v Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections By Published On :: 2020 We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates that do not have any saturation effect for sketched/Nystr"{o}m regularized algorithms, considering both the attainable and non-attainable cases, in the well-conditioned regimes. We then study stochastic gradient methods with projection over the subspace, allowing multi-pass over the data and minibatches, and we derive similar optimal statistical convergence results. Full Article
v Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems By Published On :: 2020 We study derivative-free methods for policy optimization over the class of linear policies. We focus on characterizing the convergence rate of these methods when applied to linear-quadratic systems, and study various settings of driving noise and reward feedback. Our main theoretical result provides an explicit bound on the sample or evaluation complexity: we show that these methods are guaranteed to converge to within any pre-specified tolerance of the optimal policy with a number of zero-order evaluations that is an explicit polynomial of the error tolerance, dimension, and curvature properties of the problem. Our analysis reveals some interesting differences between the settings of additive driving noise and random initialization, as well as the settings of one-point and two-point reward feedback. Our theory is corroborated by simulations of derivative-free methods in application to these systems. Along the way, we derive convergence rates for stochastic zero-order optimization algorithms when applied to a certain class of non-convex problems. Full Article
v A Unified Framework for Structured Graph Learning via Spectral Constraints By Published On :: 2020 Graph learning from data is a canonical problem that has received substantial attention in the literature. Learning a structured graph is essential for interpretability and identification of the relationships among data. In general, learning a graph with a specific structure is an NP-hard combinatorial problem and thus designing a general tractable algorithm is challenging. Some useful structured graphs include connected, sparse, multi-component, bipartite, and regular graphs. In this paper, we introduce a unified framework for structured graph learning that combines Gaussian graphical model and spectral graph theory. We propose to convert combinatorial structural constraints into spectral constraints on graph matrices and develop an optimization framework based on block majorization-minimization to solve structured graph learning problem. The proposed algorithms are provably convergent and practically amenable for a number of graph based applications such as data clustering. Extensive numerical experiments with both synthetic and real data sets illustrate the effectiveness of the proposed algorithms. An open source R package containing the code for all the experiments is available at https://CRAN.R-project.org/package=spectralGraphTopology. Full Article
v GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing By Published On :: 2020 We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. The Apache 2.0 license has been adopted by GluonCV and GluonNLP to allow for software distribution, modification, and usage. Full Article
v Distributed Feature Screening via Componentwise Debiasing By Published On :: 2020 Feature screening is a powerful tool in processing high-dimensional data. When the sample size N and the number of features p are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of 'divide-and-conquer', the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments m. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the centralized estimator in terms of the probability convergence bound and the mean squared error rate; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples. Full Article
v Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes By Published On :: 2020 We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges. Full Article
v On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms By Published On :: 2020 This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory. Full Article
v Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping By Published On :: 2020 Consider an unknown smooth function $f: [0,1]^d ightarrow mathbb{R}$, and assume we are given $n$ noisy mod 1 samples of $f$, i.e., $y_i = (f(x_i) + eta_i) mod 1$, for $x_i in [0,1]^d$, where $eta_i$ denotes the noise. Given the samples $(x_i,y_i)_{i=1}^{n}$, our goal is to recover smooth, robust estimates of the clean samples $f(x_i) mod 1$. We formulate a natural approach for solving this problem, which works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by the angular synchronization framework. This amounts to solving a smoothness regularized least-squares problem -- a quadratically constrained quadratic program (QCQP) -- where the variables are constrained to lie on the unit circle. Our proposed approach is based on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently. We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these are the first such theoretical results for this problem. We demonstrate the robustness and efficiency of our proposed approach via extensive numerical simulations on synthetic data, along with a simple least-squares based solution for the unwrapping stage, that recovers the original samples of $f$ (up to a global shift). It is shown to perform well at high levels of noise, when taking as input the denoised modulo $1$ samples. Finally, we also consider two other approaches for denoising the modulo 1 samples that leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro approach for a semidefinite programming relaxation of our formulation. For the two-dimensional version of the problem, which has applications in synthetic aperture radar interferometry (InSAR), we are able to solve instances of real-world data with a million sample points in under 10 seconds, on a personal laptop. Full Article
v Causal Discovery Toolbox: Uncovering causal relationships in Python By Published On :: 2020 This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the `Bnlearn' and `Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM. Full Article
v Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification By Published On :: 2020 High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data. Full Article
v Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables By Published On :: 2020 We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models. Full Article
v Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables By Published On :: 2020 Given a response $Y$ and a vector $X = (X^1, dots, X^d)$ of $d$ predictors, we investigate the problem of inferring direct causes of $Y$ among the vector $X$. Models for $Y$ that use all of its causal covariates as predictors enjoy the property of being invariant across different environments or interventional settings. Given data from such environments, this property has been exploited for causal discovery. Here, we extend this inference principle to situations in which some (discrete-valued) direct causes of $ Y $ are unobserved. Such cases naturally give rise to switching regression models. We provide sufficient conditions for the existence, consistency and asymptotic normality of the MLE in linear switching regression models with Gaussian noise, and construct a test for the equality of such models. These results allow us to prove that the proposed causal discovery method obtains asymptotic false discovery control under mild conditions. We provide an algorithm, make available code, and test our method on simulated data. It is robust against model violations and outperforms state-of-the-art approaches. We further apply our method to a real data set, where we show that it does not only output causal predictors, but also a process-based clustering of data points, which could be of additional interest to practitioners. Full Article
v Branch and Bound for Piecewise Linear Neural Network Verification By Published On :: 2020 The success of Deep Learning and its potential use in many safety-critical applicationshas motivated research on formal verification of Neural Network (NN) models. In thiscontext, verification involves proving or disproving that an NN model satisfies certaininput-output properties. Despite the reputation of learned NN models as black boxes,and the theoretical hardness of proving useful properties about them, researchers havebeen successful in verifying some classes of models by exploiting their piecewise linearstructure and taking insights from formal methods such as Satisifiability Modulo Theory.However, these methods are still far from scaling to realistic neural networks. To facilitateprogress on this crucial area, we exploit the Mixed Integer Linear Programming (MIP) formulation of verification to propose a family of algorithms based on Branch-and-Bound (BaB). We show that our family contains previous verification methods as special cases.With the help of the BaB framework, we make three key contributions. Firstly, we identifynew methods that combine the strengths of multiple existing approaches, accomplishingsignificant performance improvements over previous state of the art. Secondly, we introducean effective branching strategy on ReLU non-linearities. This branching strategy allows usto efficiently and successfully deal with high input dimensional problems with convolutionalnetwork architecture, on which previous methods fail frequently. Finally, we proposecomprehensive test data sets and benchmarks which includes a collection of previouslyreleased testcases. We use the data sets to conduct a thorough experimental comparison ofexisting and new algorithms and to provide an inclusive analysis of the factors impactingthe hardness of verification problems. Full Article
v Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data By Published On :: 2020 We present a probabilistic framework for studying adversarial attacks on discrete data. Based on this framework, we derive a perturbation-based method, Greedy Attack, and a scalable learning-based method, Gumbel Attack, that illustrate various tradeoffs in the design of attacks. We demonstrate the effectiveness of these methods using both quantitative metrics and human evaluation on various state-of-the-art models for text classification, including a word-based CNN, a character-based CNN and an LSTM. As an example of our results, we show that the accuracy of character-based convolutional networks drops to the level of random selection by modifying only five characters through Greedy Attack. Full Article
v A Convex Parametrization of a New Class of Universal Kernel Functions By Published On :: 2020 The accuracy and complexity of kernel learning algorithms is determined by the set of kernels over which it is able to optimize. An ideal set of kernels should: admit a linear parameterization (tractability); be dense in the set of all kernels (accuracy); and every member should be universal so that the hypothesis space is infinite-dimensional (scalability). Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not tractable or accurate; polynomials are not scalable. We propose a new class that meet all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a linear parameterization using positive matrices; is dense in all kernels; and every element in the class is universal. This implies that the use of TK kernels for learning the kernel can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL and parameters such as the bandwidth. Numerical testing on soft margin Support Vector Machine (SVM) problems show that algorithms using TK kernels outperform other kernel learning algorithms and neural networks. Furthermore, our results show that when the ratio of the number of training data to features is high, the improvement of TK over MKL increases significantly. Full Article
v Sparse and low-rank multivariate Hawkes processes By Published On :: 2020 We consider the problem of unveiling the implicit network structure of node interactions (such as user interactions in a social network), based only on high-frequency timestamps. Our inference is based on the minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by $ell_1$ and trace norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for matrix martingales in continuous time with observable variance, which is a result of independent interest and a broad range of possible applications since it extends to matrix martingales former results restricted to the scalar case. A consequence of our analysis is the construction of sharply tuned $ell_1$ and trace-norm penalizations, that leads to a data-driven scaling of the variability of information available for each users. Numerical experiments illustrate the significant improvements achieved by the use of such data-driven penalizations. Full Article
v Learning Causal Networks via Additive Faithfulness By Published On :: 2020 In this paper we introduce a statistical model, called additively faithful directed acyclic graph (AFDAG), for causal learning from observational data. Our approach is based on additive conditional independence (ACI), a recently proposed three-way statistical relation that shares many similarities with conditional independence but without resorting to multi-dimensional kernels. This distinct feature strikes a balance between a parametric model and a fully nonparametric model, which makes the proposed model attractive for handling large networks. We develop an estimator for AFDAG based on a linear operator that characterizes ACI, and establish the consistency and convergence rates of this estimator, as well as the uniform consistency of the estimated DAG. Moreover, we introduce a modified PC-algorithm to implement the estimating procedure efficiently, so that its complexity is determined by the level of sparseness rather than the dimension of the network. Through simulation studies we show that our method outperforms existing methods when commonly assumed conditions such as Gaussian or Gaussian copula distributions do not hold. Finally, the usefulness of AFDAG formulation is demonstrated through an application to a proteomics data set. Full Article
v Self-paced Multi-view Co-training By Published On :: 2020 Co-training is a well-known semi-supervised learning approach which trains classifiers on two or more different views and exchanges pseudo labels of unlabeled instances in an iterative way. During the co-training process, pseudo labels of unlabeled instances are very likely to be false especially in the initial training, while the standard co-training algorithm adopts a 'draw without replacement' strategy and does not remove these wrongly labeled instances from training stages. Besides, most of the traditional co-training approaches are implemented for two-view cases, and their extensions in multi-view scenarios are not intuitive. These issues not only degenerate their performance as well as available application range but also hamper their fundamental theory. Moreover, there is no optimization model to explain the objective a co-training process manages to optimize. To address these issues, in this study we design a unified self-paced multi-view co-training (SPamCo) framework which draws unlabeled instances with replacement. Two specified co-regularization terms are formulated to develop different strategies for selecting pseudo-labeled instances during training. Both forms share the same optimization strategy which is consistent with the iteration process in co-training and can be naturally extended to multi-view scenarios. A distributed optimization strategy is also introduced to train the classifier of each view in parallel to further improve the efficiency of the algorithm. Furthermore, the SPamCo algorithm is proved to be PAC learnable, supporting its theoretical soundness. Experiments conducted on synthetic, text categorization, person re-identification, image recognition and object detection data sets substantiate the superiority of the proposed method. Full Article
v Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions By Published On :: 2020 We consider the standard model of distributed optimization of a sum of functions $F(mathbf z) = sum_{i=1}^n f_i(mathbf z)$, where node $i$ in a network holds the function $f_i(mathbf z)$. We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node $i$ is capable of generating gradients of its function $f_i(mathbf z)$ corrupted by zero-mean bounded-support additive noise at each step, (ii) $F(mathbf z)$ is strongly convex, and (iii) each $f_i(mathbf z)$ has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions $f_1(mathbf z), ldots, f_n(mathbf z)$ at each step. Full Article
v Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis By Published On :: 2020 This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution. Full Article
v Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients By Published On :: 2020 Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative information is crucial. Although many derivative estimation methods exist, the majority require a fixed design assumption. In this paper, we propose an effective and fully data-driven framework to estimate the first and second order derivative in random design. We establish the asymptotic properties of the proposed derivative estimator, and also propose a fast selection method for the tuning parameters. The performance and flexibility of the method is illustrated via an extensive simulation study. Full Article
v The weight function in the subtree kernel is decisive By Published On :: 2020 Tree data are ubiquitous because they model a large variety of situations, e.g., the architecture of plants, the secondary structure of RNA, or the hierarchy of XML files. Nevertheless, the analysis of these non-Euclidean data is difficult per se. In this paper, we focus on the subtree kernel that is a convolution kernel for tree data introduced by Vishwanathan and Smola in the early 2000's. More precisely, we investigate the influence of the weight function from a theoretical perspective and in real data applications. We establish on a 2-classes stochastic model that the performance of the subtree kernel is improved when the weight of leaves vanishes, which motivates the definition of a new weight function, learned from the data and not fixed by the user as usually done. To this end, we define a unified framework for computing the subtree kernel from ordered or unordered trees, that is particularly suitable for tuning parameters. We show through eight real data classification problems the great efficiency of our approach, in particular for small data sets, which also states the high importance of the weight function. Finally, a visualization tool of the significant features is derived. Full Article
v On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics By Published On :: 2020 Stochastic gradient Langevin dynamics (SGLD) is a fundamental algorithm in stochastic optimization. Recent work by Zhang et al. (2017) presents an analysis for the hitting time of SGLD for the first and second order stationary points. The proof in Zhang et al. (2017) is a two-stage procedure through bounding the Cheeger's constant, which is rather complicated and leads to loose bounds. In this paper, using intuitions from stochastic differential equations, we provide a direct analysis for the hitting times of SGLD to the first and second order stationary points. Our analysis is straightforward. It only relies on basic linear algebra and probability theory tools. Our direct analysis also leads to tighter bounds comparing to Zhang et al. (2017) and shows the explicit dependence of the hitting time on different factors, including dimensionality, smoothness, noise strength, and step size effects. Under suitable conditions, we show that the hitting time of SGLD to first-order stationary points can be dimension-independent. Moreover, we apply our analysis to study several important online estimation problems in machine learning, including linear regression, matrix factorization, and online PCA. Full Article
v Representation Learning for Dynamic Graphs: A Survey By Published On :: 2020 Graphs arise naturally in many real-world applications including social networks, recommender systems, ontologies, biology, and computational finance. Traditionally, machine learning models for graphs have been mostly designed for static graphs. However, many applications involve evolving graphs. This introduces important challenges for learning and inference since nodes, attributes, and edges change over time. In this survey, we review the recent advances in representation learning for dynamic graphs, including dynamic knowledge graphs. We describe existing models from an encoder-decoder perspective, categorize these encoders and decoders based on the techniques they employ, and analyze the approaches in each category. We also review several prominent applications and widely used datasets and highlight directions for future research. Full Article
v Identifiability of Additive Noise Models Using Conditional Variances By Published On :: 2020 This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs. Full Article
v Multi-Player Bandits: The Adversarial Case By Published On :: 2020 We consider a setting where multiple players sequentially choose among a common set of actions (arms). Motivated by an application to cognitive radio networks, we assume that players incur a loss upon colliding, and that communication between players is not possible. Existing approaches assume that the system is stationary. Yet this assumption is often violated in practice, e.g., due to signal strength fluctuations. In this work, we design the first multi-player Bandit algorithm that provably works in arbitrarily changing environments, where the losses of the arms may even be chosen by an adversary. This resolves an open problem posed by Rosenski et al. (2016). Full Article
v TIGER: using artificial intelligence to discover our collections By feedproxy.google.com Published On :: Tue, 10 Mar 2020 22:01:20 +0000 The State Library of NSW has almost 4 million digital files in its collection. Full Article
v COVID-19 collecting drive By feedproxy.google.com Published On :: Mon, 30 Mar 2020 23:02:48 +0000 We need your help! We are collecting posters, flyers and mail-outs appearing in our local neighbourhoods in respo Full Article
v Youth & Community Initiatives Funding available By www.eastgwillimbury.ca Published On :: Thu, 20 Feb 2020 18:27:25 GMT Full Article
v Crime Prevention at Home By www.eastgwillimbury.ca Published On :: Wed, 11 Dec 2019 17:46:59 GMT Full Article
v Health & Active Living Challenge By www.eastgwillimbury.ca Published On :: Wed, 15 Apr 2020 17:19:39 GMT Full Article
v Have your say on the Highway 404 Employment Corridor Secondary Plan By www.eastgwillimbury.ca Published On :: Mon, 27 Apr 2020 22:16:01 GMT Full Article
v Branching random walks with uncountably many extinction probability vectors By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Daniela Bertacchi, Fabio Zucca. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 426--438.Abstract: Given a branching random walk on a set $X$, we study its extinction probability vectors $mathbf{q}(cdot,A)$. Their components are the probability that the process goes extinct in a fixed $Asubseteq X$, when starting from a vertex $xin X$. The set of extinction probability vectors (obtained letting $A$ vary among all subsets of $X$) is a subset of the set of the fixed points of the generating function of the branching random walk. In particular here we are interested in the cardinality of the set of extinction probability vectors. We prove results which allow to understand whether the probability of extinction in a set $A$ is different from the one of extinction in another set $B$. In many cases there are only two possible extinction probability vectors and so far, in more complicated examples, only a finite number of distinct extinction probability vectors had been explicitly found. Whether a branching random walk could have an infinite number of distinct extinction probability vectors was not known. We apply our results to construct examples of branching random walks with uncountably many distinct extinction probability vectors. Full Article
v Stein characterizations for linear combinations of gamma random variables By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Benjamin Arras, Ehsan Azmoodeh, Guillaume Poly, Yvik Swan. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 394--413.Abstract: In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear combinations of (not necessarily independent) gamma distributed random variables. The connection with Malliavin calculus for random variables in the second Wiener chaos is detailed. An application to McKay Type I random variables is also outlined. Full Article
v Measuring symmetry and asymmetry of multiplicative distortion measurement errors data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Jun Zhang, Yujie Gai, Xia Cui, Gaorong Li. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 370--393.Abstract: This paper studies the measure of symmetry or asymmetry of a continuous variable under the multiplicative distortion measurement errors setting. The unobservable variable is distorted in a multiplicative fashion by an observed confounding variable. First, two direct plug-in estimation procedures are proposed, and the empirical likelihood based confidence intervals are constructed to measure the symmetry or asymmetry of the unobserved variable. Next, we propose four test statistics for testing whether the unobserved variable is symmetric or not. The asymptotic properties of the proposed estimators and test statistics are examined. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test statistics. These methods are applied to analyze a real dataset for an illustration. Full Article
v Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Raj Kamal Maurya, Yogesh Mani Tripathi. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 345--369.Abstract: We consider estimation of the multicomponent stress-strength reliability under progressive Type II censoring under the assumption that stress and strength variables follow Burr XII distributions with a common shape parameter. Maximum likelihood estimates of the reliability are obtained along with asymptotic intervals when common shape parameter may be known or unknown. Bayes estimates are also derived under the squared error loss function using different approximation methods. Further, we obtain exact Bayes and uniformly minimum variance unbiased estimates of the reliability for the case common shape parameter is known. The highest posterior density intervals are also obtained. We perform Monte Carlo simulations to compare the performance of proposed estimates and present a discussion based on this study. Finally, two real data sets are analyzed for illustration purposes. Full Article
v Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.Abstract: The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed. Full Article
v Adaptive two-treatment three-period crossover design for normal responses By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Uttam Bandyopadhyay, Shirsendu Mukherjee, Atanu Biswas. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 291--303.Abstract: In adaptive crossover design, our goal is to allocate more patients to a promising treatment sequence. The present work contains a very simple three period crossover design for two competing treatments where the allocation in period 3 is done on the basis of the data obtained from the first two periods. Assuming normality of response variables we use a reliability functional for the choice between two treatments. We calculate the allocation proportions and their standard errors corresponding to the possible treatment combinations. We also derive some asymptotic results and provide solutions on related inferential problems. Moreover, the proposed procedure is compared with a possible competitor. Finally, we use a data set to illustrate the applicability of the proposed design. Full Article
v Symmetrical and asymmetrical mixture autoregressive processes By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.Abstract: In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model. Full Article
v Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Zhengwei Liu, Qi Li, Fukang Zhu. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.Abstract: To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models. Full Article
v Recent developments in complex and spatially correlated functional data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Israel Martínez-Hernández, Marc G. Genton. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 204--229.Abstract: As high-dimensional and high-frequency data are being collected on a large scale, the development of new statistical models is being pushed forward. Functional data analysis provides the required statistical methods to deal with large-scale and complex data by assuming that data are continuous functions, for example, realizations of a continuous process (curves) or continuous random field (surfaces), and that each curve or surface is considered as a single observation. Here, we provide an overview of functional data analysis when data are complex and spatially correlated. We provide definitions and estimators of the first and second moments of the corresponding functional random variable. We present two main approaches: The first assumes that data are realizations of a functional random field, that is, each observation is a curve with a spatial component. We call them spatial functional data . The second approach assumes that data are continuous deterministic fields observed over time. In this case, one observation is a surface or manifold, and we call them surface time series . For these two approaches, we describe software available for the statistical analysis. We also present a data illustration, using a high-resolution wind speed simulated dataset, as an example of the two approaches. The functional data approach offers a new paradigm of data analysis, where the continuous processes or random fields are considered as a single entity. We consider this approach to be very valuable in the context of big data. Full Article
v A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications” By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Saralees Nadarajah, Yuancheng Si. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 183--187.Abstract: Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019), 455–479] introduced the L-logistic distribution, studied its properties including estimation issues and illustrated a data application. This note derives a closed form expression for moment properties of the distribution. Some computational issues are discussed. Full Article
v Multivariate normal approximation of the maximum likelihood estimator via the delta method By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Andreas Anastasiou, Robert E. Gaunt. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.Abstract: We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance. Full Article
v A primer on the characterization of the exchangeable Marshall–Olkin copula via monotone sequences By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Natalia Shenkman. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 127--135.Abstract: While derivations of the characterization of the $d$-variate exchangeable Marshall–Olkin copula via $d$-monotone sequences relying on basic knowledge in probability theory exist in the literature, they contain a myriad of unnecessary relatively complicated computations. We revisit this issue and provide proofs where all undesired artefacts are removed, thereby exposing the simplicity of the characterization. In particular, we give an insightful analytical derivation of the monotonicity conditions based on the monotonicity properties of the survival probabilities. Full Article
v Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Durba Bhattacharya, Sourabh Bhattacharya. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.Abstract: Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI. Full Article
v Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Flávio B. Gonçalves, Marcos O. Prates, Victor Hugo Lachos. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 51--70.Abstract: In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed. Full Article
v Subjective Bayesian testing using calibrated prior probabilities By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Dan J. Spitzner. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 861--893.Abstract: This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology. Full Article
v Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Lucas Pereira Lopes, Vicente Garibay Cancho, Francisco Louzada. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 801--825.Abstract: Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy. Full Article
v Bayesian modelling of the abilities in dichotomous IRT models via regression with missing values in the covariates By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Flávio B. Gonçalves, Bárbara C. C. Dias. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 782--800.Abstract: Educational assessment usually considers a contextual questionnaire to extract relevant information from the applicants. This may include items related to socio-economical profile as well as items to extract other characteristics potentially related to applicant’s performance in the test. A careful analysis of the questionnaires jointly with the test’s results may evidence important relations between profiles and test performance. The most coherent way to perform this task in a statistical context is to use the information from the questionnaire to help explain the variability of the abilities in a joint model-based approach. Nevertheless, the responses to the questionnaire typically present missing values which, in some cases, may be missing not at random. This paper proposes a statistical methodology to model the abilities in dichotomous IRT models using the information of the contextual questionnaires via linear regression. The proposed methodology models the missing data jointly with the all the observed data, which allows for the estimation of the former. The missing data modelling is flexible enough to allow the specification of missing not at random structures. Furthermore, even if those structures are not assumed a priori, they can be estimated from the posterior results when assuming missing (completely) at random structures a priori. Statistical inference is performed under the Bayesian paradigm via an efficient MCMC algorithm. Simulated and real examples are presented to investigate the efficiency and applicability of the proposed methodology. Full Article
v Time series of count data: A review, empirical comparisons and data analysis By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Glaura C. Franco, Helio S. Migon, Marcos O. Prates. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 756--781.Abstract: Observation and parameter driven models are commonly used in the literature to analyse time series of counts. In this paper, we study the characteristics of a variety of models and point out the main differences and similarities among these procedures, concerning parameter estimation, model fitting and forecasting. Alternatively to the literature, all inference was performed under the Bayesian paradigm. The models are fitted with a latent AR($p$) process in the mean, which accounts for autocorrelation in the data. An extensive simulation study shows that the estimates for the covariate parameters are remarkably similar across the different models. However, estimates for autoregressive coefficients and forecasts of future values depend heavily on the underlying process which generates the data. A real data set of bankruptcy in the United States is also analysed. Full Article