pi Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl picolinate By scripts.iucr.org Published On :: 2019-10-29 2-(4-Nitrophenyl)-2-oxoethyl picolinate, C14H10N2O5, was synthesized under mild conditions. The chemical and molecular structures were confirmed by single-crystal X-ray diffraction analysis. The molecules are linked by inversion into centrosymmetric dimers via weak intermolecular C—H⋯O interactions, forming R22(10) ring motifs, and further strengthened by weak π–π interactions. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were used to verify the contributions of the different intermolecular interactions within the supramolecular structure. The shape-index surface shows that two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking. Full Article text
pi Organically pillared layer framework of [Eu(NH2–BDC)(ox)(H3O)] By scripts.iucr.org Published On :: 2019-11-08 The non-porous three-dimensional structure of poly[(μ5-2-aminobenzene-1,4-dicarboxylato)(μ6-oxalato)(oxomium)europium(III)], [Eu(C8H5NO4)(C2O4)(H3O)]n or [EuIII(NH2–BDC)(ox)(H3O)]n (NH2–BDC2− = 2-aminoterephthalate and ox2− = oxalate) is constructed from two-dimensional layers of EuIII–carboxylate–oxalate, which are connected by NH2–BDC2− pillars. The basic structural unit of the layer is an edge-sharing dimer of TPRS-{EuIIIO9}, which is assembled through the ox2− moiety. The intralayer void is partially occupied by TPR-{EuIIIO6} motifs. Weak C—H⋯O and strong, classical intramolecular N—H⋯O and intermolecular O—H⋯O hydrogen-bonding interactions, as well as weak π–π stacking interactions, affix the organic pillars within the framework. The two-dimensional layer can be simplified to a uninodal 4-connected sql/Shubnikov tetragonal plane net with point symbol {44.62}. Full Article text
pi Some reflections on symmetry: pitfalls of automation and some illustrative examples By scripts.iucr.org Published On :: 2019-11-08 In the context of increasing hardware and software automation in the process of crystal structure determination by X-ray diffraction, and based on conference sessions presenting some of the experience of senior crystallographers for the benefit of younger colleagues, an outline is given here of some basic concepts and applications of symmetry in crystallography. Three specific examples of structure determinations are discussed, for which an understanding of these aspects of symmetry avoids mistakes that can readily be made by reliance on automatic procedures. Topics addressed include pseudo-symmetry, twinning, real and apparent disorder, chirality, and structure validation. Full Article text
pi Crystal structure of tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)europium methanol monosolvate By scripts.iucr.org Published On :: 2019-11-19 The mononuclear title complex, [Eu(C24H34O4P)3(CH4O)5]·CH4O, (1), has been obtained as a minor product in the reaction between EuCl3(H2O)6 and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in a methanol medium. Its structure exhibits monoclinic (P21/c) symmetry at 120 K and is isostructural with the La, Ce and Nd analogs reported previously [Minyaev et al. (2018a). Acta Cryst. C74, 590–598]. In (1), all three bis(2,6-diisopropylphenyl) phosphate ligands display the terminal κ1O-coordination mode. All of the hydroxy H atoms are involved in O—H⋯O hydrogen bonding, exhibiting four intramolecular and two intermolecular hydrogen bonds. Photophysical studies have demonstrated luminescence of (1) with a low quantum yield. Full Article text
pi Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
pi Synthesis, crystal structure and spectroscopic and Hirshfeld surface analysis of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde By scripts.iucr.org Published On :: 2020-01-21 The title compound, C8H7NO5, is planar with an r.m.s. deviation for all non-hydrogen atoms of 0.018 Å. An intramolecular O—H⋯O hydrogen bond involving the adjacent hydroxy and nitro groups forms an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. The layers are linked by a further C—H⋯O hydrogen bond, forming slabs, which are linked by C=O⋯π interactions, forming a three-dimensional supramolecular structure. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid state. The molecule was also characterized spectroscopically and its thermal stability investigated by differential scanning calorimetry and by thermogravimetric analysis. Full Article text
pi Poly[[tetradecakis(μ-propionato)heptabarium] propionic acid monosolvate tetrahydrate] By scripts.iucr.org Published On :: 2020-01-31 The title compound, {[Ba7(C3H5O2)14]·0.946C3H6O2·4H2O}n, is represented by a metal–organic framework structure that is held together by Ba—O—Ba bonds, as well as by O—H⋯O hydrogen bonds of moderate strength. The structure comprises of four independent Ba2+ cations (one of which is situated on a twofold rotation axis), seven independent propionate and two independent water molecules. The bond-valence sums of all the cations indicate a slight overbonding. There is also an occupationally, as well as a positionally disordered propionic acid molecule present in the structure. Its occupation is slightly lower than the full occupation while the disordered molecules occupy two positions related by a rotation about a twofold rotation axis. In addition, the methyl group in the symmetry-independent propionic acid molecule is also disordered, and occupies two positions. Each propionic acid molecule coordinates to just one cation from a pair of symmetry-equivalent Ba2+ sites and is simultaneously bonded by an O—H⋯Opropionate hydrogen bond. This means that on a microscopic scale, the coordination number of the corresponding Ba2+ site is either 9 or 10. The methyl as well as hydroxy hydrogen atoms of the disordered propionic acid molecule were not determined. Full Article text
pi Crystal structure of (4-chlorophenyl)(4-methylpiperidin-1-yl)methanone By scripts.iucr.org Published On :: 2020-03-13 The title compound, C13H16ClNO, contains a methylpiperidine ring in the stable chair conformation. The mean plane of the twisted piperidine ring subtends a dihedral angle of 39.89 (7)° with that of the benzene ring. In the crystal, weak C—H⋯O interactions link the molecules along the a-axis direction to form infinite molecular chains. H⋯H interatomic interactions, C—H⋯O intermolecular interactions and weak dispersive forces stabilize molecular packing and form a supramolecular network, as established by Hirshfeld surface analysis. Full Article text
pi Crystal structure, Hirshfeld surface analysis and DFT studies of 1-[r-2,c-6-diphenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one By scripts.iucr.org Published On :: 2020-02-18 In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, molecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule. Full Article text
pi Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of (S)-10-propargylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione By scripts.iucr.org Published On :: 2020-03-03 The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz⋯ODiazp and C—HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = propargyl) hydrogen bonds link the molecules into two-dimensional networks parallel to the bc plane, enclosing R44(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯O hydrogen-bond energies are 38.8 (for C—HBnz⋯ODiazp) and 27.1 (for C—HProprg⋯ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
pi Crystal structures of the recreational drug N-(4-methoxyphenyl)piperazine (MeOPP) and three of its salts By scripts.iucr.org Published On :: 2020-03-05 Crystal structures are reported for N-(4-methoxyphenyl)piperazine (MeOPP), (I), and for its 3,5-dinitrobenzoate, 2,4,6-trinitrophenolate (picrate) and 4-aminobenzoate salts, (II)–(IV), the last of which crystallizes as a monohydrate. In MeOPP, C11H16N2O, (I), the 4-methoxyphenyl group is nearly planar and it occupies an equatorial site on the piperazine ring: the molecules are linked into simple C(10) chains by N—H⋯O hydrogen bonds. In each of the salts, i.e., C11H17N2O+·C7H3N2O6−, (II), C11H17N2O+·C6H2N3O7−, (III), and C11H17N2O+·C7H6NO2−·H2O, (IV), the effectively planar 4-methoxyphenyl substituent again occupies an equatorial site on the piperazine ring. In (II), two of the nitro groups are disordered over two sets of atomic sites and the bond distances in the anion indicate considerable delocalization of the negative charge over the C atoms of the ring. The ions in (II) are linked by two N—H⋯O hydrogen bonds to form a cyclic, centrosymmetric four-ion aggregate; those in (III) are linked by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to form sheets; and the components of (IV) are linked by N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure. Comparisons are made with the structures of some related compounds. Full Article text
pi Crystal structure and Hirshfeld surface analysis of 3,4-dihydro-2H-anthra[1,2-b][1,4]dioxepine-8,13-dione By scripts.iucr.org Published On :: 2020-03-27 The title compound, C17H12O4, was synthesized from the dye alizarin. The dihedral angle between the mean plane of the anthraquinone ring system (r.m.s. deviation = 0.039 Å) and the dioxepine ring is 16.29 (8)°. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane. The sheets are connected through π–π and C=O⋯π interactions to generate a three-dimensional supramolecular network. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid-state: the most important contributions are from H⋯H (43.0%), H⋯O/O⋯H (27%), H⋯C/C⋯H (13.8%) and C⋯C (12.4%) contacts. Full Article text
pi Ni3Te2O2(PO4)2(OH)4, an open-framework structure isotypic with Co3Te2O2(PO4)2(OH)4 By scripts.iucr.org Published On :: 2020-04-03 Single crystals of Ni3(TeO(OH)2)2(PO4)2, trinickel(II) bis[(oxidodihydoxidotellurate(IV)] bis(phosphate),were obtained by hydrothermal synthesis at 483 K, starting from NiCO3·2Ni(OH)2, TeO2 and H3PO4 in a molar ratio of 1:2:2. The crystal structure of Ni3Te2O2(PO4)2(OH)4 is isotypic with that of Co3Te2O2(PO4)2(OH)4 [Zimmermann et al. (2011). J. Solid State Chem. 184, 3080–3084]. The asymmetric unit comprises two Ni (site symmetries overline{1}, 2/m) one Te (m), one P (m), five O (three m, two 1) and one H (1) sites. The tellurium(IV) atom shows a coordination number of five, with the corresponding [TeO3(OH)2] polyhedron having a distorted square-pyramidal shape. The two NiII atoms are both octahedrally coordinated but form different structural elements: one constitutes chains made up from edge-sharing [NiO6] octahedra extending parallel to [010], and the other isolated [NiO2(OH)4] octahedra. The two kinds of nickel/oxygen octahedra are connected by the [TeO3(OH)2] pyramids and the [PO4] tetrahedra through edge- and corner-sharing into a three-dimensional framework structure with channels extending parallel to [010]. Hydrogen bonds of medium strength between the hydroxy groups and one of the phosphate O atoms consolidate the packing. A quantitative structure comparison between Ni3Te2O2(PO4)2(OH)4 and Co3Te2O2(PO4)2(OH)4 is made. Full Article text
pi Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis(4-fluorophenyl)piperidin-4-one By scripts.iucr.org Published On :: 2020-04-09 The title compound, C21H23F2NO, consists of two fluorophenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F interactions, which form R22[14] motifs, link the molecules into infinite C(6) chains propagating along [001]. A weak C—H⋯π interaction is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (53.3%), H⋯C/C⋯H (19.1%), H⋯F/F⋯H (15.7%) and H⋯O/O⋯H (7.7%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure in the solid state and used to determine the HOMO–LUMO energy gap and compare it to the UV–vis experimental spectrum. Full Article text
pi Syntheses and crystal structures of two piperine derivatives By scripts.iucr.org Published On :: 2020-04-09 The title compounds, 5-(2H-1,3-benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide, C18H21NO3 (I), and 5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one C16H17NO3 (II), are derivatives of piperine, which is known as a pungent component of pepper. Their geometrical parameters are similar to those of the three polymorphs of piperine, which indicate conjugation of electrons over the length of the molecules. The extended structure of (I) features N—H⋯O amide hydrogen bonds, which generate C(4) [010] chains. The crystal of (II) features aromatic π–π stacking, as for two of three known piperine polymorphs. Full Article text
pi Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace By scripts.iucr.org Published On :: 2020-04-23 A furnace that covers the temperature range from room temperature up to 2000 K has been designed, built and implemented on the D2AM beamline at the ESRF. The QMAX furnace is devoted to the full exploration of the reciprocal hemispace located above the sample surface. It is well suited for symmetric and asymmetric 3D reciprocal space mapping. Owing to the hemispherical design of the furnace, 3D grazing-incidence small- and wide-angle scattering and diffraction measurements are possible. Inert and reactive experiments can be performed at atmospheric pressure under controlled gas flux. It is demonstrated that the QMAX furnace allows monitoring of structural phase transitions as well as microstructural evolution at the nanoscale, such as self-organization processes, crystal growth and strain relaxation. A time-resolved in situ oxidation experiment illustrates the capability to probe the high-temperature reactivity of materials. Full Article text
pi Accurate high-resolution single-crystal diffraction data from a Pilatus3 X CdTe detector By scripts.iucr.org Published On :: 2020-04-23 Hybrid photon-counting detectors are widely established at third-generation synchrotron facilities and the specifications of the Pilatus3 X CdTe were quickly recognized as highly promising in charge-density investigations. This is mainly attributable to the detection efficiency in the high-energy X-ray regime, in combination with a dynamic range and noise level that should overcome the perpetual problem of detecting strong and weak data simultaneously. These benefits, however, come at the expense of a persistent problem for high diffracted beam flux, which is particularly problematic in single-crystal diffraction of materials with strong scattering power and sharp diffraction peaks. Here, an in-depth examination of data collected on an inorganic material, FeSb2, and an organic semiconductor, rubrene, revealed systematic differences in strong intensities for different incoming beam fluxes, and the implemented detector intensity corrections were found to be inadequate. Only significant beam attenuation for the collection of strong reflections was able to circumvent this systematic error. All data were collected on a bending-magnet beamline at a third-generation synchrotron radiation facility, so undulator and wiggler beamlines and fourth-generation synchrotrons will be even more prone to this error. On the other hand, the low background now allows for an accurate measurement of very weak intensities, and it is shown that it is possible to extract structure factors of exceptional quality using standard crystallographic software for data processing (SAINT-Plus, SADABS and SORTAV), although special attention has to be paid to the estimation of the background. This study resulted in electron-density models of substantially higher accuracy and precision compared with a previous investigation, thus for the first time fulfilling the promise of photon-counting detectors for very accurate structure factor measurements. Full Article text
pi Cryo-EM structure of Neurospora crassa respiratory complex IV By scripts.iucr.org Published On :: 2019-06-26 In fungi, the mitochondrial respiratory chain complexes (complexes I–IV) are responsible for oxidative phosphorylation, as in higher eukaryotes. Cryo-EM was used to identify a 200 kDa membrane protein from Neurospora crassa in lipid nanodiscs as cytochrome c oxidase (complex IV) and its structure was determined at 5.5 Å resolution. The map closely resembles the cryo-EM structure of complex IV from Saccharomyces cerevisiae. Its ten subunits are conserved in S. cerevisiae and Bos taurus, but other transmembrane subunits are missing. The different structure of the Cox5a subunit is typical for fungal complex IV and may affect the interaction with complex III in a respiratory supercomplex. Additional density was found between the matrix domains of the Cox4 and Cox5a subunits that appears to be specific to N. crassa. Full Article text
pi Cryo-EM structure of the CFA/I pilus rod By scripts.iucr.org Published On :: 2019-07-09 Enterotoxigenic Escherichia coli (ETEC) are common agents of diarrhea for travelers and a major cause of mortality in children in developing countries. To attach to intestinal cells ETEC express colonization factors, among them CFA/I, which are the most prevalent factors and are the archetypical representative of class 5 pili. The helical quaternary structure of CFA/I can be unwound under tensile force and it has been shown that this mechanical property helps bacteria to withstand shear forces from fluid motion. We report in this work the CFA/I pilus structure at 4.3 Å resolution from electron cryomicroscopy (cryo-EM) data, and report details of the donor strand complementation. The CfaB pilins modeled into the cryo-EM map allow us to identify the buried surface area between subunits, and these regions are correlated to quaternary structural stability in class 5 and chaperone–usher pili. In addition, from the model built using the EM structure we also predicted that residue 13 (proline) of the N-terminal β-strand could have a major impact on the filament's structural stability. Therefore, we used optical tweezers to measure and compare the stability of the quaternary structure of wild type CFA/I and a point-mutated CFA/I with a propensity for unwinding. We found that pili with this mutated CFA/I require a lower force to unwind, supporting our hypothesis that Pro13 is important for structural stability. The high-resolution CFA/I pilus structure presented in this work and the analysis of structural stability will be useful for the development of novel antimicrobial drugs that target adhesion pili needed for initial attachment and sustained adhesion of ETEC. Full Article text
pi 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector By scripts.iucr.org Published On :: 2019-08-17 Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s. Full Article text
pi Spin resolved electron density study of YTiO3 in its ferromagnetic phase: signature of orbital ordering By scripts.iucr.org Published On :: 2019-08-02 The present work reports on the charge and spin density modelling of YTiO3 in its ferromagnetic state (TC = 27 K). Accurate polarized neutron diffraction and high-resolution X-ray diffraction (XRD) experiments were carried out on a single crystal at the ORPHÉE reactor (LLB) and SPRING8 synchrotron source. The experimental data are modelled by the spin resolved pseudo-atomic multipolar model (Deutsch et al., 2012). The refinement strategy is discussed and the result of this electron density modelling is compared with that from XRD measured at 100 K and with density functional theory calculations. The results show that the spin and charge densities around the Ti atom have lobes directed away from the O atoms, confirming the filling of the t2g orbitals of the Ti atom. The dxy orbital is less populated than dxz and dyz, which is a sign of a partial lift of degeneracy of the t2g orbitals. This study confirms the orbital ordering at low temperature (20 K), which is already present in the paramagnetic state above the ferromagnetic transition (100 K). Full Article text
pi The DRS–AIMP2–EPRS subcomplex acts as a pivot in the multi-tRNA synthetase complex By scripts.iucr.org Published On :: 2019-08-24 Aminoacyl-tRNA synthetases (ARSs) play essential roles in protein biosynthesis as well as in other cellular processes, often using evolutionarily acquired domains. For possible cooperativity and synergistic effects, nine ARSs assemble into the multi-tRNA synthetase complex (MSC) with three scaffold proteins: aminoacyl-tRNA synthetase complex-interacting multifunctional proteins 1, 2 and 3 (AIMP1, AIMP2 and AIMP3). X-ray crystallographic methods were implemented in order to determine the structure of a ternary subcomplex of the MSC comprising aspartyl-tRNA synthetase (DRS) and two glutathione S-transferase (GST) domains from AIMP2 and glutamyl-prolyl-tRNA synthetase (AIMP2GST and EPRSGST, respectively). While AIMP2GST and EPRSGST interact via conventional GST heterodimerization, DRS strongly interacts with AIMP2GST via hydrogen bonds between the α7–β9 loop of DRS and the β2–α2 loop of AIMP2GST, where Ser156 of AIMP2GST is essential for the assembly. Structural analyses of DRS–AIMP2GST–EPRSGST reveal its pivotal architecture in the MSC and provide valuable insights into the overall assembly and conditionally required disassembly of the MSC. Full Article text
pi Consistency and variability of cocrystals containing positional isomers: the self-assembly evolution mechanism of supramolecular synthons of cresol–piperazine By scripts.iucr.org Published On :: 2019-10-09 The disposition of functional groups can induce variations in the nature and type of interactions and hence affect the molecular recognition and self-assembly mechanism in cocrystals. To better understand the formation of cocrystals on a molecular level, the effects of disposition of functional groups on the formation of cocrystals were systematically and comprehensively investigated using cresol isomers (o-, m-, p-cresol) as model compounds. Consistency and variability in these cocrystals containing positional isomers were found and analyzed. The structures, molecular recognition and self-assembly mechanism of supramolecular synthons in solution and in their corresponding cocrystals were verified by a combined experimental and theoretical calculation approach. It was found that the heterosynthons (heterotrimer or heterodimer) combined with O—H⋯N hydrogen bonding played a significant role. Hirshfeld surface analysis and computed interaction energy values were used to determine the hierarchical ordering of the weak interactions. The quantitative analyses of charge transfers and molecular electrostatic potential were also applied to reveal and verify the reasons for consistency and variability. Finally, the molecular recognition, self-assembly and evolution process of the supramolecular synthons in solution were investigated. The results confirm that the supramolecular synthon structures formed initially in solution would be carried over to the final cocrystals, and the supramolecular synthon structures are the precursors of cocrystals and the information memory of the cocrystallization process, which is evidence for classical nucleation theory. Full Article text
pi R3c-type LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials By scripts.iucr.org Published On :: 2019-10-16 In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R3c are potential DHMs with multiple Dirac cones. Full Article text
pi Extraordinary anisotropic thermal expansion in photosalient crystals By scripts.iucr.org Published On :: 2020-01-01 Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L2], where L = 4-styrylpyridine (4spy) (1), 2'-fluoro-4-styrylpyridine (2F-4spy) (2) and 3'-fluoro-4-styrylpyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cycloaddition. These crystals also exhibit anisotropic thermal expansion when heated from room temperature to 200°C. The overall thermal expansion of the crystals is impressive, with the largest volumetric thermal expansion coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10−6 K−1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal thermal expansion. As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties. Full Article text
pi 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow By scripts.iucr.org Published On :: 2020-01-16 Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX. Full Article text
pi The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase By scripts.iucr.org Published On :: 2020-01-25 Single-particle electron cryo-microscopy (cryoEM) has undergone a `resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built. Full Article text
pi Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 By scripts.iucr.org Published On :: 2020-02-11 Methods are presented that detect three types of aberrations in single-particle cryo-EM data sets: symmetrical and antisymmetrical optical aberrations and magnification anisotropy. Because these methods only depend on the availability of a preliminary 3D reconstruction from the data, they can be used to correct for these aberrations for any given cryo-EM data set, a posteriori. Using five publicly available data sets, it is shown that considering these aberrations improves the resolution of the 3D reconstruction when these effects are present. The methods are implemented in version 3.1 of the open-source software package RELION. Full Article text
pi Structure of the MICU1–MICU2 heterodimer provides insights into the gatekeeping threshold shift By scripts.iucr.org Published On :: 2020-02-27 Mitochondrial calcium uptake proteins 1 and 2 (MICU1 and MICU2) mediate mitochondrial Ca2+ influx via the mitochondrial calcium uniporter (MCU). Its molecular action for Ca2+ uptake is tightly controlled by the MICU1–MICU2 heterodimer, which comprises Ca2+ sensing proteins which act as gatekeepers at low [Ca2+] or facilitators at high [Ca2+]. However, the mechanism underlying the regulation of the Ca2+ gatekeeping threshold for mitochondrial Ca2+ uptake through the MCU by the MICU1–MICU2 heterodimer remains unclear. In this study, we determined the crystal structure of the apo form of the human MICU1–MICU2 heterodimer that functions as the MCU gatekeeper. MICU1 and MICU2 assemble in the face-to-face heterodimer with salt bridges and methionine knobs stabilizing the heterodimer in an apo state. Structural analysis suggests how the heterodimer sets a higher Ca2+ threshold than the MICU1 homodimer. The structure of the heterodimer in the apo state provides a framework for understanding the gatekeeping role of the MICU1–MICU2 heterodimer. Full Article text
pi Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion By scripts.iucr.org Published On :: 2019-10-01 Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set. Full Article text
pi Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments By scripts.iucr.org Published On :: 2019-10-01 Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory. Full Article text
pi Identifying dynamic, partially occupied residues using anomalous scattering By scripts.iucr.org Published On :: 2019-11-19 Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures. Full Article text
pi Development of SPACE-II for rapid sample exchange at SPring-8 macromolecular crystallography beamlines By scripts.iucr.org Published On :: 2020-01-31 Reducing the sample-exchange time is a crucial issue in maximizing the throughput of macromolecular crystallography (MX) beamlines because the diffraction data collection itself is completed within a minute in the era of pixel-array detectors. To this end, an upgraded sample changer, SPACE-II, has been developed on the basis of the previous model, SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), at the BL41XU beamline at SPring-8. SPACE-II achieves one sample-exchange step within 16 s, of which its action accounts for only 11 s, because of three features: (i) the implementation of twin arms that enable samples to be exchanged in one cycle of mount-arm action, (ii) the implementation of long-stroke mount arms that allow samples to be exchanged without withdrawal of the detector and (iii) the use of a fast-moving translation and rotation stage for the mount arms. By pre-holding the next sample prior to the sample-exchange sequence, the time was further decreased to 11 s in the case of automatic data collection, of which the action of SPACE-II accounted for 8 s. Moreover, the sample capacity was expanded from four to eight Uni-Pucks. The performance of SPACE-II has been demonstrated in over two years of operation at BL41XU; the average number of samples mounted on the diffractometer in one day was increased from 132 to 185, with an error rate of 0.089%, which counted incidents in which users could not continue with an experiment without recovery work by entering the experimental hutch. On the basis of these results, SPACE-II has been installed at three other MX beamlines at SPring-8 as of July 2019. The fast and highly reliable SPACE-II is now one of the most important pieces of infrastructure for the MX beamlines at SPring-8, providing users with the opportunity to fully make use of limited beamtime with brilliant X-rays. Full Article text
pi 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase By scripts.iucr.org Published On :: 2020-01-31 Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0–S1–H1–S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α–β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings. Full Article text
pi A practical overview of molecular replacement: Clostridioides difficile PilA1, a difficult case study By scripts.iucr.org Published On :: 2020-02-26 Many biologists are now routinely seeking to determine the three-dimensional structures of their proteins of choice, illustrating the importance of this knowledge, but also of the simplification and streamlining of structure-determination processes. Despite the fact that most software packages offer simple pipelines, for the non-expert navigating the outputs and understanding the key aspects can be daunting. Here, the structure determination of the type IV pili (TFP) protein PilA1 from Clostridioides difficile is used to illustrate the different steps involved, the key decision criteria and important considerations when using the most common pipelines and software. Molecular-replacement pipelines within CCP4i2 are presented to illustrate the more commonly used processes. Previous knowledge of the biology and structure of TFP pilins, particularly the presence of a long, N-terminal α-helix required for pilus formation, allowed informed decisions to be made during the structure-determination strategy. The PilA1 structure was finally successfully determined using ARCIMBOLDO and the ab initio MR strategy used is described. Full Article text
pi Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization By scripts.iucr.org Published On :: 2020-04-23 A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells. Full Article text
pi Comparative study of the around-Fermi electronic structure of 5d metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies By scripts.iucr.org Published On :: 2020-04-14 The composition of occupied and unoccupied electronic states in the vicinity of Fermi energies is vital for all materials and relates to their physical, chemical and mechanical properties. This work demonstrates how the combination of resonant and non-resonant X-ray emission spectroscopies supplemented with theoretical modelling allows for quantitative analysis of electronic states in 5d transition metal and metal-oxide materials. Application of X-rays provides element selectivity that, in combination with the penetrating properties of hard X-rays, allows determination of the composition of electronic states under working conditions, i.e. non-vacuum environment. Tungsten metal and tungsten oxide are evaluated to show the capability to simultaneously assess composition of around-band-gap electronic states as well as the character and magnitude of the crystal field splitting. Full Article text
pi Full strain tensor measurements with X-ray diffraction and strain field mapping: a simulation study By scripts.iucr.org Published On :: 2020-04-15 Strain tensor measurements are important for understanding elastic and plastic deformation, but full bulk strain tensor measurement techniques are still lacking, in particular for dynamic loading. Here, such a methodology is reported, combining imaging-based strain field mapping and simultaneous X-ray diffraction for four typical loading modes: one-dimensional strain/stress compression/tension. Strain field mapping resolves two in-plane principal strains, and X-ray diffraction analysis yields volumetric strain, and thus the out-of-plane principal strain. This methodology is validated against direct molecular dynamics simulations on nanocrystalline tantalum. This methodology can be implemented with simultaneous X-ray diffraction and digital image correlation in synchrotron radiation or free-electron laser experiments. Full Article text
pi The ePix10k 2-megapixel hard X-ray detector at LCLS By scripts.iucr.org Published On :: 2020-04-17 The ePix10ka2M (ePix10k) is a new large area detector specifically developed for X-ray free-electron laser (XFEL) applications. The hybrid pixel detector was developed at SLAC to provide a hard X-ray area detector with a high dynamic range, running at the 120 Hz repetition rate of the Linac Coherent Light Source (LCLS). The ePix10k consists of 16 modules, each with 352 × 384 pixels of 100 µm × 100 µm distributed on four ASICs, resulting in a 2.16 megapixel detector, with a 16.5 cm × 16.5 cm active area and ∼80% coverage. The high dynamic range is achieved with three distinct gain settings (low, medium, high) as well as two auto-ranging modes (high-to-low and medium-to-low). Here the three fixed gain modes are evaluated. The resulting dynamic range (from single photon counting to 10000 photons pixel−1 pulse−1 at 8 keV) makes it suitable for a large number of different XFEL experiments. The ePix10k replaces the large CSPAD in operation since 2011. The dimensions of the two detectors are similar, making the upgrade from CSPAD to ePix10k straightforward for most setups, with the ePix10k improving on experimental performance. The SLAC-developed ePix cameras all utilize a similar platform, are tailored to target different experimental conditions and are designed to provide an upgrade path for future high-repetition-rate XFELs. Here the first measurements on this new ePix10k detector are presented and the performance under typical XFEL conditions evaluated during an LCLS X-ray diffuse scattering experiment measuring the 9.5 keV X-ray photons scattered from a thin liquid jet. Full Article text
pi A single-crystal diamond X-ray pixel detector with embedded graphitic electrodes By scripts.iucr.org Published On :: 2020-03-31 The first experimental results from a new transmissive diagnostic instrument for synchrotron X-ray beamlines are presented. The instrument utilizes a single-crystal chemical-vapour-deposition diamond plate as the detector material, with graphitic wires embedded within the bulk diamond acting as electrodes. The resulting instrument is an all-carbon transmissive X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The graphitic electrodes are fabricated in situ within the bulk diamond using a laser-writing technique. Two separate arrays of parallel graphitic wires are fabricated, running parallel to the diamond surface and perpendicular to each other, at two different depths within the diamond. One array of wires has a modulated bias voltage applied; the perpendicular array is a series of readout electrodes. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionization, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. Each of the crossing points between perpendicular wires acts as an individual pixel. The simultaneous read-out of all pixels is achieved using a lock-in technique. The parallel wires within each array are separated by 50 µm, determining the pixel pitch. Readout is obtained at 100 Hz, and the resolution of the X-ray beam position measurement is 600 nm for a 180 µm size beam. Full Article text
pi High-efficiency ultra-precision comparator for d-spacing mapping measurement of silicon By scripts.iucr.org Published On :: 2020-03-13 This article describes a high-efficiency experimental configuration for a self-referenced lattice comparator with a `brush beam' of synchrotron radiation from a bending magnet and two linear position-sensitive photon-counting-type X-ray detectors. The efficiency is more than ten times greater compared with the `pencil-beam' configuration and a pair of zero-dimensional detectors. A solution for correcting the systematic deviation of d-spacing measurements caused by the horizontal non-uniformity of the brush beam is provided. Also, the use of photon-counting-type one-dimensional detectors not only improves the spatial resolution of the measurements remarkably but can also adjust the sample's attitude angles easily. Full Article text
pi Crystallography at the nanoscale: planar defects in ZnO nanospikes By scripts.iucr.org Published On :: 2019-08-29 The examination of anisotropic nanostructures, such as wires, platelets or spikes, inside a transmission electron microscope is normally performed only in plan view. However, intrinsic defects such as growth twin interfaces could occasionally be concealed from direct observation for geometric reasons, leading to superposition. This article presents the shadow-focused ion-beam technique to prepare multiple electron-beam-transparent cross-section specimens of ZnO nanospikes, via a procedure which could be readily extended to other anisotropic structures. In contrast with plan-view data of the same nanospikes, here the viewing direction allows the examination of defects without superposition. By this method, the coexistence of two twin configurations inside the wurtzite-type structure is observed, namely [2 {overline 1} {overline 1} 0]^{ m W}/(0 1 {overline 1} 1) and [2 {overline 1} {overline 1} 0]^{ m W}/(0 1 {overline 1} 3), which were not identified during the plan-view observations owing to superposition of the domains. The defect arrangement could be the result of coalescence twinning of crystalline nuclei formed on the partially molten Zn substrate during the flame-transport synthesis. Three-dimensional defect models of the twin interface structures have been derived and are correlated with the plan-view investigations by simulation. Full Article text
pi Efficient data extraction from neutron time-of-flight spin-echo raw data By scripts.iucr.org Published On :: 2019-08-29 Neutron spin-echo spectrometers with a position-sensitive detector and operating with extended time-of-flight-tagged wavelength frames are able to collect a comprehensive set of data covering a large range of wavevector and Fourier time space with only a few instrumental settings in a quasi-continuous way. Extracting all the information contained in the raw data and mapping them to a suitable physical space in the most efficient way is a challenge. This article reports algorithms employed in dedicated software, DrSpine (data reduction for spin echo), that achieves this goal and yields reliable representations of the intermediate scattering function S(Q, t) independent of the selected `binning'. Full Article text
pi In meso crystallogenesis. Compatibility of the lipid cubic phase with the synthetic digitonin analogue, glyco-diosgenin By scripts.iucr.org Published On :: 2020-03-25 Digitonin has long been used as a mild detergent for extracting proteins from membranes for structure and function studies. As supplied commercially, digitonin is inhomogeneous and requires lengthy pre-treatment for reliable downstream use. Glyco-diosgenin (GDN) is a recently introduced synthetic surfactant with features that mimic digitonin. It is available in homogeneously pure form. GDN is proving to be a useful detergent, particularly in the area of single-particle cryo-electron microscopic studies of membrane integral proteins. With a view to using it as a detergent for crystallization trials by the in meso or lipid cubic phase method, it was important to establish the carrying capacity of the cubic mesophase for GDN. This was quantified in the current study using small-angle X-ray scattering for mesophase identification and phase microstructure characterization as a function of temperature and GDN concentration. The data show that the lipid cubic phase formed by hydrated monoolein tolerates GDN to concentrations orders of magnitude in excess of those used for membrane protein studies. Thus, having GDN in a typical membrane protein preparation should not deter use of the in meso method for crystallogenesis. Full Article text
pi Usefulness of oils for cleaning the host matrix and for cryoprotection of lipidic cubic phase crystals By journals.iucr.org Published On :: Several oils were examined for use in the cleaning and cryoprotection of crystals in the lipidic cubic phase in terms of their effect on the crystal stability, the background scattering and the facilitation of the experiment. Full Article text
pi High-resolution phonon energy shift measurements with the inelastic neutron spin echo technique By journals.iucr.org Published On :: An energy resolution of <10 µeV for the measurement of phonon energy change is achieved with the inelastic neutron spin echo technique on a conventional neutron triple-axis spectrometer. Full Article text
pi Small-angle neutron scattering (SANS) and spin-echo SANS measurements reveal the logarithmic fractal structure of the large-scale chromatin organization in HeLa nuclei By journals.iucr.org Published On :: This paper reports on the two-scale fractal structure of chromatin organization in the nucleus of the HeLa cell. Full Article text
pi Accurate high-resolution single-crystal diffraction data from a Pilatus3 X CdTe detector By journals.iucr.org Published On :: Detailed analysis of the high-flux deficiencies of pixel-array detectors leads to a protocol for the measurement of structure factors of unprecedented accuracy even for inorganic materials, and this significantly advances the prospects for experimental electron-density investigations. Full Article text
pi Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace By journals.iucr.org Published On :: This article presents the capability of the QMAX furnace, devoted to reciprocal space mapping through X-ray scattering at high temperature up to 2000 K. Full Article text
pi Takagi–Taupin dynamical X-ray diffraction simulations of asymmetric X-ray diffraction from crystals: the effects of surface undulations By journals.iucr.org Published On :: Dynamical X-ray diffraction simulations of very asymmetric diffraction from single crystals of silicon were made to accompany an experimental rocking-curve topography study reported in a seperate paper. Effects on rocking curves were found and are reported. The development of Uragami [(1969), J. Phys. Soc. Jpn, 27, 147–154] for Takagi–Taupin simulations was followed and applied to the case of both convex and concave surface undulations. Full Article text