rd Whole-molecule disorder of the Schiff base compound 4-chloro-N-(4-nitrobenzylidene)aniline: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-02-18 In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chlorophenyl)-1-(4-nitrophenyl)methanimine], the CNBA molecule shows whole-molecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the molecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H⋯O hydrogen bonds predominate in linking the major components, while weak C—H⋯Cl interactions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures. Full Article text
rd Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane anions in different degrees of deprotonation By scripts.iucr.org Published On :: 2020-02-25 The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxylate in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxylate O atoms, thus forming a three-dimensional supramolecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carboxylic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane. Full Article text
rd The first coordination compound of 6-fluoronicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-03-10 A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoronicotinate (6-Fnic) and 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[diaquabis(6-fluoropyridine-3-carboxylato-κO)nickel(II)]-μ-4,4'-bipyridine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-fluoronicotinic acid (C6H4FNO2) and 4,4'-bipyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octahedrally coordinated by the O atoms of two water molecules, two O atoms from O-monodentate 6-fluoronicotinate ligands and two N atoms from bridging 4,4'-bipyridine ligands, forming a trans isomer. The bridging 4,4'-bipyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water molecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octameric R88(24) and hexameric R86(16) loops. Full Article text
rd Silver(I) nitrate two-dimensional coordination polymers of two new pyrazinethiophane ligands: 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e By scripts.iucr.org Published On :: 2020-03-13 The two new pyrazineophanes, 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. The molecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methylenepyrazine unit, forming planar five-membered rings. The molecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methylenepyrazine unit, forming eight-membered rings that have twist-boat-chair configurations. In the crystals of both compounds, there are no significant intermolecular interactions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-dihydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bisects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supramolecular frameworks. There are additional C—H⋯S contacts present in the supramolecular framework of II. Full Article text
rd Structural investigation of methyl 3-(4-fluorobenzoyl)-7-methyl-2-phenylindolizine-1-carboxylate, an inhibitory drug towards Mycobacterium tuberculosis By scripts.iucr.org Published On :: 2020-03-20 The title compound, C24H18FNO3, crystallizes in the monoclinic centrosymmetric space group P21/n and its molecular conformation is stabilized via C—H⋯O intramolecular interactions. The supramolecular network mainly comprises C—H⋯O, C—H⋯F and C—H⋯π interactions, which contribute towards the formation of the crystal structure. The different intermolecular interactions have been further analysed via Hirshfeld surface analysis and fingerprint plots. Full Article text
rd Synthesis and crystal structure of a 6-chloronicotinate salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-04-02 A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4'-bipyridine-κ2N:N'] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O}n or {[Ni(4,4'-bpy)(H2O)4](6-Clnic)2·4H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4'-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4'-bpy)(H2O)4]2+}n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4'-bipyridine N atoms in the trans position. The 4,4'-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4'-bpy)(H2O)4]2+}n, the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R24(8) and R44(10) loops, a dimeric R22(8) loop and a pentameric R45(16) loop. Full Article text
rd A five-coordinate cobalt bis(dithiolene)–phosphine complex [Co(pdt)2(PTA)] (pdt = phenyldithiolene; PTA = 1,3,5-triaza-7-phosphaadamantane) By scripts.iucr.org Published On :: 2020-04-24 The title compound, bis(1,2-diphenyl-2-sulfanylideneethanethiolato-κ2S,S')(1,3,5-triaza-7-phosphaadamantane-κP)cobalt(II) dichloromethane hemisolvate, [Co(pdt)2(PTA)]·0.5C2H4Cl2 or [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2, contains two phenyldithiolene (pdt) ligands and a 1,3,5-triaza-7-phosphaadamantane (PTA) ligand bound to cobalt with the solvent 1,2-dichloroethane molecule located on an inversion center. The cobalt core exhibits an approximately square-pyramidal geometry with partially reduced thienyl radical monoanionic ligands. The supramolecular network is consolidated by hydrogen-bonding interactions primarily with nitrogen, sulfur and chlorine atoms, as well as parallel displaced π-stacking of the aryl rings. The UV–vis, IR, and CV data are also consistent with monoanionic dithiolene ligands and an overall CoII oxidation state. Full Article text
rd Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185. By scripts.iucr.org Published On :: 2020-04-14 Full Article text
rd Spin resolved electron density study of YTiO3 in its ferromagnetic phase: signature of orbital ordering By scripts.iucr.org Published On :: 2019-08-02 The present work reports on the charge and spin density modelling of YTiO3 in its ferromagnetic state (TC = 27 K). Accurate polarized neutron diffraction and high-resolution X-ray diffraction (XRD) experiments were carried out on a single crystal at the ORPHÉE reactor (LLB) and SPRING8 synchrotron source. The experimental data are modelled by the spin resolved pseudo-atomic multipolar model (Deutsch et al., 2012). The refinement strategy is discussed and the result of this electron density modelling is compared with that from XRD measured at 100 K and with density functional theory calculations. The results show that the spin and charge densities around the Ti atom have lobes directed away from the O atoms, confirming the filling of the t2g orbitals of the Ti atom. The dxy orbital is less populated than dxz and dyz, which is a sign of a partial lift of degeneracy of the t2g orbitals. This study confirms the orbital ordering at low temperature (20 K), which is already present in the paramagnetic state above the ferromagnetic transition (100 K). Full Article text
rd Toward G protein-coupled receptor structure-based drug design using X-ray lasers By scripts.iucr.org Published On :: 2019-10-24 Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein. The method was applied to the human β2-adrenergic receptor, resulting in eight room-temperature co-crystal structures with six different ligands, including previously unreported structures with carvedilol and propranolol. The generality of the proposed method was tested with three other receptors. This approach has the potential to enable SBDD for GPCRs and other difficult-to-crystallize membrane proteins. Full Article text
rd Extraordinary anisotropic thermal expansion in photosalient crystals By scripts.iucr.org Published On :: 2020-01-01 Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L2], where L = 4-styrylpyridine (4spy) (1), 2'-fluoro-4-styrylpyridine (2F-4spy) (2) and 3'-fluoro-4-styrylpyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cycloaddition. These crystals also exhibit anisotropic thermal expansion when heated from room temperature to 200°C. The overall thermal expansion of the crystals is impressive, with the largest volumetric thermal expansion coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10−6 K−1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal thermal expansion. As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties. Full Article text
rd fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins By scripts.iucr.org Published On :: 2020-01-17 The first ab initio aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme. Significant speed-ups are observed for the larger systems. Using this approach, it is possible to perform a highly parallelized HAR in reasonable times for large systems. The method has been implemented in the TONTO software. Full Article text
rd Extraordinary structural complexity of ilmajokite: a multilevel hierarchical framework structure of natural origin By scripts.iucr.org Published On :: 2020-01-01 The crystal structure of ilmajokite, a rare Na-K-Ba-Ce-titanosilicate from the Khibiny mountains, Kola peninsula, Russia, has been solved using single-crystal X-ray diffraction data. The crystal structure is based on a 3D titanosilicate framework consisting of trigonal prismatic titanosilicate (TPTS) clusters centered by Ce3+ in [9]-coordination. Four adjacent TPTS clusters are linked into four-membered rings within the (010) plane and connected via ribbons parallel to 101. The ribbons are organized into layers parallel to (010) and modulated along the a axis with a modulation wavelength of csinβ = 32.91 Å and an amplitude of ∼b/2 = 13.89 Å. The layers are linked by additional silicate tetrahedra. Na+, K+, Ba2+ and H2O groups occur in the framework cavities and have different occupancies and coordination environments. The crystal structure of ilmajokite can be separated into eight hierarchical levels: atoms, coordination polyhedra, TPTS clusters, rings, ribbons, layers, the framework and the whole structure. The information-based analysis allows estimation of the complexity of the structure as 8.468 bits per atom and 11990.129 bits per cell. According to this analysis, ilmajokite is the third-most complex mineral known to date after ewingite and morrisonite, and is the most complex mineral framework structure, comparable in complexity to paulingite-(Ca) (11 590.532 bits per cell). Full Article text
rd Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56 By scripts.iucr.org Published On :: 2020-01-16 Single crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations showed a specific signature associated with three structural transitions, i.e. the appearance of different sets of satellite reflections below TC1, TC2 and TC3. Several harmonics of intense satellite reflections were observed, reflecting the non-sinusoidal nature of the structural modulations and a strong electron–phonon coupling in the material. These transitions could be associated with the formation of three successive unconventional charge density wave states. Full Article text
rd Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 By scripts.iucr.org Published On :: 2020-02-11 Methods are presented that detect three types of aberrations in single-particle cryo-EM data sets: symmetrical and antisymmetrical optical aberrations and magnification anisotropy. Because these methods only depend on the availability of a preliminary 3D reconstruction from the data, they can be used to correct for these aberrations for any given cryo-EM data set, a posteriori. Using five publicly available data sets, it is shown that considering these aberrations improves the resolution of the 3D reconstruction when these effects are present. The methods are implemented in version 3.1 of the open-source software package RELION. Full Article text
rd Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data By scripts.iucr.org Published On :: 2019-07-30 Current software tools for the automated building of models for macromolecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution. Full Article text
rd Factors influencing estimates of coordinate error for molecular replacement By scripts.iucr.org Published On :: 2020-01-01 Good prior estimates of the effective root-mean-square deviation (r.m.s.d.) between the atomic coordinates of the model and the target optimize the signal in molecular replacement, thereby increasing the success rate in difficult cases. Previous studies using protein structures solved by X-ray crystallography as models showed that optimal error estimates (refined after structure solution) were correlated with the sequence identity between the model and target, and with the number of residues in the model. Here, this work has been extended to find additional correlations between parameters of the model and the target and hence improved prior estimates of the coordinate error. Using a graph database, a curated set of 6030 molecular-replacement calculations using models that had been solved by X-ray crystallography was analysed to consider about 120 model and target parameters. Improved estimates were achieved by replacing the sequence identity with the Gonnet score for sequence similarity, as well as by considering the resolution of the target structure and the MolProbity score of the model. This approach was extended by analysing 12 610 additional molecular-replacement calculations where the model was determined by NMR. The median r.m.s.d. between pairs of models in an ensemble was found to be correlated with the estimated r.m.s.d. to the target. For models solved by NMR, the overall coordinate error estimates were larger than for structures determined by X-ray crystallography, and were more highly correlated with the number of residues. Full Article text
rd Towards the spatial resolution of metalloprotein charge states by detailed modeling of XFEL crystallographic diffraction By scripts.iucr.org Published On :: 2020-02-04 Oxidation states of individual metal atoms within a metalloprotein can be assigned by examining X-ray absorption edges, which shift to higher energy for progressively more positive valence numbers. Indeed, X-ray crystallography is well suited for such a measurement, owing to its ability to spatially resolve the scattering contributions of individual metal atoms that have distinct electronic environments contributing to protein function. However, as the magnitude of the shift is quite small, about +2 eV per valence state for iron, it has only been possible to measure the effect when performed with monochromated X-ray sources at synchrotron facilities with energy resolutions in the range 2–3 × 10−4 (ΔE/E). This paper tests whether X-ray free-electron laser (XFEL) pulses, which have a broader bandpass (ΔE/E = 3 × 10−3) when used without a monochromator, might also be useful for such studies. The program nanoBragg is used to simulate serial femtosecond crystallography (SFX) diffraction images with sufficient granularity to model the XFEL spectrum, the crystal mosaicity and the wavelength-dependent anomalous scattering factors contributed by two differently charged iron centers in the 110-amino-acid protein, ferredoxin. Bayesian methods are then used to deduce, from the simulated data, the most likely X-ray absorption curves for each metal atom in the protein, which agree well with the curves chosen for the simulation. The data analysis relies critically on the ability to measure the incident spectrum for each pulse, and also on the nanoBragg simulator to predict the size, shape and intensity profile of Bragg spots based on an underlying physical model that includes the absorption curves, which are then modified to produce the best agreement with the simulated data. This inference methodology potentially enables the use of SFX diffraction for the study of metalloenzyme mechanisms and, in general, offers a more detailed approach to Bragg spot data reduction. Full Article text
rd Structural elucidation of triclinic and monoclinic SFCA-III – killing two birds with one stone By scripts.iucr.org Published On :: 2019-11-20 A part of the system CaO-SiO2–Al2O3–Fe2O3–MgO which is of relevance to iron-ore sintering has been studied in detail. For a bulk composition corresponding to 10.45 wt% CaO, 5.49 wt% MgO, 69.15 wt% Fe2O3, 13.37 wt% Al2O3 and 1.55 wt% SiO2 synthesis runs have been performed in air in the range between 1100 and 1300°C. Products have been characterized using reflected-light microscopy, electron microprobe analysis and diffraction techniques. At 1250°C, an almost phase-pure material with composition Ca2.99Mg2.67Fe3+14.58Fe2+0.77Al4.56Si0.43O36 has been obtained. The compound corresponds to the first Si-containing representative of the M14+6nO20+8n polysomatic series of so-called SFCA phases (Silico-Ferrites of Calcium and Aluminum) with n = 2 and is denoted as SFCA-III. Single-crystal diffraction investigations using synchrotron radiation at the X06DA beamline of the Swiss Light Source revealed that the chemically homogenous sample contained both a triclinic and monoclinic polytype. Basic crystallographic data are as follows: triclinic form: a = 10.3279 (2) Å, b = 10.4340 (2) Å, c = 14.3794 (2) Å, α = 93.4888 (12)°, β = 107.3209 (14)° and γ = 109.6626 (14)°, V = 1370.49 (5) Å3, Z = 2, space group P{overline 1}; monoclinic form: a = 10.3277 (2) Å, b = 27.0134 (4) Å, c = 10.4344 (2) Å, β = 109.668 (2)°, V = 2741.22 (9) Å3, Z = 4, space group P21/n. Structure determination of both modifications was successful using diffraction data from the same allotwinned crystal. A description of the observed polytypism within the framework of OD-theory is presented. Triclinic and monoclinic SFCA-III actually correspond to the two possible maximum degree of order structures based on OD-layers containing three spinel (S) and one pyroxene (P) modules (〈S3P〉). The existence of SFCA-III in industrial iron-ore sinters has yet to be confirmed. Polytypism is likely to occur in other SFCA-members (SFCA, SFCA-I) relevant to sintering as well, but has so far been neglected in the characterization of industrial samples. Our results shed light on this phenomenon and may therefore be also helpful for better interpretation of the powder diffraction patterns that are used for phase analysis of iron-ore sinters. Full Article text
rd The ePix10k 2-megapixel hard X-ray detector at LCLS By scripts.iucr.org Published On :: 2020-04-17 The ePix10ka2M (ePix10k) is a new large area detector specifically developed for X-ray free-electron laser (XFEL) applications. The hybrid pixel detector was developed at SLAC to provide a hard X-ray area detector with a high dynamic range, running at the 120 Hz repetition rate of the Linac Coherent Light Source (LCLS). The ePix10k consists of 16 modules, each with 352 × 384 pixels of 100 µm × 100 µm distributed on four ASICs, resulting in a 2.16 megapixel detector, with a 16.5 cm × 16.5 cm active area and ∼80% coverage. The high dynamic range is achieved with three distinct gain settings (low, medium, high) as well as two auto-ranging modes (high-to-low and medium-to-low). Here the three fixed gain modes are evaluated. The resulting dynamic range (from single photon counting to 10000 photons pixel−1 pulse−1 at 8 keV) makes it suitable for a large number of different XFEL experiments. The ePix10k replaces the large CSPAD in operation since 2011. The dimensions of the two detectors are similar, making the upgrade from CSPAD to ePix10k straightforward for most setups, with the ePix10k improving on experimental performance. The SLAC-developed ePix cameras all utilize a similar platform, are tailored to target different experimental conditions and are designed to provide an upgrade path for future high-repetition-rate XFELs. Here the first measurements on this new ePix10k detector are presented and the performance under typical XFEL conditions evaluated during an LCLS X-ray diffuse scattering experiment measuring the 9.5 keV X-ray photons scattered from a thin liquid jet. Full Article text
rd Measurement and compensation of misalignment in double-sided hard X-ray Fresnel zone plates By scripts.iucr.org Published On :: 2020-03-18 Double-sided Fresnel zone plates are diffractive lenses used for high-resolution hard X-ray microscopy. The double-sided structures have significantly higher aspect ratios compared with single-sided components and hence enable more efficient imaging. The zone plates discussed in this paper are fabricated on each side of a thin support membrane, and the alignment of the zone plates with respect to each other is critical. Here, a simple and reliable way of quantifying misalignments by recording efficiency maps and measuring the absolute diffraction efficiency of the zone plates as a function of tilting angle in two directions is presented. The measurements are performed in a setup based on a tungsten-anode microfocus X-ray tube, providing an X-ray energy of 8.4 keV through differential measurements with a Cu and an Ni filter. This study investigates the sources of the misalignments and concludes that they can be avoided by decreasing the structure heights on both sides of the membrane and by pre-programming size differences between the front- and back-side zone plates. Full Article text
rd Foreword to the special virtual issue on X-ray free-electron lasers By scripts.iucr.org Published On :: 2020-05-01 Full Article text
rd Hard X-ray phase-contrast-enhanced micro-CT for quantifying interfaces within brittle dense root-filling-restored human teeth By journals.iucr.org Published On :: Phase-contrast enhanced micro-computed tomography reveals huge discontinuities at the interfaces between dental fillings and the tooth substrate. Despite the complex micromorphology, gaps in bonding could be visualized and quantified in 3D. Full Article text
rd POWGEN: rebuild of a third-generation powder diffractometer at the Spallation Neutron Source By scripts.iucr.org Published On :: 2019-10-01 The neutron powder diffractometer POWGEN at the Spallation Neutron Source has recently (2017–2018) undergone an upgrade which resulted in an increased detector complement along with a full overhaul of the structural design of the instrument. The current instrument has a solid angular coverage of 1.2 steradians and maintains the original third-generation concept, providing a single-histogram data set over a wide d-spacing range and high resolution to access large unit cells, detailed structural refinements and in situ/operando measurements. Full Article text
rd Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster modelling By scripts.iucr.org Published On :: 2020-02-01 Molybdenum oxides and sulfides on various low-cost high-surface-area supports are excellent catalysts for several industrially relevant reactions. The surface layer structure of these materials is, however, difficult to characterize due to small and disordered MoOx domains. Here, it is shown how X-ray total scattering can be applied to gain insights into the structure through differential pair distribution function (d-PDF) analysis, where the scattering signal from the support material is subtracted to obtain structural information on the supported structure. MoOx catalysts supported on alumina nanoparticles and on zeolites are investigated, and it is shown that the structure of the hydrated molybdenum oxide layer is closely related to that of disordered and polydisperse polyoxometalates. By analysing the PDFs with a large number of automatically generated cluster structures, which are constructed in an iterative manner from known polyoxometalate clusters, information is derived on the structural motifs in supported MoOx. Full Article text
rd Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data By scripts.iucr.org Published On :: 2020-02-21 Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157–164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data. Full Article text
rd Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt By journals.iucr.org Published On :: An X-ray cross-correlation study of the impact of ligand composition and salt content on the self-assembly of soft-shell nanoparticles is presented, indicating symmetry-selective formation of order. Full Article text
rd Disorder in La1−xBa1+xGaO4−x/2 ionic conductor: resolving the pair distribution function through insight from first-principles modeling By journals.iucr.org Published On :: Ba excess in LaBaGaO4 triggers ionic conductivity together with structural disorder. A direct correlation is found between the density functional theory model energy and the pair distribution function fit residual. Full Article text
rd The Philosophy of Science – A Companion. Edited by Anouk Baberousse, Denis Bonnay and Mikael Cozic. Oxford University Press, 2018. Pp. 768. Price GBP 64.00. ISBN-13 9780190690649. By journals.iucr.org Published On :: Book review Full Article text
rd Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185. By journals.iucr.org Published On :: Book review Full Article text
rd Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs By journals.iucr.org Published On :: A detailed theoretical and experimental comparison of dark-field electron holography (DFEH) and high-resolution X-ray diffraction (HRXRD) is performed. Both techniques are being applied to measure elastic strain in an array of transistors and the role of the geometric phase is emphasized. Full Article text
rd Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair distribution function and lattice-energy minimizations By scripts.iucr.org Published On :: 2020-05-08 The crystal structure of the organic pigment 2-monomethyl-quinacridone (Pigment Red 192, C21H14N2O2) was solved from X-ray powder diffraction data. The resulting average structure is described in space group Poverline 1, Z = 1 with the molecule on the inversion centre. The molecules are arranged in chains. The molecules, which have no inversion symmetry, show orientational head-to-tail disorder. In the average structure, the methyl group is disordered and found on both ends of the molecule with an occupancy of 0.5 each. The disorder and the local structure were investigated using various ordered structural models. All models were analysed by three approaches: Rietveld refinement, structure refinement to the pair distribution function (PDF) and lattice-energy minimization. All refinements converged well. The Rietveld refinement provided the average structure and gave no indication of a long-range ordering. The refinement to the PDF turned out to be very sensitive to small structural details, giving insight into the local structure. The lattice-energy minimizations revealed a significantly preferred local ordering of neighbouring molecules along the [0ar 11] direction. In conclusion, all methods indicate a statistical orientational disorder with a preferred parallel orientation of molecules in one direction. Additionally, electron diffraction revealed twinning and faint diffuse scattering. Full Article text
rd Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair-distribution function and lattice-energy minimizations By journals.iucr.org Published On :: The crystal structure of the nanocrystalline pigment monomethyl-quinacridone was solved from X-ray powder data. The orientational disorder was investigated using Rietveld refinements, structure refinement to the pair-distribution function, and lattice-energy minimizations of various ordered structural models. Full Article text
rd Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus By insider.si.edu Published On :: Wed, 07 Oct 2009 13:46:11 +0000 Scientists from the Smithsonian Migratory Bird Center at the National Zoo have taken blood samples from thousands of birds and mosquitoes in an effort to track the progress of the West Nile Virus in the eastern United States. Come along in this video as Smithsonian scientists net birds living in downtown Washington, D.C., extract small amounts of blood, and then release them back into the "wild." The post Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus appeared first on Smithsonian Insider. Full Article Research News Science & Nature birds Migratory Bird Center Smithsonian's National Zoo
rd Camera traps & radio collars reveal hoarding strategies of the South American agouti By insider.si.edu Published On :: Wed, 02 Dec 2009 14:53:22 +0000 In a series of ongoing experiments on Barro Colorado Island in the Panama Canal, Kays and other researchers are using camera traps, radio collars and palm nuts with tracking transmitters attached to them to take a closer look at the nut-hoarding strategies of the agouti. The post Camera traps & radio collars reveal hoarding strategies of the South American agouti appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity camera traps mammals South America Tropical Research Institute
rd Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds By insider.si.edu Published On :: Thu, 28 Jan 2010 20:01:27 +0000 Birds do it. Bees do it. And in a laboratory in northern California, scientists using bumblebees recently figured out the best way to measure it--vertical lift! The post Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature animal flight bees birds insects Tropical Research Institute
rd Clouded leopard cubs born at National Zoo’s Front Royal campus on Valentine’s Day By insider.si.edu Published On :: Thu, 18 Feb 2010 20:48:06 +0000 Staff had been on a pregnancy watch focused on the 3 1/2-year-old clouded leopard Jao Chu (JOW-chew) for four days. Jao Chu gave birth to the first cub at 6:04 p.m. and the second cub at 6:20 p.m. The post Clouded leopard cubs born at National Zoo’s Front Royal campus on Valentine’s Day appeared first on Smithsonian Insider. Full Article Animals Science & Nature animal births biodiversity conservation conservation biology endangered species extinction Smithsonian's National Zoo
rd At 1,500,000 mph, twin stars in the constellation Cancer win speediest orbit award By insider.si.edu Published On :: Thu, 11 Mar 2010 17:21:23 +0000 The stars move quickly because they are very close to each other, separated by only about one-fourth the distance from the Earth to the Moon. As a result, they share strong gravitational forces. They were once farther apart but have spiraled closer together over time. Billions of years from now, they will crash together and merge. The post At 1,500,000 mph, twin stars in the constellation Cancer win speediest orbit award appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Smithsonian Astrophysical Observatory
rd Rapid Response telescope system spots first potentially hazardous asteroid By insider.si.edu Published On :: Tue, 28 Sep 2010 11:50:53 +0000 The Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) PS1 telescope has discovered an asteroid about 150 feet in diameter that will come within 4 million miles of Earth in mid-October. The post Rapid Response telescope system spots first potentially hazardous asteroid appeared first on Smithsonian Insider. Full Article Research News Science & Nature asteroids astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian rocks & minerals supernova
rd Genetic surprise: Magnificent frigatebird living on Galapagos Islands is distinct species By insider.si.edu Published On :: Tue, 28 Sep 2010 16:09:32 +0000 Researchers at the Smithsonian Conservation Biology Institute conducted three different kinds of genetics tests and all yielded the same result—the Galapagos seabirds have been genetically different from the magnificent frigatebirds elsewhere for more than half a million years. The post Genetic surprise: Magnificent frigatebird living on Galapagos Islands is distinct species appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature birds Caribbean endangered species Migratory Bird Center National Museum of Natural History
rd Newly discovered Madagascar spider spins largest, toughest webs on record By insider.si.edu Published On :: Sat, 02 Oct 2010 10:42:40 +0000 Darwin's bark spider cast giant webs across streams, rivers and lakes, suspending the web’s orb above water and attaching it to plants on each riverbank. Bridgelines of these water-spanning webs have been measured as long as 25 meters. The post Newly discovered Madagascar spider spins largest, toughest webs on record appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity insects National Museum of Natural History spiders
rd Harvard-Smithsonian astrophysicist discovers new method to weigh some distant stars By insider.si.edu Published On :: Mon, 08 Nov 2010 17:55:48 +0000 New research by astrophysicist David Kipping has revealed that in some special cases, a star can be weighed directly. Such a star must have a planet orbiting it with a moon orbiting the planet. The post Harvard-Smithsonian astrophysicist discovers new method to weigh some distant stars appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics geology Smithsonian Astrophysical Observatory
rd Exurban development is changing communities of birds in Eastern Forests By insider.si.edu Published On :: Wed, 22 Dec 2010 12:33:43 +0000 Despite the general perception of exurban development as environmentally preferable to urban sprawl, this is not necessarily correct. Housing development is detrimental for natural bird communities even at low housing levels. The post Exurban development is changing communities of birds in Eastern Forests appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity birds conservation conservation biology Migratory Bird Center Smithsonian's National Zoo
rd Free, online course in physics offered by the Harvard-Smithsonian Center for Astrophysics By insider.si.edu Published On :: Fri, 14 Jan 2011 14:46:31 +0000 "Physics for the 21st Century," a free, on-line course developed at the Harvard-Smithsonian Center for Astrophysics about current research in physics is now available. The post Free, online course in physics offered by the Harvard-Smithsonian Center for Astrophysics appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian science education
rd New interactive World Wide Telescope tour chronicles career of Harvard-Smithsonian astronomer John Huchra By insider.si.edu Published On :: Fri, 28 Jan 2011 12:43:50 +0000 To honor Harvard-Smithsonian astronomer John Huchra, who passed away in October 2010, his friends and colleagues at the Harvard-Smithsonian Center for Astrophysics have created a […] The post New interactive World Wide Telescope tour chronicles career of Harvard-Smithsonian astronomer John Huchra appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astrophysics Center for Astrophysics | Harvard & Smithsonian
rd Six orbiting planets sets record for Sun-like stars say Kepler, Smithsonian astronmers By insider.si.edu Published On :: Thu, 17 Feb 2011 15:26:12 +0000 Last week, the Kepler team and CfA astronomers announced the discovery of a system of six transiting planets around one Sun-like star. The previous record holder for the number of transiting planets was three. The post Six orbiting planets sets record for Sun-like stars say Kepler, Smithsonian astronmers appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy planets
rd Whale sharks featured in award-winning documentary following the work of Tropical Research Institute’s Héctor Guzman By insider.si.edu Published On :: Thu, 17 Feb 2011 19:10:06 +0000 The awarded film features STRI marine biologist Héctor M. Guzman diving with a group of five whale sharks while traveling in the Tropical Eastern Pacific. In the video, Guzmán tags a radiotransmitter to one of the sharks in order to follow its voyages. The post Whale sharks featured in award-winning documentary following the work of Tropical Research Institute’s Héctor Guzman appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature conservation conservation biology endangered species Tropical Research Institute
rd JoGayle Howard, National Zoological Park pioneer in reproductive biology, dies By insider.si.edu Published On :: Tue, 08 Mar 2011 19:32:45 +0000 For more than three decades JoGayle Howard dedicated her life and work to reproducing endangered species. The post JoGayle Howard, National Zoological Park pioneer in reproductive biology, dies appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity conservation conservation biology endangered species Smithsonian's National Zoo veterinary medicine
rd Alarming number of fledgling, suburban catbirds fall prey to domestic cats, study finds By insider.si.edu Published On :: Wed, 09 Mar 2011 16:56:28 +0000 Smithsonian scientists report fledgling catbirds in suburban habitats are at their most vulnerable stage of life, with almost 80 percent killed by predators before they reach adulthood. Almost half of the deaths were connected to domestic cats. The post Alarming number of fledgling, suburban catbirds fall prey to domestic cats, study finds appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity birds conservation conservation biology mammals Migratory Bird Center migratory birds Smithsonian's National Zoo