or

Series 02: Merle Highet sound recordings of Frederick Rose, 1990




or

Victor J. Daley bibliography, 1885




or

Pam Liell papers relating to ‘Scrolls’ Book Club, 1994-2008 including correspondence with Alex Buzo, 1994-1998




or

Series 01: H.C. Dorman further papers, 1950-2012




or

Series 02: H.C. Dorman pictorial material, 1960-1967




or

Edna Ryan Award records, 2014




or

Series 02 Part 01: Sir Augustus Charles Gregory letterbook, 1852-1854




or

Correspondence relating to Lewis Harold Bell Lasseter, 1931




or

The Most Excellent Order of the British Empire Association (New South Wales) further records, 1979-2012




or

Selected Poems of Henry Lawson: Correspondence: Vol.1




or

Top three Mikayla Pivec moments: Pivec's OSU rebounding record highlights her impressive career

All-Pac-12 talent Mikayla Pivec's career in Corvallis has been memorable to say the least. While it's difficult to choose just three, her top moments include a career-high 19 rebounds against Washington, a buzzer-beating layup against ASU, and breaking Ruth Hamblin's Oregon State rebounding record this year against Stanford.




or

Oregon State's Destiny Slocum enters transfer portal

Oregon State basketball player Destiny Slocum has opted to enter the transfer portal for her final season of eligibility. Slocum, a 5-foot-7 guard, averaged a team-best 14.9 points and had 4.7 assists a game this past season with the Beavers, who finished the season ranked No. 14 with a 23-9 record. In a statement released by the university on Thursday, Slocum thanked everyone who supported her in the decision.




or

Oregon's Sabrina Ionescu takes home Naismith Trophy Player of the Year honor

Sabrina Ionescu is the Naismith Trophy Player of the Year, concluding her illustrious Oregon career with one of the major postseason women's basketball awards. As the only player in college basketball history with 2,000 career points (2,562), 1,000 assists (1,091) and 1,000 rebounds (1,040) and the NCAA all-time leader with 26 triple-doubles, Ionescu has continued to rack up player of the year honors for her remarkable senior season.




or

Oregon's Ionescu wins women's Naismith Player of the Year

Already named The Associated Press women's player of the year, Ionescu was awarded the Naismith Trophy for the most outstanding women's basketball player on Friday. Ionescu, who won AP All-American honors three times, shattered the NCAA career triple-double mark with 26 and became the first player in college history to have 2,000 points, 1,000 rebounds and 1,000 assists. Ionescu averaged 17.5 points, 9.1 assists and 8.6 rebounds with eight triple-doubles as a senior this season.




or

Top three Satou Sabally moments: Sharpshooter's 33-point game in Pullman was unforgettable

Since the day she stepped on campus, Satou Sabally's game has turned heads — and for good reason. She's had many memorable moments in a Duck uniform, including a standout performance against the USA Women in Nov. 2019, a monster game against Cal in Jan. 2020 and a career performance in Pullman in Jan. 2019.




or

Top three Ruthy Hebard moments: NCAA record for consecutive FGs etched her place in history

Over four years in Eugene, Ruthy Hebard has made a name for herself with reliability and dynamic play. She's had many memorable moments in a Duck uniform. But her career day against Washington State (34 points), her moment reaching 2,000 career points and her NCAA record for consecutive made FGs (2018) tops the list. Against the Trojans, she set the record (30) and later extended it to 33.




or

Sydney Wiese, recovering from coronavirus, continually talking with friends and family: 'Our world is uniting'

Hear how former Oregon State guard and current member of the WNBA's LA Sparks Sydney Wiese is recovering from a COVID-19 diagnosis, seeing friends and family show support and love during a trying time.




or

Clean sweep: Oregon's Sabrina Ionescu is unanimous Player of the Year after winning Wooden Award

Sabrina Ionescu wins the Wooden Award for the second year in a row, becoming the fifth in the trophy's history to win in back-to-back seasons. With the honor, she completes a complete sweep of the national postseason player of the year awards. As a senior, Ionescu matched her own single-season mark with eight triple-doubles in 2019-20, and she was incredibly efficient from the field with a career-best 51.8 field goal percentage.




or

Former OSU guard Sydney Wiese talks unwavering support while recovering from coronavirus

Pac-12 Networks' Mike Yam interviews former Oregon State guard Sydney Wiese to hear how she's recovering from contracting COVID-19. Wiese recounts her recent travel and how she's been lifted up by steadfast support from friends, family and fellow WNBA players. See more from Wiese during "Pac-12 Playlist" on Monday, April 6 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




or

Oregon's Sabrina Ionescu, Ruthy Hebard, Satou Sabally share meaning of Naismith Starting 5 honor

Pac-12 Networks' Ashley Adamson speaks with Oregon stars Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how special their recent Naismith Starting 5 honor was, as the Ducks comprise three of the nation's top five players. Ionescu (point guard), Sabally (small forward) and Hebard (power forward) led the Ducks to a 31-2 record in the 2019-20 season before it was cut short.




or

Sabrina Ionescu, Ruthy Hebard, Satou Sabally on staying connected, WNBA Draft, Oregon's historic season

Pac-12 Networks' Ashley Adamson catches up with Oregon's "Big 3" of Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how they're adjusting to the new world without sports while still preparing for the WNBA Draft on April 17. They also share how they're staying hungry for basketball during the hiatus.




or

WNBA Draft Profile: Versatile forward Satou Sabally can provide instant impact

Athletic forward Satou Sabally is preparing to take the leap to the WNBA level following three productive seasons at Oregon. As a junior, she averaged 16.2 points and 6.9 rebounds per game while helping the Ducks sweep the Pac-12 regular season and tournament titles. At 6-foot-4, she also drained 45 3-pointers for Oregon in 2019-20 while notching a career-best average of 2.3 assists per game.




or

WNBA Draft Profile: Productive forward Ruthy Hebard has uncanny handling, scoring, rebounding ability

Ruthy Hebard, who ranks 2nd in Oregon history in points (2,368) and 3rd in rebounds (1,299), prepares to play in the WNBA following four years in Eugene. Hebard is the Oregon and Pac-12 all-time leader in career field-goal percentage (65.1) and averaged 17.3 points per game and a career-high 9.6 rebounds per game as a senior.




or

Aari McDonald on returning for her senior year at Arizona: 'We're ready to set the bar higher'

Arizona's Aari McDonald and Pac-12 Networks' Ashley Adamson discuss the guard's decision to return for her senior season in Tucson and how she now has the opportunity to be the face of the league. McDonald, the Pac-12 Defensive Player of the Year, was one of the nation's top scorers in 2019-20, averaging 20.6 points per game.




or

Inside Sabrina Ionescu and Ruthy Hebard's lasting bond on quick look of 'Our Stories'

Learn how Oregon stars Sabrina Ionescu and Ruthy Hebard developed a lasting bond as college freshmen and carried that through storied four-year careers for the Ducks. Watch "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" debuting Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




or

Oregon's Ionescu looks forward to pro career in the WNBA

With the spotlight on her growing ever brighter, Sabrina Ionescu is aware she's becoming her own brand. One of the most decorated players in women's college basketball, Ionescu is about to go pro with the WNBA draft coming up Friday. Ionescu said Oregon has prepared her to understand how much impact she can have in the community and on women's basketball.




or

Former Alabama prep star Davenport transfers to Georgia

Maori Davenport, who drew national attention over an eligibility dispute during her senior year of high school, is transferring to Georgia after playing sparingly in her lone season at Rutgers. Lady Bulldogs coach Joni Taylor announced Davenport's decision Wednesday. The 6-foot-4 center from Troy, Alabama will have to sit out a season under NCAA transfer rules before she is eligible to join Georgia in 2021-22.




or

Charli Turner Thorne drops by 'Pac-12 Playlist' to surprise former player Dr. Michelle Tom

Pac-12 Networks' Ashley Adamson speaks with former Arizona State women's basketball player Michelle Tom, who is now a doctor treating COVID-19 patients in Winslow, Arizona.




or

Bill Walton joins Pac-12 Perspective to talk about Bike for Humanity

Pac-12 Networks' Yogi Roth and Ashley Adamson talk with Hall of Fame player and Pac-12 Networks talent Bill Walton during Thursday's Pac-12 Perspective podcast.




or

Baylor women sign transfer point guard for 3rd year in row

Baylor has signed a transfer point guard for the third year in a row, and this one can play multiple seasons with the Lady Bears. Jaden Owens is transferring from UCLA after signing a national letter of intent with Baylor, which had graduate transfers at point guard each of the past two seasons. The Texas native just completed her freshman season with the Bruins and has three seasons of eligibility remaining.




or

A Star Wars look at Sabrina Ionescu's Oregon accolades

See some of Sabrina Ionescu's remarkable accomplishments at Oregon set to the Star Wars opening crawl.




or

Natalie Chou on why she took a stand against anti-Asian racism in wake of coronavirus

During Wednesday's "Pac-12 Perspective" podcast, Natalie Chou shared why she is using her platform to speak out against racism she sees in her community related to the novel coronavirus.




or

Oregon State's Aleah Goodman, Maddie Washington reflect on earning 2020 Pac-12 Sportsmanship Award

The Pac-12 Student-Athlete Advisory Committee voted to award the Oregon State women’s basketball team with the Pac-12 Sportsmanship Award for the 2019-20 season, honoring their character and sportsmanship before a rivalry game against Oregon in Jan. 2020 -- the day Kobe Bryant, his daughter, Gigi, and seven others passed away in a helicopter crash in Southern California. In the above video, Aleah Goodman and Madison Washington share how the teams came together as one in a circle of prayer before the game.




or

Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy

On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award.




or

Natalie Chou breaks through stereotypes, inspires young Asian American girls on 'Our Stories' quick look

Watch the debut of "Our Stories - Natalie Chou" on Sunday, May 10 at 12:30 p.m. PT/ 1:30 p.m. MT on Pac-12 Network.




or

Stanford's Tara VanDerveer on Haley Jones' versatile freshman year: 'It was really incredible'

During Friday's "Pac-12 Perspective," Stanford head coach Tara VanDerveer spoke about Haley Jones' positionless game and how the Cardinal used the dynamic freshman in 2019-20. Download and listen wherever you get your podcasts.




or

NCAA lays out 9-step plan to resume sports

The process is based on the U.S. three-phase federal guidelines for easing social distancing and re-opening non-essential businesses.




or

The limiting behavior of isotonic and convex regression estimators when the model is misspecified

Eunji Lim.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2053--2097.

Abstract:
We study the asymptotic behavior of the least squares estimators when the model is possibly misspecified. We consider the setting where we wish to estimate an unknown function $f_{*}:(0,1)^{d} ightarrow mathbb{R}$ from observations $(X,Y),(X_{1},Y_{1}),cdots ,(X_{n},Y_{n})$; our estimator $hat{g}_{n}$ is the minimizer of $sum _{i=1}^{n}(Y_{i}-g(X_{i}))^{2}/n$ over $gin mathcal{G}$ for some set of functions $mathcal{G}$. We provide sufficient conditions on the metric entropy of $mathcal{G}$, under which $hat{g}_{n}$ converges to $g_{*}$ as $n ightarrow infty $, where $g_{*}$ is the minimizer of $|g-f_{*}| riangleq mathbb{E}(g(X)-f_{*}(X))^{2}$ over $gin mathcal{G}$. As corollaries of our theorem, we establish $|hat{g}_{n}-g_{*}| ightarrow 0$ as $n ightarrow infty $ when $mathcal{G}$ is the set of monotone functions or the set of convex functions. We also make a connection between the convergence rate of $|hat{g}_{n}-g_{*}|$ and the metric entropy of $mathcal{G}$. As special cases of our finding, we compute the convergence rate of $|hat{g}_{n}-g_{*}|^{2}$ when $mathcal{G}$ is the set of bounded monotone functions or the set of bounded convex functions.




or

Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates

Laurent Gardes.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 661--701.

Abstract:
The first part of the paper is dedicated to the construction of a $gamma$ - nonparametric confidence interval for a conditional quantile with a level depending on the sample size. When this level tends to 0 or 1 as the sample size increases, the conditional quantile is said to be extreme and is located in the tail of the conditional distribution. The proposed confidence interval is constructed by approximating the distribution of the order statistics selected with a nearest neighbor approach by a Beta distribution. We show that its coverage probability converges to the preselected probability $gamma $ and its accuracy is illustrated on a simulation study. When the dimension of the covariate increases, the coverage probability of the confidence interval can be very different from $gamma $. This is a well known consequence of the data sparsity especially in the tail of the distribution. In a second part, a dimension reduction procedure is proposed in order to select more appropriate nearest neighbors in the right tail of the distribution and in turn to obtain a better coverage probability for extreme conditional quantiles. This procedure is based on the Tail Conditional Independence assumption introduced in (Gardes, Extremes , pp. 57–95, 18(3) , 2018).




or

Statistical convergence of the EM algorithm on Gaussian mixture models

Ruofei Zhao, Yuanzhi Li, Yuekai Sun.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.

Abstract:
We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum.




or

Generalised cepstral models for the spectrum of vector time series

Maddalena Cavicchioli.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 605--631.

Abstract:
The paper treats the modeling of stationary multivariate stochastic processes via a frequency domain model expressed in terms of cepstrum theory. The proposed model nests the vector exponential model of [20] as a special case, and extends the generalised cepstral model of [36] to the multivariate setting, answering a question raised by the last authors in their paper. Contemporarily, we extend the notion of generalised autocovariance function of [35] to vector time series. Then we derive explicit matrix formulas connecting generalised cepstral and autocovariance matrices of the process, and prove the consistency and asymptotic properties of the Whittle likelihood estimators of model parameters. Asymptotic theory for the special case of the vector exponential model is a significant addition to the paper of [20]. We also provide a mathematical machinery, based on matrix differentiation, and computational methods to derive our results, which differ significantly from those employed in the univariate case. The utility of the proposed model is illustrated through Monte Carlo simulation from a bivariate process characterized by a high dynamic range, and an empirical application on time varying minimum variance hedge ratios through the second moments of future and spot prices in the corn commodity market.




or

On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models

Emanuel Ben-David, Bala Rajaratnam.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.

Abstract:
The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture.




or

Drift estimation for stochastic reaction-diffusion systems

Gregor Pasemann, Wilhelm Stannat.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 547--579.

Abstract:
A parameter estimation problem for a class of semilinear stochastic evolution equations is considered. Conditions for consistency and asymptotic normality are given in terms of growth and continuity properties of the nonlinear part. Emphasis is put on the case of stochastic reaction-diffusion systems. Robustness results for statistical inference under model uncertainty are provided.




or

Parseval inequalities and lower bounds for variance-based sensitivity indices

Olivier Roustant, Fabrice Gamboa, Bertrand Iooss.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.

Abstract:
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy.




or

Consistent model selection criteria and goodness-of-fit test for common time series models

Jean-Marc Bardet, Kare Kamila, William Kengne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.

Abstract:
This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test.




or

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.

Abstract:
The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.




or

Sparse equisigned PCA: Algorithms and performance bounds in the noisy rank-1 setting

Arvind Prasadan, Raj Rao Nadakuditi, Debashis Paul.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 345--385.

Abstract:
Singular value decomposition (SVD) based principal component analysis (PCA) breaks down in the high-dimensional and limited sample size regime below a certain critical eigen-SNR that depends on the dimensionality of the system and the number of samples. Below this critical eigen-SNR, the estimates returned by the SVD are asymptotically uncorrelated with the latent principal components. We consider a setting where the left singular vector of the underlying rank one signal matrix is assumed to be sparse and the right singular vector is assumed to be equisigned, that is, having either only nonnegative or only nonpositive entries. We consider six different algorithms for estimating the sparse principal component based on different statistical criteria and prove that by exploiting sparsity, we recover consistent estimates in the low eigen-SNR regime where the SVD fails. Our analysis reveals conditions under which a coordinate selection scheme based on a sum-type decision statistic outperforms schemes that utilize the $ell _{1}$ and $ell _{2}$ norm-based statistics. We derive lower bounds on the size of detectable coordinates of the principal left singular vector and utilize these lower bounds to derive lower bounds on the worst-case risk. Finally, we verify our findings with numerical simulations and a illustrate the performance with a video data where the interest is in identifying objects.




or

Asymptotics and optimal bandwidth for nonparametric estimation of density level sets

Wanli Qiao.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 302--344.

Abstract:
Bandwidth selection is crucial in the kernel estimation of density level sets. A risk based on the symmetric difference between the estimated and true level sets is usually used to measure their proximity. In this paper we provide an asymptotic $L^{p}$ approximation to this risk, where $p$ is characterized by the weight function in the risk. In particular the excess risk corresponds to an $L^{2}$ type of risk, and is adopted to derive an optimal bandwidth for nonparametric level set estimation of $d$-dimensional density functions ($dgeq 1$). A direct plug-in bandwidth selector is developed for kernel density level set estimation and its efficacy is verified in numerical studies.




or

Assessing prediction error at interpolation and extrapolation points

Assaf Rabinowicz, Saharon Rosset.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 272--301.

Abstract:
Common model selection criteria, such as $AIC$ and its variants, are based on in-sample prediction error estimators. However, in many applications involving predicting at interpolation and extrapolation points, in-sample error does not represent the relevant prediction error. In this paper new prediction error estimators, $tAI$ and $Loss(w_{t})$ are introduced. These estimators generalize previous error estimators, however are also applicable for assessing prediction error in cases involving interpolation and extrapolation. Based on these prediction error estimators, two model selection criteria with the same spirit as $AIC$ and Mallow’s $C_{p}$ are suggested. The advantages of our suggested methods are demonstrated in a simulation and a real data analysis of studies involving interpolation and extrapolation in linear mixed model and Gaussian process regression.




or

Bayesian variance estimation in the Gaussian sequence model with partial information on the means

Gianluca Finocchio, Johannes Schmidt-Hieber.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.

Abstract:
Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study.