ess

High-pressure synthesis and crystal structure of SrGa4As4

Strontium tetra­gallate(II,III) tetra­arsenide, SrGa4As4, was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8 GPa and 1573 K. The com­pound crystallizes in a new structure type (P3221, Z = 3) as a three-dimensional (3D) framework of corner-sharing SrAs8 quadratic anti­prisms with strontium situated on a twofold rotation axis (Wyckoff position 3b). This arrangement is surrounded by a 3D framework which can be described as alternately stacked layers of either condensed GaIIIAs4 tetra­hedra or honeycomb-like layers built up from distorted ethane-like GaII2As6 units com­prising Ga—Ga bonds.




ess

Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185.




ess

Compressive strain formation in surface-damaged crystals

The mechanism of formation of residual strain in crystals with a damaged surface has been studied by transmission electron microscopy in GaAs wafers ground with sandpaper. The samples showed a dislocation network located near the sample surface penetrating to a depth of a few micrometres, comparable to the size of abrasive particles used for the treatment, and no other types of defects were observed. A simple model for the formation of a compressive strain induced by the dislocation network in the damaged layer is proposed, in satisfactory agreement with the measured strain. The strain is generated by the formation of dislocation half-loops at the crystal surface, having the same component of the Burgers vectors parallel to the surface of the crystal. This is equivalent to the insertion of extra half-planes from the crystal surface to the depth of the damaged zone. This model can be generalized for other crystal structures. An approximate calculation of the strain generated from the observed dislocation distribution in the sample agrees with the proposed model and permits the conclusion that this mechanism is in general sufficient to explain the observed compressive strain, without the need to consider other types of defects.




ess

X-ray magnetic diffraction under high pressure

Advances in both non-resonant and resonant X-ray magnetic diffraction since the 1980s have provided researchers with a powerful tool for exploring the spin, orbital and ion degrees of freedom in magnetic solids, as well as parsing their interplay. Here, we discuss key issues for performing X-ray magnetic diffraction on single-crystal samples under high pressure (above 40 GPa) and at cryogenic temperatures (4 K). We present case studies of both non-resonant and resonant X-ray magnetic diffraction under pressure for a spin-flip transition in an incommensurate spin-density-wave material and a continuous quantum phase transition of a commensurate all-in–all-out antiferromagnet. Both cases use diamond-anvil-cell technologies at third-generation synchrotron radiation sources. In addition to the exploration of the athermal emergence and evolution of antiferromagnetism discussed here, these techniques can be applied to the study of the pressure evolution of weak charge order such as charge-density waves, antiferro-type orbital order, the charge anisotropic tensor susceptibility and charge superlattices associated with either primary spin order or softened phonons.




ess

A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples

The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology.




ess

Structural insights into stressosome assembly

The stressosome transduces environmental stress signals to SigB to upregulate SigB-dependent transcription, which is required for bacterial viability. The stressosome core is composed of RsbS and at least one of the RsbR paralogs. A previous cryo-electron microscopy (cryo-EM) structure of the RsbRA–RsbS complex determined under a D2 symmetry restraint showed that the stressosome core forms a pseudo-icosahedron consisting of 60 STAS domains of RsbRA and RsbS. However, it is still unclear how RsbS and one of the RsbR paralogs assemble into the stressosome. Here, an assembly model of the stressosome is presented based on the crystal structure of the RsbS icosahedron and cryo-EM structures of the RsbRA–RsbS complex determined under diverse symmetry restraints (nonsymmetric C1, dihedral D2 and icosahedral I envelopes). 60 monomers of the crystal structure of RsbS fitted well into the I-restrained cryo-EM structure determined at 4.1 Å resolution, even though the STAS domains in the I envelope were averaged. This indicates that RsbS and RsbRA share a highly conserved STAS fold. 22 protrusions observed in the C1 envelope, corresponding to dimers of the RsbRA N-domain, allowed the STAS domains of RsbRA and RsbS to be distinguished in the stressosome core. Based on these, the model of the stressosome core was reconstructed. The mutation of RsbRA residues at the binding interface in the model (R189A/Q191A) significantly reduced the interaction between RsbRA and RsbS. These results suggest that nonconserved residues in the conserved STAS folds between RsbS and RsbR paralogs determine stressosome assembly.




ess

High-pressure polymorphism in pyridine

Single crystals of the high-pressure phases II and III of pyridine have been obtained by in situ crystallization at 1.09 and 1.69 GPa, revealing the crystal structure of phase III for the first time using X-ray diffraction. Phase II crystallizes in P212121 with Z' = 1 and phase III in P41212 with Z' = ½. Neutron powder diffraction experiments using pyridine-d5 establish approximate equations of state of both phases. The space group and unit-cell dimensions of phase III are similar to the structures of other simple compounds with C2v molecular symmetry, and the phase becomes stable at high pressure because it is topologically close-packed, resulting in a lower molar volume than the topologically body-centred cubic phase II. Phases II and III have been observed previously by Raman spectroscopy, but have been mis-identified or inconsistently named. Raman spectra collected on the same samples as used in the X-ray experiments establish the vibrational characteristics of both phases unambiguously. The pyridine molecules interact in both phases through CH⋯π and CH⋯N interactions. The nature of individual contacts is preserved through the phase transition between phases III and II, which occurs on decompression. A combination of rigid-body symmetry mode analysis and density functional theory calculations enables the soft vibrational lattice mode which governs the transformation to be identified.




ess

The predictive power of data-processing statistics

This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant.




ess

Experimental charge density of grossular under pressure – a feasibility study

X-ray diffraction studies of crystals under pressure and quantitative experimental charge density analysis are among the most demanding types of crystallographic research. A successful feasibility study of the electron density in the mineral grossular under 1 GPa pressure conducted at the CRISTAL beamline at the SOLEIL synchrotron is presented in this work. A single crystal was placed in a diamond anvil cell, but owing to its special design (wide opening angle), short synchrotron wavelength and the high symmetry of the crystal, data with high completeness and high resolution were collected. This allowed refinement of a full multipole model of experimental electron distribution. Results are consistent with the benchmark measurement conducted without a diamond-anvil cell and also with the literature describing investigations of similar structures. Results of theoretical calculations of electron density distribution on the basis of dynamic structure factors mimic experimental findings very well. Such studies allow for laboratory simulations of processes which take place in the Earth's mantle.




ess

Expression and interactions of stereochemically active lone pairs and their relation to structural distortions and thermal conductivity

In chemistry, stereochemically active lone pairs are typically described as an important non-bonding effect, and recent interest has centred on understanding the derived effect of lone pair expression on physical properties such as thermal conductivity. To manipulate such properties, it is essential to understand the conditions that lead to lone pair expression and provide a quantitative chemical description of their identity to allow comparison between systems. Here, density functional theory calculations are used first to establish the presence of stereochemically active lone pairs on antimony in the archetypical chalcogenide MnSb2O4. The lone pairs are formed through a similar mechanism to those in binary post-transition metal compounds in an oxidation state of two less than their main group number [e.g. Pb(II) and Sb(III)], where the degree of orbital interaction (covalency) determines the expression of the lone pair. In MnSb2O4 the Sb lone pairs interact through a void space in the crystal structure, and their their mutual repulsion is minimized by introducing a deflection angle. This angle increases significantly with decreasing Sb—Sb distance introduced by simulating high pressure, thus showing the highly destabilizing nature of the lone pair interactions. Analysis of the chemical bonding in MnSb2O4 shows that it is dominated by polar covalent interactions with significant contributions both from charge accumulation in the bonding regions and from charge transfer. A database search of related ternary chalcogenide structures shows that, for structures with a lone pair (SbX3 units), the degree of lone pair expression is largely determined by whether the antimony–chalcogen units are connected or not, suggesting a cooperative effect. Isolated SbX3 units have larger X—Sb—X bond angles and therefore weaker lone pair expression than connected units. Since increased lone pair expression is equivalent to an increased orbital interaction (covalent bonding), which typically leads to increased heat conduction, this can explain the previously established correlation between larger bond angles and lower thermal conductivity. Thus, it appears that for these chalcogenides, lone pair expression and thermal conductivity may be related through the degree of covalency of the system.





ess

Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion

Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set.




ess

What is the structural chemistry of the living organism at its temperature and pressure?

The three probes of the structure of matter (X-rays, neutrons and electrons) in biology have complementary properties and strengths. The balance between these three probes within their strengths and weaknesses is perceived to change, even dramatically so at times. For the study of combined states of order and disorder, NMR crystallography is also applicable. Of course, to understand biological systems the required perspectives are surely physiologically relevant temperatures and relevant chemical conditions, as well as a minimal perturbation owing to the needs of the probe itself. These remain very tough challenges because, for example, cryoEM by its very nature will never be performed at room temperature, crystallization often requires nonphysiological chemical conditions, and X-rays and electrons cause beam damage. However, integrated structural biology techniques and functional assays provide a package towards physiological relevance of any given study. Reporting of protein crystal structures, and their associated database entries, could usefully indicate how close to the biological situation they are, as discussed in detail in this feature article.




ess

Open-access and free articles in Acta Crystallographica Section D: Biological Crystallography




ess

Pressure-induced transformation of CH3NH3PbI3: the role of the noble-gas pressure transmitting media

The photovoltaic perovskite, methyl­ammonium lead triiodide [CH3NH3PbI3 (MAPbI3)], is one of the most efficient materials for solar energy conversion. Various kinds of chemical and physical modifications have been applied to MAPbI3 towards better understanding of the relation between composition, structure, electronic properties and energy conversion efficiency of this material. Pressure is a particularly useful tool, as it can substantially reduce the interatomic spacing in this relatively soft material and cause significant modifications to the electronic structure. Application of high pressure induces changes in the crystal symmetry up to a threshold level above which it leads to amorphization. Here, a detailed structural study of MAPbI3 at high hydro­static pressures using Ne and Ar as pressure transmitting media is reported. Single-crystal X-ray diffraction experiments with synchrotron radiation at room temperature in the 0–20 GPa pressure range show that atoms of both gaseous media, Ne and Ar, are gradually incorporated into MAPbI3, thus leading to marked structural changes of the material. Specifically, Ne stabilizes the high-pressure phase of NexMAPbI3 and prevents amorphization up to 20 GPa. After releasing the pressure, the crystal has the composition of Ne0.97MAPbI3, which remains stable under ambient conditions. In contrast, above 2.4 GPa, Ar accelerates an irreversible amorphization. The distinct impacts of Ne and Ar are attributed to differences in their chemical reactivity under pressure inside the restricted space between the PbI6 octahedra.




ess

Fast continuous measurement of synchrotron powder diffraction synchronized with controlling gas and vapour pressures at beamline BL02B2 of SPring-8

A gas- and vapour-pressure control system synchronized with the continuous data acquisition of millisecond high-resolution powder diffraction measurements was developed to study structural change processes in gas storage and reaction materials such as metal organic framework compounds, zeolite and layered double hydroxide. The apparatus, which can be set up on beamline BL02B2 at SPring-8, mainly comprises a pressure control system of gases and vapour, a gas cell for a capillary sample, and six one-dimensional solid-state (MYTHEN) detectors. The pressure control system can be remotely controlled via developed software connected to a diffraction measurement system and can be operated in the closed gas and vapour line system. By using the temperature-control system on the sample, high-resolution powder diffraction data can be obtained under gas and vapour pressures ranging from 1 Pa to 130 kPa in temperatures ranging from 30 to 1473 K. This system enables one to perform automatic and high-throughput in situ X-ray powder diffraction experiments even at extremely low pressures. Furthermore, this developed system is useful for studying crystal structures during the adsorption/desorption processes, as acquired by millisecond and continuous powder diffraction measurements. The acquisition of diffraction data can be synchronized with the control of the pressure with a high frame rate of up to 100 Hz. In situ and time-resolved powder diffraction measurements are demonstrated for nanoporous Cu coordination polymer in various gas and vapour atmospheres.




ess

ClickX: a visualization-based program for preprocessing of serial crystallography data

Serial crystallography is a powerful technique in structure determination using many small crystals at X-ray free-electron laser or synchrotron radiation facilities. The large diffraction data volumes require high-throughput software to preprocess the raw images for subsequent analysis. ClickX is a program designated for serial crystallography data preprocessing, capable of rapid data sorting for online feedback and peak-finding refinement by parameter optimization. The graphical user interface (GUI) provides convenient access to various operations such as pattern visualization, statistics plotting and parameter tuning. A batch job module is implemented to facilitate large-data-volume processing. A two-step geometry calibration for single-panel detectors is also integrated into the GUI, where the beam center and detector tilting angles are optimized using an ellipse center shifting method first, then all six parameters, including the photon energy and detector distance, are refined together using a residual minimization method. Implemented in Python, ClickX has good portability and extensibility, so that it can be installed, configured and used on any computing platform that provides a Python interface or common data file format. ClickX has been tested in online analysis at the Pohang Accelerator Laboratory X-ray Free-Electron Laser, Korea, and the Linac Coherent Light Source, USA. It has also been applied in post-experimental data analysis. The source code is available via https://github.com/LiuLab-CSRC/ClickX under a GNU General Public License.




ess

High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure

A sample-injection device has been developed at SPring-8 Angstrom Compact Free-Electron Laser (SACLA) for serial femtosecond crystallography (SFX) at atmospheric pressure. Microcrystals embedded in a highly viscous carrier are stably delivered from a capillary nozzle with the aid of a coaxial gas flow and a suction device. The cartridge-type sample reservoir is easily replaceable and facilitates sample reloading or exchange. The reservoir is positioned in a cooling jacket with a temperature-regulated water flow, which is useful to prevent drastic changes in the sample temperature during data collection. This work demonstrates that the injector successfully worked in SFX of the human A2A adenosine receptor complexed with an antagonist, ZM241385, in lipidic cubic phase and for hen egg-white lysozyme microcrystals in a grease carrier. The injection device has also been applied to many kinds of proteins, not only for static structural analyses but also for dynamics studies using pump–probe techniques.




ess

Successful sample preparation for serial crystallography experiments

Serial crystallography, at both synchrotron and X-ray free-electron laser light sources, is becoming increasingly popular. However, the tools in the majority of crystallization laboratories are focused on producing large single crystals by vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron crystallography. This paper presents several case studies and some ideas and strategies on how to perform the conversion from a single crystal grown by vapour diffusion to the many thousands of micro-crystals required for modern serial crystallography grown by batch crystallization. These case studies aim to show (i) how vapour diffusion conditions can be converted into batch by optimizing the length of time crystals take to appear; (ii) how an understanding of the crystallization phase diagram can act as a guide when designing batch crystallization protocols; and (iii) an accessible methodology when attempting to scale batch conditions to larger volumes. These methods are needed to minimize the sample preparation gap between standard rotation crystallography and dedicated serial laboratories, ultimately making serial crystallography more accessible to all crystallographers.




ess

Usefulness of oils for cleaning the host matrix and for cryoprotection of lipidic cubic phase crystals

Several oils were examined for use in the cleaning and cryoprotection of crystals in the lipidic cubic phase in terms of their effect on the crystal stability, the background scattering and the facilitation of the experiment.




ess

Diffracting-grain identification from electron backscatter diffraction maps during residual stress measurements: a comparison between the sin2ψ and cosα methods

The sin2ψ and cosα methods are compared via diffracting-grain identification from electron backscatter diffraction maps. Artificial textures created by the X-ray diffraction measurements are plotted and X-ray elastic constants of the diffracting-grain sets are computed.




ess

The Philosophy of Science – A Companion. Edited by Anouk Baberousse, Denis Bonnay and Mikael Cozic. Oxford University Press, 2018. Pp. 768. Price GBP 64.00. ISBN-13 9780190690649.

Book review




ess

Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185.

Book review




ess

A closer look at superionic phase transition in (NH4)4H2(SeO4)3: impedance spectroscopy under pressure

The proton-conducting material (NH4)4H2(SeO4)3 is examined to check whether its conductivity spectra are sensitive to subtle changes in the crystal structure and proton dynamics caused by external pressure. The AC conductivity was measured using impedance spectroscopy, in the frequency range from 100 Hz to 1 MHz, at temperatures 260 K < T < 400 K and pressures 0.1 MPa < p < 500 MPa. On the basis of the impedance spectra, carefully analyzed at different thermodynamic conditions, the p–T phase diagram of the crystal is constructed. It is found to be linear in the pressure range of the experiment, with the pressure coefficient value dTs/dp = −0.023 K MPa−1. The hydrostatic pressure effect on proton conductivity is also presented and discussed. Measurements of the electrical conductivity versus time were performed at a selected temperature T = 352.3 K and at pressures 0.1 MPa < p < 360 MPa. At fixed thermodynamic conditions (p = 302 MPa, T = 352.3 K), the sluggish solid–solid transformation from low conducting to superionic phase was induced. It is established that the kinetics of this transformation can be described by the Avrami model with an effective Avrami index value of about 4, which corresponds to the classical value associated with the homogeneous nucleation and three-dimensional growth of a new phase.




ess

A closer look at superionic phase transition in (NH4)4H2(SeO4)3: impedance spectroscopy under pressure

The proton-conducting crystal (NH4)4H2(SeO4)3 is examined to check whether its conductivity spectra and the phase transition to the superprotonic phase are sensitive to subtle changes in the crystal structure and proton dynamics caused by various thermodynamic conditions. It is established that the kinetics of this transformation can be described using the Avrami model with an effective Avrami index value associated with homogeneous nucleation and three-dimensional growth of a new phase.




ess

An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization

The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 Å resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = β = γ = 90°.




ess

Rv0100, a proposed acyl carrier protein in Mycobacterium tuberculosis: expression, purification and crystallization. Corrigendum

The true identity of the protein found in the crystals reported by Bondoc et al. [(2019), Acta Cryst. F75, 646–651] is given.




ess

Open-access and free articles in Acta Crystallographica Section F: Structural Biology and Crystallization Communications




ess

Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome

Eleven bats remain in the National Zoo’s colony. The initial challenge the team faced was how to feed the animals. Virginia big-eared bats, which are a subspecies of the Townsend’s big-eared bat (Corynorhinuss townsendii), eat while flying.

The post Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome appeared first on Smithsonian Insider.




ess

Clay vessels by Native American potter Jeri Redcorn added to Smithsonian collections

The Caddo people of Arkansas, Louisiana, Texas and Oklahoma have maintained many of their traditional ways and actively work to preserve their unique tribal cultural today. One example is the pottery of Jeri Redcorn.

The post Clay vessels by Native American potter Jeri Redcorn added to Smithsonian collections appeared first on Smithsonian Insider.




ess

National Zoo scientists successfully grow two species of anemones in aquarium tanks

The anemones—both of which are commonly called Tealia red anemones under the species of Urticina—spawned in late April and early May, just days apart. Henley collected the eggs and sperm from the more than 2,000-gallon tank and put them together in smaller tanks to increase the chances of fertilization. After fertilization, the larvae settled and metamorphosed into a polyp.

The post National Zoo scientists successfully grow two species of anemones in aquarium tanks appeared first on Smithsonian Insider.




ess

Shera, a 5-year-old lioness at the National Zoological Park

On Aug, 31, the Smithsonian’s National Zoo welcomed this year’s second litter of African lion (Panthera leo) cubs. Five-year-old Shera (shown at right) gave birth […]

The post Shera, a 5-year-old lioness at the National Zoological Park appeared first on Smithsonian Insider.




ess

Suitor’s gentle massage soothes aggressive, cannibalistic female spiders, researchers find

A new study by a team of scientists from the Smithsonian’s National Museum of Natural History, the National University of Singapore and the Slovenian Academy of Sciences and Arts have unlocked the secret to mate binding in orb web spiders, and revealed just how it calms the cannibalistic female spider.

The post Suitor’s gentle massage soothes aggressive, cannibalistic female spiders, researchers find appeared first on Smithsonian Insider.




ess

Fossil feathers from a Hawaiian cave help reveal lineage of extinct, flightless ibis

Ornithologists Carla Dove and Storrs Olson used 700- to 1,100-year-old feathers from a long extinct species of Hawaiian ibis to help determine the bird’s place in the ibis family tree. The feathers are the only known plumage of any of the prehistorically extinct birds that once inhabited the Hawaiian Islands.

The post Fossil feathers from a Hawaiian cave help reveal lineage of extinct, flightless ibis appeared first on Smithsonian Insider.




ess

Kiwi chick hatching a success at the National Zoo

A member of one of the world’s most endangered species—the brown kiwi (Apteryx mantelli)—successfully hatched at the Smithsonian’s National Zoo’s Bird House Dec. 11 at 10:25 a.m. The egg was laid Oct. 1 and keepers began looking for signs of the chick hatching starting in early December. The chick is the sixth kiwi successfully hatched at the National Zoo.

The post Kiwi chick hatching a success at the National Zoo appeared first on Smithsonian Insider.




ess

Astronomers witness black hole outburst in Spiral Galaxy M83

An extraordinary outburst produced by a black hole in a nearby galaxy has provided direct evidence for a population of old, volatile stellar black holes.

The post Astronomers witness black hole outburst in Spiral Galaxy M83 appeared first on Smithsonian Insider.




ess

Dying star illuminates distant galaxy, lifting veil of interstellar darkness for astronomers

The dying star, which lit the galactic scene, is the most distant stellar explosion of its kind ever studied.

The post Dying star illuminates distant galaxy, lifting veil of interstellar darkness for astronomers appeared first on Smithsonian Insider.




ess

Small migratory birds age faster in stressful places, study reveals

Small migratory male birds that winter in a stressful environment age faster than those that winter in a high-quality habitat, according to research stemming from […]

The post Small migratory birds age faster in stressful places, study reveals appeared first on Smithsonian Insider.




ess

Success in breeding endangered frogs!

The limosa harlequin frog (Atelopus limosus), an endangered species native to Panama, now has a new lease on life. The Panama Amphibian Rescue and Conservation […]

The post Success in breeding endangered frogs! appeared first on Smithsonian Insider.




ess

Forest corridors essential to gene flow in India’s leopard and tiger populations

As economic expansion and development fragments the forest landscape of central India, the species that rely on that habitat—including endangered tigers and leopards—face dwindling populations […]

The post Forest corridors essential to gene flow in India’s leopard and tiger populations appeared first on Smithsonian Insider.




ess

Success: Panama’s golden frog bred in captivity

The Panama Amphibian Rescue and Conservation project recently announced that the golden frog, a national icon on the brink of extinction, has been successfully raised […]

The post Success: Panama’s golden frog bred in captivity appeared first on Smithsonian Insider.





ess

“The State of the Birds” assesses health of nation’s birds

One hundred years after the extinction of the passenger pigeon, the nation’s top bird science and conservation groups have come together to publish The State […]

The post “The State of the Birds” assesses health of nation’s birds appeared first on Smithsonian Insider.




ess

Clouded leopards, from crisis to success: Q&A with Janine Brown

The clouded leopard, a native of Southeast Asia, is among the most charismatic, secretive and least understood cat species in the world. In 2002, the […]

The post Clouded leopards, from crisis to success: Q&A with Janine Brown appeared first on Smithsonian Insider.




ess

Urban Nestwatch: A bird in hand awakens a lifetime of wildlife awareness

Firm though it was, Kaitlyn Wilson’s gentle grip on the rust-brown female cardinal didn’t stop the bird from twisting its head around to deliver a […]

The post Urban Nestwatch: A bird in hand awakens a lifetime of wildlife awareness appeared first on Smithsonian Insider.




ess

Gold nanotechnology and lasers used to successfully freeze fish embryos

For more than 60 years, researchers have tried to successfully cryopreserve (or freeze) the embryo of zebrafish, a species that is an important medical model […]

The post Gold nanotechnology and lasers used to successfully freeze fish embryos appeared first on Smithsonian Insider.




ess

Scientists surprised by relentless cosmic cold front

This winter has brought many intense and powerful storms, with cold fronts sweeping across much of the United States. On a much grander scale, astronomers […]

The post Scientists surprised by relentless cosmic cold front appeared first on Smithsonian Insider.



  • Science & Nature
  • Space
  • Spotlight
  • Center for Astrophysics | Harvard & Smithsonian
  • Chandra X-Ray Observatory
  • Smithsonian Astrophysical Observatory

ess

Windows server 2012 r2 cant access imap server in outlook




ess

Restrict user access to MMC snap-ins GPO