includes programming a capacitance by selectively turning-on and turning-off ones of the plurality of transistors, wherein the load path of each transistor of the plurality of transistors is resistive when the transistor is on and is capacitive when the transistor is off.




b

ULTRA HIGH PERFORMANCE SILICON CARBIDE GATE DRIVERS

A system includes a SiC semiconductor power device; a power supply board that is configured to provide power to a first gate driver board via a connector; the first gate driver board that is coupled and configured to provide current to the SiC semiconductor power device, wherein the first gate driver board is coupled to the power supply board via the connector, and wherein the first gate driver board is separated from the power supply board; and an interconnect board that is coupled to the first gate driver board, wherein the interconnect board is configured to couple the first gate driver board a second gate driver board.




b

HALF-BRIDGE CIRCUIT, H-BRIDGE CIRCUIT AND ELECTRONIC SYSTEM

A half-bridge circuit comprises a high supply contact and a low supply contact. A half-bridge output contact is connectable to drive a load and has a high-side between the high supply contact and the half-bridge output contact and a low-side between the half-bridge output contact and the low supply contact. A high-side bidirectional vertical power transistor at the high-side has a source connected to the high supply contact, and a low-side bidirectional vertical power transistor at the low-side, transistor has a source connected to the low supply contact. The high-side bidirectional vertical power transistor and low-side bidirectional vertical power transistor are connected in cascode and share a common drain connected to the half-bridge output contact, and are controllable to alternatingly allow a current flow from the high supply contact to the half-bridge output contact or from the half-bridge output contact to the low supply contact.




b

Construction and Optical Control of Bipolar Junction Transistors and Thyristors

Methods and systems include constructing and operating a semiconductor device with a mid-band dopant layer. In various implementations, carriers that are optically excited in a mid-band dopant region may provide injection currents that may reduce transition times and increase achievable operating frequency in a bipolar junction transistor (BJT). In various implementations, carriers that are optically excited in a mid-band dopant region within a thyristor may improve closure transition time, effective current spreading velocity, and maximum rate of current rise.




b

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND BATTERY PACK

A nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing olivine-structured Fe or a Mn-containing phosphorus compound as a positive electrode active material; a negative electrode containing a titanium-containing metal oxide capable of inserting and extracting lithium ions as a negative electrode active material; a nonwoven fabric separator, which contains an electrically insulating fiber and is bonded to a surface of at least one of the positive electrode and the negative electrode; and a nonaqueous electrolyte. In a thickness direction of the nonwoven fabric separator, a density of the fiber on a side having contact with the positive electrode is high, and a density of the fiber on a side having contact with the negative electrode is low.




b

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY SEPARATOR

The present invention provides a nonaqueous electrolyte secondary battery separator that achieves an excellent rate characteristic by having a tensile creep compliance J satisfying at least one of the following three conditions in a case where stress of 30 MPa is applied for t seconds: (i) when t=300 seconds, J=4.5 GPa−1 to 14.0 GPa−1, (ii) when t=1800 seconds, J=9.0 GPa−1 to 25.0 GPa−1, (iii) when t=600 seconds, J=12.0 GPa−5 to 32.0 GPa−1.




b

SEPARATOR FOR RECHARGEABLE BATTERY AND RECHARGEABLE BATTERY INCLUDING THE SAME

A separator for a rechargeable battery and a rechargeable lithium battery, the separator including a porous substrate; and a heat-resistant porous layer on at least one surface of the porous substrate, wherein the heat-resistant porous layer includes a filler and a copolymer including a structural unit of vinylidenefluoride, a structural unit of hexafluoropropylene, and a structural unit of a carboxyl-containing monomer, the structural unit of hexafluoropropylene is present in an amount of about 4 wt % to about 10 wt %, based on a total weight of the copolymer, and the structural unit of a carboxyl-containing monomer is present in an amount of about 1 wt % to about 7 wt %, based on the total weight of the copolymer.




b

SECONDARY BATTERY

A secondary battery includes a case composed of a metal containing aluminum as a main component, a stacked electrode assembly arranged in the case, a negative electrode current collector electrically connecting negative electrodes of the stacked electrode assembly to a negative electrode terminal, a positive electrode current collector electrically connecting positive electrodes of the stacked electrode assembly to a positive electrode terminal, a first metal plate arranged between the case and the stacked electrode assembly, and a spacer arranged between the case and the first metal plate, the spacer being composed of an insulating material. The positive electrodes are electrically connected to the case or a second metal plate arranged on the first metal plate with an insulating member provided between the first metal plate and the insulating member. The negative electrode current collector is in contact with the first metal plate to establish electrical connection between the negative electrode current collector and the first metal plate.




b

SECONDARY BATTERY

A secondary battery is disclosed. In one aspect, the secondary battery includes a case accommodating an electrode assembly, a cap plate sealing an opening of the case, an electrode terminal electrically connected to the electrode assembly and disposed over the cap, and an insulating member provided between the cap plate and the electrode terminal and configured to insulate the electrode terminal from the cap plate. The battery also includes a connection tab disposed over the electrode terminal, and a safety device having a portion positioned under the connection tab and electrically connected to the electrode terminal via the connection tab. The safety device has at least one of electric conductivity and thermal conductivity greater than that of the connection tab, and at least a part of the safety device is seated on the insulating member.




b

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 μm to 1 μm, and a 50% cumulative particle size D50 of 1 μm to 10 μm, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.




b

POSITIVE ELECTRODE FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

The positive electrode as an embodiment includes a positive electrode current collector mainly composed of aluminum, a positive electrode mixture layer containing a lithium-containing transition metal oxide and disposed above the positive electrode current collector, and a protective layer disposed between the positive electrode current collector and the positive electrode mixture layer. The protective layer contains inorganic particles, an electro-conductive material, and a binding material; is mainly composed of the inorganic particles; and is disposed on the positive electrode current collector to cover the positive electrode current collector in approximately the entire area where the positive electrode mixture layer is disposed and at least a part of the exposed portion of the positive electrode current collector where the positive electrode mixture layer is not disposed on the surface of the positive electrode current collector.




b

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




b

CARBON MATERIAL, METHOD FOR PRODUCING CARBON MATERIAL, AND NON-AQUEOUS SECONDARY BATTERY USING CARBON MATERIAL

A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 μm to 1 μm of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 μm to 1 μm in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.




b

REVERSIBLE FUEL CELL OXYGEN ELECTRODE, REVERSIBLE FUEL CELL INCLUDING THE SAME, AND METHOD FOR PREPARING THE SAME

Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.




b

ANODE FOR MOLTEN CARBONATE FUEL CELL HAVING IMPROVED CREEP PROPERTY, METHOD FOR PREPARING THE SAME, AND MOLTEN CARBONATE FUEL CELL USING THE ANODE

Disclosed is an anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding an additive for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.




b

METHOD OF MAKING A PROTON EXCHANGE MEMBRANE USING A GAS DIFFUSION ELECTRODE AS A SUBSTRATE

One embodiment includes a method comprising the steps of providing a first dry catalyst coated gas diffusion media layer, depositing a wet first proton exchange membrane layer over the first catalyst coated gas diffusion media layer to form a first proton exchange membrane layer; providing a second dry catalyst coated gas diffusion media layer; contacting the second dry catalyst coated gas diffusion media layer with the first proton exchange membrane layer; and hot pressing together the first and second dry catalyst coated gas diffusion media layers with the wet proton exchange membrane layer therebetween.




b

FUEL CELL UNIT INCLUDING AN EXCHANGEABLE DEIONIZATION DEVICE AND A VEHICLE INCLUDING SUCH A FUEL CELL UNIT

A fuel cell unit having at least one fuel cell, a cooling circuit and a deionization device (10). The deionization device includes a housing (16) and a deionizing agent (11) located therein A vehicle is also provided having such a fuel cell unit. It is provided that the deionization device (10) can be or is connected in a fluid-conveying manner to the cooling circuit (5) with a single connection unit (15) via a flow inlet (13) and a flow outlet (14).




b

FLOWING ELECTROLYTE FUEL CELL WITH IMPROVED PERFORMANCE AND STABILITY

A flowing electrolyte fuel cell system design (DHCFC-Flow) is provided. The use of a flowing oxygen-saturated electrolyte in a fuel cell offers a significant enhancement in the cell performance characteristics. The mass transfer and reaction kinetics of the superoxide/peroxide/oxide ion (mobile oxygen ion species) in the fuel cell are enhanced by recirculating an oxidizing gas-saturated electrolyte. Recirculating oxygen-saturated electrolyte through a liquid channel enhances the maximal current observed in a fuel cell. The use of a oxygen saturated electrolyte ensures that the reaction kinetics of the oxygen reduction reaction are fast and the use of convection ameliorates concentration gradients and the diffusion-limited maximum current density. The superoxide ion is generated in situ by the reduction of the oxygen dissolved in the gaseous electrolyte. Also, a dual porosity membrane allows the uniform flow of fuel (e.g., methane) on the fuel side, without allowing phase mixing. The capillary pressure for liquid intrusion into the gas phase and vice versa is quite large, estimated to be 1-10 psi. This makes it easier to control the fluctuations in gas/liquid velocity which might otherwise lead to phase mixing and the loss of fuel cell performance. In one variation, a dual-porosity membrane structure is incorporated in the system to allow uniform flow of fuel and prevent mixing of fuel with a liquid electrolyte.




b

PROTON EXCHANGE MEMBRANE AND MANUFACTURING METHOD THEREOF

A manufacturing method of a proton exchange membrane is provided, which includes the steps as follows. The hydroxyl groups are disposed on the surface of a substrate by a hydrophilic treatment. The hydroxyl groups on the substrate are chemically modified with a coupling agent by a sol-gel process. The substrate is exposed to an amino acid with a phosphonate radical so that the amino acid containing a phosphonate radical can be chemically bonded with the coupling agent. The chemically bonded substrate is immersed in phosphoric acid for absorbing the phosphoric acid. The substrate blended with the phosphoric acid is placed between at least two leak-proof films for the purpose of preventing the leakage of the absorbed phosphoric acid. The proton exchange membrane manufactured by this method enable to retain the phosphoric acid in organic/inorganic complex form and micron/nano complex pore size.




b

INEXPENSIVE METAL-FREE ORGANIC REDOX FLOW BATTERY (ORBAT) FOR GRID-SCALE STORAGE

A flow battery includes a positive electrode, a positive electrode electrolyte, a negative electrode, a negative electrode electrolyte, and a polymer electrolyte membrane interposed between the positive electrode and the negative electrode. The positive electrode electrolyte includes water and a first redox couple. The first redox couple includes a first organic compound which includes a first moiety in conjugation with a second moiety. The first organic compound is reduced during discharge while during charging the reduction product of the first organic compound is oxidized to the first organic compound. The negative electrode electrolyte includes water and a second redox couple. The second couple includes a second organic compound including a first moiety in conjugation with a second moiety. The reduction product of the second organic compound is oxidized to the second organic compound during discharge.




b

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING METHYL (2,2,3,3,-TETRAFLUOROPROPYL) CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight of methyl (2,2,3,3-tetrafluoropropyl) carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and other carbonate solvents. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.




b

CERAMIC-POLYMER COMPOSITE ELECTROLYTES FOR LITHIUM POLYMER BATTERIES

Composites of lithium-ion-conducting ceramic and polymeric materials make superior separators and electrolytes for use in lithium batteries. The ceramic material provides a high conductivity pathway for lithium-ions, enhancing the properties of the less conductive polymeric material. The polymeric material provides flexibility, binding, and space-filling properties, mitigating the tendency of rigid ceramic materials to break or delaminate. The interface between the polymer and ceramic can be made to have a low ionic resistance through the use of additives and coatings.




b

LITHIUM ION SECONDARY BATTERY

A lithium ion secondary battery including: a positive electrode including a positive electrode active material capable of intercalating and deintercalating a lithium ion; a negative electrode including a negative electrode active material capable of intercalating and deintercalating a lithium ion; and a non-aqueous electrolytic solution, wherein the positive electrode active material includes a Mn-based spinel-type composite oxide and an additional active material, and the content of the Mn-based spinel-type composite oxide based on the whole of the positive electrode active material is 60% by mass or less, and the negative electrode active material includes a first graphite particle containing natural graphite and a second graphite particle containing artificial graphite, and the content of the second graphite particle based on the sum total of the first graphite particle and the second graphite particle is in the range of 1 to 30% by mass.




b

POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERIES, PRODUCTION METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY INCLUDING SAID MATERIAL

Provided is a positive electrode active material that can be used to fabricate a nonaqueous electrolyte secondary battery having excellent output characteristics not only in an environment at normal temperature but also in all temperature environments from extremely low to high temperatures. A positive electrode active material for nonaqueous electrolyte secondary batteries, the positive electrode active material includes a boron compound and lithium-nickel-cobalt-manganese composite oxide of general formula (1) having a layered hexagonal crystal structure. The lithium-nickel-cobalt-manganese composite oxide includes secondary particles composed of agglomerated primary particles. The boron compound is present on at least part of the surface of the primary particles, and contains lithium. Li1+sNixCoyMnzMotMwO2 (1)




b

SOLID ELECTROLYTE AND LITHIUM BATTERY INCLUDING THE SAME

A solid electrolyte for an all-solid secondary battery, the solid electrolyte including: Li, S, P, an M1 element, and an M2 element, wherein the M1 element is at least one element selected from Na, K, Rb, Sc, Fr, and the M2 element is at least one element selected from F, Cl, Br, I, molar amounts of lithium and the M1 element satisfy 0




b

GARNET MATERIALS FOR LI SECONDARY BATTERIES AND METHODS OF MAKING AND USING GARNET MATERIALS

Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (




b

ELECTROLYTE SOLUTION COMPRISING SULFUR DIOXIDE-BASED IONIC LIQUID ELECTROLYTE, AND SODIUM-SULFUR DIOXIDE SECONDARY BATTERY HAVING SAME

The described technology relates to an electrolyte solution comprising a sulfur dioxide-based ionic liquid electrolyte, and a sodium-sulfur dioxide (Na—SO2) secondary battery having same, one purpose of the described technology being to enhance the storage characteristics of sulfur dioxide gas in an electrolyte solution. The sodium-sulfur dioxide secondary battery includes a negative electrode which is formed from an inorganic material and which contains sodium. The battery also includes a positive electrode which is formed from a carbon material and a sulfur dioxide-based inorganic electrolyte solution. Here, the electrolyte solution contains a sulfur dioxide-based ionic liquid electrolyte prepared by injecting SO2 gas in an ionic liquid.




b

LITHIUM SECONDARY BATTERY

A lithium secondary battery includes: a negative electrode, a positive electrode, and an electrolyte disposed between the negative electrode and the positive electrode, wherein the negative electrode includes a silicon composite including silicon, a silicon oxide of the formula SiOx wherein 0




b

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING ETHYL (2,2,3,3-TETRAFLUOROPROPYL) CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight of ethyl (2,2,3,3-tetrafluoropropyl) carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and either or both of diethyl carbonate and ethyl methyl carbonate. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.




b

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING (2,2-DIFLUOROETHYL) ETHYL CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight N of (2,2-difluoroethyl) ethyl carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and other carbonate solvents. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.




b

LITHIUM SECONDARY BATTERY

A lithium secondary battery includes a case, a jelly roll housed in the case, the jelly roll including a plurality of electrode plates and a separation film disposed between the plurality of electrode plates, and a heat conduction plate disposed on both sides of the jelly roll and housed in the case together with the jelly roll.




b

Method for Operating a Rechargeable Battery

The invention relates to a method for operating a secondary battery (1, 4) which comprises multiple interconnected, bridgeable battery subunits (A, B) and is situated in a compartment (3) of an electrically driven vehicle, in particular a watercraft, characterized in that the accessibility of each battery subunit (A, B) is detected, and the battery subunits (A, B) are activated in accordance with the accessibility of the particular battery subunits.




b

ADDITIVE FORMULATION AND COMPOSITION FOR LITHIUM ION BATTERY AND LITHIUM ION BATTERY COMPRISING THE SAME

An additive formulation for a lithium ion battery is provided, which includes an ionic conductor and a compound having a maleimide structure. An electrode slurry composition is also provided, which includes an active material, a conductive additive, an adhesive, and an additive formulation containing an ionic conductor and a compound having a maleimide structure modified by a compound having a barbituric acid structure.




b

BATTERY SYSTEM OF AN ELECTRIC VEHICLE

A battery system for an electric vehicle includes a container having a lid and a plurality of battery cells housed in the container. Each battery cell of the plurality of battery cells may include a pair of tabs to electrically connect to the battery cell, a printed circuit board housed in the container, and a pair of contact elements. The printed circuit board may include circuitry adapted to monitor at least one battery cell. And, each contact element may be attached to the printed circuit board and configured to separably contact a tab of the at least one battery cell to electrically connect the at least one battery cell to the printed circuit board.




b

Battery cell having a detection interface

A system and method for a battery cell having an anode and a cathode, and a separator disposed between the anode and the cathode. A conductive layer disposed in the separator facilitates detection of dendrite growth from the anode into the separator, the detection correlative with a reduction in voltage between the anode and the conductive layer. A detection interface component coupled to the conductive layer is configured to facilitate routing of a signal from the conductive layer to a circuit external to the battery cell, the signal indicative of the detection. The battery cell may be part of a battery or battery pack which may be utilized by an electronic device.




b

BATTERY PACK

A battery pack has a battery pack housing that defines an interior region, and a battery module that is disposed in the interior region. The battery module has a first battery cell, and a first heat exchanger defining a first flow path portion therethrough. The battery pack further includes a first electric fan and a thermally conductive housing that are disposed in the interior region. The thermally conductive housing has a first housing portion, and at least first and second cooling fins defining a second flow path portion therebetween. At least a portion of the second flow path portion is substantially in-line with the first flow path portion. The first electric fan urges air to flow through an inlet aperture, the first flow path portion, the second flow path portion, and through the first electric fan to a first outlet aperture to cool the battery module.




b

BATTERY MODULE AND METHOD OF MANUFACTURING THE SAME

A battery module and a method of manufacturing the same are provided. The battery module includes a case providing an internal space, a plurality of battery cells disposed in the internal space of the case, and at least one cooling unit interposed between the battery cells to be in surface contact with the battery cells and dissipating heat generated by the battery cells externally.




b

BATTERY AND THERMAL MANAGEMENT DEVICE THEREOF, AND UAV HAVING THE BATTERY

A battery, a thermal management device of the battery, and an unmanned aerial vehicle having the battery are provided. The thermal management device comprises a heat conducting housing having a receiving cavity and configured to divide the receiving cavity into a plurality of cell compartments for receiving cells, and a heat conducting shelf mounted within the receiving cavity and configured to be in contact with at least one of the cells to conduct heat generated by the at least one of the cells. The heat conducting shelf is thermally connected with an inner wall of the receiving cavity and configured to conduct heat in the heat conducting shelf to the heat conducting housing.




b

HOUSING FOR ACCOMMODATION OF A PLURALITY OF BATTERY CELLS HAVING A COOLING DEVICE INTEGRATED IN THE HOUSING

The invention relates to a housing (10) for accommodating a plurality of battery cells (20), in particular lithium-ion battery cells, wherein the housing (10), in particular a plastic housing, comprises a cooling device with an inlet point (30) and an outlet point (40) for an air stream (22) for cooling the battery cells (20). In addition, the housing (10) is designed as a single piece together with the cooling device integrated in the housing (10), and the cooling device additionally has spacers (34; 34a, 34b) for arranging all accommodated battery cells (20) with an intermediate space (23) for guiding air between the battery cells (20), by which means an air channel (25) is provided for the air stream (22) between the battery cells (20). The invention further relates to a battery pack (50) and to a motor vehicle comprising such a battery pack (50).




b

Acoustical treatment of polymeric fibers and small particles and apparatus therefor

Systems and methods for treating small elongated fibrous and particles of certain materials, e.g., PTFE materials in a suspension are presented. In some instances, high-intensity ultrasound (or acoustical energy) is applied to a sample of the material, through a fluid coupling medium or suspension, to achieve a material transformation in the sample. In various embodiments, fibrillation of particles of PTFE or similar materials is accomplished, or the formation of extended structures of these materials is caused or enhanced. Also, the ability to separate long fiber samples by ultrasonic or acoustic cavitation action is provided.




b

Method for mixing short staple and down cluster by a dry processing

A method for mixing short staple and down cluster by a dry processing utilizes an air tool to blow the short staple over, so that the scattered short staple is mixed in the down cluster. Stirring blades are further applied for stirring. Chemical agents are needless, no pollution is generated, and processing time is preferably reduced since the mixture does not have to be soaked in the chemical agent. Both the processing time and the manufacturing cost are decreased. Preferably, a proportion of the short staple to the down cluster is adjustable for different needs and divergent warmth retaining effects.




b

Circular comb

Circular comb for a combing machine for combing textile fibers, comprising a base body with a center longitudinal axis, a peripheral surface and two end faces, a plurality of bar tacks, which are arranged on the peripheral surface of the base body and define a combing region of the circular comb, a plurality of fastening devices attached to the base body for the non-positive connection of one of the bar tacks in each case to the base body and unlocking units to release the non-positive connections, each unlocking unit having an unlocking device and an unlocking means to actuate the unlocking device, wherein the unlocking units are accessible from outside the combing region, in particular from at least one of the end faces, and an additional positive securing connection to secure the bar tacks is provided on the base body.




b

Fiber air-laying process for fibrous structures suitable for use in absorbent articles

The present invention refers to a process of making a fibrous structure, wherein roughly graded material is provided to rotating, apertured drums. The drums have at least one needle roll in their inside. The roughly graded material is agitated inside the drums, whereby fibers or small fiber clusters are separated from each other. These fibers and small fiber clusters are flung through the apertures to the outside of the drum, where they are directed onto a foraminous carrier to form a fibrous structure. The fibrous structures are especially useful in absorbent articles.