on

Red Hat's Virtual Summit Crowds Hint at Future Conference Models

In what could be a trial run for more of the same, Red Hat last week held a first-ever virtual technical summit to spread the word about its latest cloud tech offerings. CEO Paul Cormier welcomed online viewers to the conference, which attracted more than 80,000 virtual attendees. The company made several key announcements during the online gathering and highlighted customer innovations.




on

Information Security: New Rules

Warren Buffet once said, "Only when the tide goes out do you discover who's been swimming naked." You can cover over a host of sins when times are good, but bad or unsafe practices will be exposed when times are rough. Time and experience have borne out the accuracy of this witticism in the financial arena -- and we're now seeing its applicability to the intersection of infosec and COVID-19.




on

4 Sales Presentation Innovations That Keep Viewers on the Edge of Their Seats

People have been giving presentations for thousands of years, from Moses with his stone tablets to Elon Musk revealing his grand plans to colonize Mars. While the elements of a great pitchman generally have remained the same over the past 5,000 years -- conviction, charisma, credibility -- today's successful presenters do more than just get in front of an audience and talk.




on

How AI Can Improve Customer Retention

Customer attrition and churn are not new problems. Anyone who has spent time in the sales world has heard statistics around the cost of acquiring a new customer. It can be five to 25 times more expensive to acquire a new customer than to retain an existing one. Improving customer retention by just 5 percent can increase profits by 25-95 percent, depending on your industry and company size.




on

Merchants Now Can List Products on Google Shopping for Free

Merchants soon will be able to sell products on Google Shopping at no charge. Previously, they had to pay per click, but the cost was not fixed. There was no minimum, but they had to set a maximum for ad spend and Google would stop displaying their ads once the maximum was reached. Starting next week, search results on the Google Shopping tab will consist primarily of free product listings.




on

Contact Tracing With Salesforce

Contact tracing is a big job, like trying to drain an ocean with a teaspoon. It involves finding people who have been exposed to the coronavirus and testing them to determine if they are infected or are carriers. Public health officials then can take necessary steps to prevent the virus' spread. It's a perfect fit for CRM, and Salesforce's core technology is coming to the forefront.




on

4 Things You Need to Know for Successful Enterprise CRM Integration

The enterprise IT environment is complex. Many systems, technologies and practices developed at various times coexist in the same world. With expectations for technological advancements at their peak, we're tasked with enabling these systems to work together harmoniously to support the continuous sharing of information. Systems and data must connect as if all information were native to each.




on

Cultural CRM-ization

You can reduce the story of CRM to a lot of things, especially its many component parts. Social networking, cloud computing and analytics are mentioned often. We don't need an exhaustive list, but if we stop there I think we miss a lot. To me CRM isn't about the parts, although like most people following the industry, I get a modicum of joy when a vendor adds something new to the toolbox.




on

Health Insurance, Banking, Oil Industries Met with Koch, Chamber, Glenn Beck to Plot 2010 Election




on

Frank Rich: The Rage Won't End on Election Day




on

Rod Watson: Collins keeps grabbing, but we just watch




on

Jon Stewart Sings: "Fox News, Go Fuck Yourselves"




on

The lawyer who laundered political contributions




on

Donations Dropped 11% at Nation's Biggest Charities Last Year




on

Bruce Jackson: Where the Buffalo went.




on

The Lord Is Not On Trial Here Today




on

You Don't Know Jack Soo




on

An American Family: Anniversary Edition




on

The Hayloft Gang: The Story of the National Barn Dance




on

Shipping Information






on

SHI to sponsor lecture on totem parks of Southeast Alaska




on

Missed our lecture on Southeast totem parks?




on

Art at Jineit goes online!




on

Students get hooked on salmon




on

The inflation conundrum in advanced economies and a way out

Paper by Mr Luiz Awazu Pereira da Silva, Deputy General Manager of the BIS, Enisse Kharroubi, Emanuel Kohlscheen and Benoît Mojon based on remarks at the University of Basel, 5 May 2019.




on

Monetary policy: 10 years after the financial crisis

Speech by Mr Agustín Carstens, General Manager of the BIS, to the Basler Bankenforum, Basel, 5 September 2019.




on

The quest for financial integration in Europe and globally

Speech by Mr Agustín Carstens, General Manager of the BIS, at the Eurofi Financial Forum, Helsinki, 12 September 2019.




on

Crisis management framework: what remains to be done?

Welcoming remarks by Mr Fernando Restoy, Chairman, Financial Stability Institute, Bank for International Settlements, at the FSI-IADI conference on crisis management, resolution and deposit insurance: what's next and how to prepare, Basel, 4 September 2019.




on

Central bank innovation - from Switzerland to the world

Speech by Mr Agustín Carstens, General Manager of the BIS, at the Founding Ceremony, Swiss Centre BIS Innovation Hub, Zurich, 8 October 2019.




on

Regulating fintech: what is going on, and where are the challenges?

Speech by Mr Fernando Restoy, Chairman, Financial Stability Institute, Bank for International Settlements, at the ASBA-BID-FELABAN XVI Banking public-private sector regional policy dialogue "Challenges and opportunities in the new financial ecosystem", Washington DC, 16 October 2019.




on

Vulnerabilities in the international monetary and financial system

Speech by Mr Claudio Borio, Head of the Monetary and Economic Department of the BIS, at the OECD-G20 High Level Policy Seminar, Paris, 11 September 2019.




on

Wise fiscal policy is not about helicopter money

Op-ed by Mr Claudio Borio, Head of the Monetary and Economic Department of the BIS, published in Il Sole 24 Ore, 8 November 2019.




on

The changing colour of money - new directions for payment systems, currencies

Op-ed by Mr Agustín Carstens, General Manager of the BIS, published in The Business Times Singapore, 13 November 2019.




on

Data, technology and policy coordination

Keynote speech by Mr Agustín Carstens, General Manager of the BIS, at the 55th SEACEN Governors' Conference and High-level Seminar on "Data and technology: embracing innovation", Singapore, 14 November 2019.




on

Welfare implications of digital financial innovation

Based on remarks by Mr Luiz Awazu Pereira da Silva, Deputy General Manager of the BIS, with Jon Frost and Leonardo Gambacorta at the Santander International Banking Conference on "Banking on trust: Building confidence in the future", Madrid, 5 November 2019.




on

The expectations on central banks are simply too great

Original quotes from interview with Mr Claudio Borio, Head of the Monetary and Economic Department of the BIS, in Germany's Boerzen-Zeitung, conducted by Mr Mark Schroers and published on 21 November 2019.




on

Lessons from 25 years of the Bank of Mexico's independence

Speech by Dr Agustín Carstens at the celebration of 25 years of Bank of Mexico independence, Mexico City, 22 November 2019.




on

The future of money and the payment system: what role for central banks?

Lecture by Mr Agustín Carstens, General Manager of the BIS, at the Princeton University, Princeton, New Jersey, 5 December 2019.




on

Exiting low inflation traps by "consensus": nominal wages and price stability

Exiting low inflation traps by "consensus": nominal wages and price stability - Speech by Luiz A Pereira da Silva and Benoît Mojon, based on the keynote speech at the Eighth High-level Policy Dialogue between the Eurosystem and Latin American Central Banks, Cartagena de Indias, Colombia, 28-29 November 2019.




on

Bold steps to pump coronavirus rescue funds down the last mile

Op-ed by Agustín Carstens published in the Financial Times on 29 March 2020.




on

[~21.8 MB mp3] A Leading Figure In The New Apostolic Reformation

Story: Several apostles affiliated with the movement helped organize or spoke at Rick Perry's recent prayer rally. A leading apostle, C. Peter Wagner, talks about the movement and its missions, which include acquiring leadership positions in government, the media, and arts and entertainment.




on

Deletion of a Neuronal Drp1 Activator Protects against Cerebral Ischemia

Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bβ2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo. Bβ2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bβ2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo. Last, deletion of Bβ2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bβ2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bβ2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.

SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bβ2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bβ2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bβ2 as a potential pharmacological target to protect the brain from stroke injury.




on

Fingolimod Rescues Demyelination in a Mouse Model of Krabbe's Disease

Krabbe's disease is an infantile neurodegenerative disease, which is affected by mutations in the lysosomal enzyme galactocerebrosidase, leading to the accumulation of its metabolite psychosine. We have shown previously that the S1P receptor agonist fingolimod (FTY720) attenuates psychosine-induced glial cell death and demyelination both in vitro and ex vivo models. These data, together with a lack of therapies for Krabbe's disease, prompted the current preclinical study examining the effects of fingolimod in twitcher mice, a murine model of Krabbe's disease. Twitcher mice, both male and female, carrying a natural mutation in the galc gene were given fingolimod via drinking water (1 mg/kg/d). The direct impact of fingolimod administration was assessed via histochemical and biochemical analysis using markers of myelin, astrocytes, microglia, neurons, globoid cells, and immune cells. The effects of fingolimod on twitching behavior and life span were also demonstrated. Our results show that treatment of twitcher mice with fingolimod significantly rescued myelin levels compared with vehicle-treated animals and also regulated astrocyte and microglial reactivity. Furthermore, nonphosphorylated neurofilament levels were decreased, indicating neuroprotective and neurorestorative processes. These protective effects of fingolimod on twitcher mice brain pathology was reflected by an increased life span of fingolimod-treated twitcher mice. These in vivo findings corroborate initial in vitro studies and highlight the potential use of S1P receptors as drug targets for treatment of Krabbe's disease.

SIGNIFICANCE STATEMENT This study demonstrates that the administration of the therapy known as fingolimod in a mouse model of Krabbe's disease (namely, the twitcher mouse model) significantly rescues myelin levels. Further, the drug fingolimod also regulates the reactivity of glial cells, astrocytes and microglia, in this mouse model. These protective effects of fingolimod result in an increased life span of twitcher mice.




on

Cross Recruitment of Domain-Selective Cortical Representations Enables Flexible Semantic Knowledge

Knowledge about objects encompasses not only their prototypical features but also complex, atypical, semantic knowledge (e.g., "Pizza was invented in Naples"). This fMRI study of male and female human participants combines univariate and multivariate analyses to consider the cortical representation of this more complex semantic knowledge. Using the categories of food, people, and places, this study investigates whether access to spatially related geographic semantic knowledge (1) involves the same domain-selective neural representations involved in access to prototypical taste knowledge about food; and (2) elicits activation of neural representations classically linked to places when this geographic knowledge is accessed about food and people. In three experiments using word stimuli, domain-relevant and atypical conceptual access for the categories food, people, and places were assessed. Results uncover two principles of semantic representation: food-selective representations in the left insula continue to be recruited when prototypical taste knowledge is task-irrelevant and under conditions of high cognitive demand; access to geographic knowledge for food and people categories involves the additional recruitment of classically place-selective parahippocampal gyrus, retrosplenial complex, and transverse occipital sulcus. These findings underscore the importance of object category in the representation of a broad range of knowledge, while showing how the cross recruitment of specialized representations may endow the considerable flexibility of our complex semantic knowledge.

SIGNIFICANCE STATEMENT We know not only stereotypical things about objects (an apple is round, graspable, edible) but can also flexibly combine typical and atypical features to form complex concepts (the metaphorical role an apple plays in Judeo-Christian belief). In this fMRI study, we observe that, when atypical geographic knowledge is accessed about food dishes, domain-selective sensorimotor-related cortical representations continue to be recruited, but that regions classically associated with place perception are additionally engaged. This interplay between categorically driven representations, linked to the object being accessed, and the flexible recruitment of semantic stores linked to the content being accessed, provides a potential mechanism for the broad representational repertoire of our semantic system.




on

The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking

A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning.

SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner.




on

Task Errors Drive Memories That Improve Sensorimotor Adaptation

Traditional views of sensorimotor adaptation (i.e., adaptation of movements to perturbed sensory feedback) emphasize the role of automatic, implicit correction of sensory prediction errors. However, latent memories formed during sensorimotor adaptation, manifest as improved relearning (e.g., savings), have recently been attributed to strategic corrections of task errors (failures to achieve task goals). To dissociate contributions of task errors and sensory prediction errors to latent sensorimotor memories, we perturbed target locations to remove or enforce task errors during learning and/or test, with male/female human participants. Adaptation improved after learning in all conditions where participants were permitted to correct task errors, and did not improve whenever we prevented correction of task errors. Thus, previous correction of task errors was both necessary and sufficient to improve adaptation. In contrast, a history of sensory prediction errors was neither sufficient nor obligatory for improved adaptation. Limiting movement preparation time showed that the latent memories driven by learning to correct task errors take at least two forms: a time-consuming but flexible component, and a rapidly expressible, inflexible component. The results provide strong support for the idea that movement corrections driven by a failure to successfully achieve movement goals underpin motor memories that manifest as savings. Such persistent memories are not exclusively mediated by time-consuming strategic processes but also comprise a rapidly expressible but inflexible component. The distinct characteristics of these putative processes suggest dissociable underlying mechanisms, and imply that identification of the neural basis for adaptation and savings will require methods that allow such dissociations.

SIGNIFICANCE STATEMENT Latent motor memories formed during sensorimotor adaptation manifest as improved adaptation when sensorimotor perturbations are reencountered. Conflicting theories suggest that this "savings" is underpinned by different mechanisms, including a memory of successful actions, a memory of errors, or an aiming strategy to correct task errors. Here we show that learning to correct task errors is sufficient to show improved subsequent adaptation with respect to naive performance, even when tested in the absence of task errors. In contrast, a history of sensory prediction errors is neither sufficient nor obligatory for improved adaptation. Finally, we show that latent sensorimotor memories driven by task errors comprise at least two distinct components: a time-consuming, flexible component, and a rapidly expressible, inflexible component.




on

Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2+ Eurydendroid Neurons in Larval Zebrafish Cerebellum

The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning.

SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates.




on

Commutative Properties of Head Direction Cells during Locomotion in 3D: Are All Routes Equal?

Navigation often requires movement in three-dimensional (3D) space. Recent studies have postulated two different models for how head direction (HD) cells encode 3D space: the rotational plane hypothesis and the dual-axis model. To distinguish these models, we recorded HD cells in female rats while they traveled different routes along both horizontal and vertical surfaces from an elevated platform to the top of a cuboidal apparatus. We compared HD cell preferred firing directions (PFDs) in different planes and addressed the issue of whether HD cell firing is commutative—does the order of the animal's route affect the final outcome of the cell's PFD? Rats locomoted a direct or indirect route from the floor to the cube top via one, two, or three vertical walls. Whereas the rotational plane hypothesis accounted for PFD shifts when the animal traversed horizontal corners, the cell's PFD was better explained by the dual-axis model when the animal traversed vertical corners. Responses also followed the dual-axis model (1) under dark conditions, (2) for passive movement of the rat, (3) following apparatus rotation, (4) for movement around inside vertical corners, and (5) across a 45° outside vertical corner. The order in which the animal traversed the different planes did not affect the outcome of the cell's PFD, indicating that responses were commutative. HD cell peak firing rates were generally equivalent along each surface. These findings indicate that the animal's orientation with respect to gravity plays an important role in determining a cell's PFD, and that vestibular and proprioceptive cues drive these computations.

SIGNIFICANCE STATEMENT Navigating in a three-dimensional (3D) world is a complex task that requires one to maintain a proper sense of orientation relative to both local and global cues. Rodent head direction (HD) cells have been suggested to subserve this sense of orientation, but most HD cell studies have focused on navigation in 2D environments. We investigated the responses of HD cells as rats moved between multiple vertically and horizontally oriented planar surfaces, demonstrating that HD cells align their directional representations to both local (current plane of locomotion) and global (gravity) cues across several experimental conditions, including darkness and passive movement. These findings offer critical insights into the processing of 3D space in the mammalian brain.