cr

Molecular conformational evolution mechanism during nucleation of crystals in solution

Nucleation of crystals from solution is fundamental to many natural and industrial processes. In this work, the molecular mechanism of conformational polymorphism nucleation and the links between the molecular conformation in solutions and in crystals were investigated in detail by using 5-nitro­furazone as the model compound. Different polymorphs were prepared, and the conformations in solutions obtained by dissolving different polymorphs were analysed and compared. The solutions of 5-nitro­furazone were proven to contain multiple conformers through quantum chemical computation, Raman spectra analysis, 2D nuclear Overhauser effect spectroscopy spectra analysis and molecular dynamics simulation. The conformational evolution and desolvation path was illustrated according to the 1H NMR spectra of solutions with different concentrations. Finally, based on all the above analysis, the molecular conformational evolution path during nucleation of 5-nitro­furazone was illustrated. The results presented in this work shed a new light on the molecular mechanism of conformational polymorphism nucleation in solution.





cr

CM01: a facility for cryo-electron microscopy at the European Synchrotron

Recent improvements in direct electron detectors, microscope technology and software provided the stimulus for a `quantum leap' in the application of cryo-electron microscopy in structural biology, and many national and international centres have since been created in order to exploit this. Here, a new facility for cryo-electron microscopy focused on single-particle reconstruction of biological macromolecules that has been commissioned at the European Synchrotron Radiation Facility (ESRF) is presented. The facility is operated by a consortium of institutes co-located on the European Photon and Neutron Campus and is managed in a similar fashion to a synchrotron X-ray beamline. It has been open to the ESRF structural biology user community since November 2017 and will remain open during the 2019 ESRF–EBS shutdown.




cr

Structures of the transcriptional regulator BgaR, a lactose sensor

The structure of BgaR, a transcriptional regulator of the lactose operon in Clostridium perfringens, has been solved by SAD phasing using a mercury derivative. BgaR is an exquisite sensor of lactose, with a binding affinity in the low-micromolar range. This sensor and regulator has been captured bound to lactose and to lactulose as well as in a nominal apo form, and was compared with AraC, another saccharide-binding transcriptional regulator. It is shown that the saccharides bind in the N-terminal region of a jelly-roll fold, but that part of the saccharide is exposed to bulk solvent. This differs from the classical AraC saccharide-binding site, which is mostly sequestered from the bulk solvent. The structures of BgaR bound to lactose and to lactulose highlight how specific and nonspecific interactions lead to a higher binding affinity of BgaR for lactose compared with lactulose. Moreover, solving multiple structures of BgaR in different space groups, both bound to saccharides and unbound, verified that the dimer interface along a C-terminal helix is similar to the dimer interface observed in AraC.




cr

Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data

Current software tools for the automated building of models for macro­molecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution.




cr

Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68

Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.




cr

LAT1 (SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM

Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1–CD98hc, a HAT, transports essential amino acids and drugs across the blood–brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1–CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3–3.5 Å resolution [Yan et al. (2019), Nature (London), 568, 127–130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.




cr

Sequence assignment for low-resolution modelling of protein crystal structures

The performance of automated model building in crystal structure determination usually decreases with the resolution of the experimental data, and may result in fragmented models and incorrect side-chain assignment. Presented here are new methods for machine-learning-based docking of main-chain fragments to the sequence and for their sequence-independent connection using a dedicated library of protein fragments. The combined use of these new methods noticeably increases sequence coverage and reduces fragmentation of the protein models automatically built with ARP/wARP.




cr

Methods for merging data sets in electron cryo-microscopy

Recent developments have resulted in electron cryo-microscopy (cryo-EM) becoming a useful tool for the structure determination of biological macromolecules. For samples containing inherent flexibility, heterogeneity or preferred orientation, the collection of extensive cryo-EM data using several conditions and microscopes is often required. In such a scenario, merging cryo-EM data sets is advantageous because it allows improved three-dimensional reconstructions to be obtained. Since data sets are not always collected with the same pixel size, merging data can be challenging. Here, two methods to combine cryo-EM data are described. Both involve the calculation of a rescaling factor from independent data sets. The effects of errors in the scaling factor on the results of data merging are also estimated. The methods described here provide a guideline for cryo-EM users who wish to combine data sets from the same type of microscope and detector.




cr

Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices

Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp–Glu–Ser), Nematoda (Asp–Asp–His) and Echinodermata (Asp–Glu–Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers.




cr

Visualization of protein crystals by high-energy phase-contrast X-ray imaging

For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallo­graphy beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.




cr

Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix

Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method. Phenix is a comprehensive software package for macromolecular structure determination that handles data from any of these techniques. Tasks performed with Phenix include data-quality assessment, map improvement, model building, the validation/rebuilding/refinement cycle and deposition. Each tool caters to the type of experimental data. The design of Phenix emphasizes the automation of procedures, where possible, to minimize repetitive and time-consuming manual tasks, while default parameters are chosen to encourage best practice. A graphical user interface provides access to many command-line features of Phenix and streamlines the transition between programs, project tracking and re-running of previous tasks.




cr

Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion

Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set.




cr

Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.




cr

SAD phasing of XFEL data depends critically on the error model

A nonlinear least-squares method for refining a parametric expression describing the estimated errors of reflection intensities in serial crystallographic (SX) data is presented. This approach, which is similar to that used in the rotation method of crystallographic data collection at synchrotrons, propagates error estimates from photon-counting statistics to the merged data. Here, it is demonstrated that the application of this approach to SX data provides better SAD phasing ability, enabling the autobuilding of a protein structure that had previously failed to be built. Estimating the error in the merged reflection intensities requires the understanding and propagation of all of the sources of error arising from the measurements. One type of error, which is well understood, is the counting error introduced when the detector counts X-ray photons. Thus, if other types of random errors (such as readout noise) as well as uncertainties in systematic corrections (such as from X-ray attenuation) are completely understood, they can be propagated along with the counting error, as appropriate. In practice, most software packages propagate as much error as they know how to model and then include error-adjustment terms that scale the error estimates until they explain the variance among the measurements. If this is performed carefully, then during SAD phasing likelihood-based approaches can make optimal use of these error estimates, increasing the chance of a successful structure solution. In serial crystallography, SAD phasing has remained challenging, with the few examples of de novo protein structure solution each requiring many thousands of diffraction patterns. Here, the effects of different methods of treating the error estimates are estimated and it is shown that using a parametric approach that includes terms proportional to the known experimental uncertainty, the reflection intensity and the squared reflection intensity to improve the error estimates can allow SAD phasing even from weak zinc anomalous signal.




cr

Crystal structures of the Bacillus subtilis prophage lytic cassette proteins XepA and YomS

As part of the Virus-X Consortium that aims to identify and characterize novel proteins and enzymes from bacteriophages and archaeal viruses, the genes of the putative lytic proteins XepA from Bacillus subtilis prophage PBSX and YomS from prophage SPβ were cloned and the proteins were subsequently produced and functionally characterized. In order to elucidate the role and the molecular mechanism of XepA and YomS, the crystal structures of these proteins were solved at resolutions of 1.9 and 1.3 Å, respectively. XepA consists of two antiparallel β-sandwich domains connected by a 30-amino-acid linker region. A pentamer of this protein adopts a unique dumbbell-shaped architecture consisting of two discs and a central tunnel. YomS (12.9 kDa per monomer), which is less than half the size of XepA (30.3 kDa), shows homology to the C-terminal part of XepA and exhibits a similar pentameric disc arrangement. Each β-sandwich entity resembles the fold of typical cytoplasmic membrane-binding C2 domains. Only XepA exhibits distinct cytotoxic activity in vivo, suggesting that the N-terminal pentameric domain is essential for this biological activity. The biological and structural data presented here suggest that XepA disrupts the proton motive force of the cytoplasmatic membrane, thus supporting cell lysis.




cr

Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis




cr

Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device

Although microscopes and image-analysis software for electron cryomicroscopy (cryo-EM) have improved dramatically in recent years, specimen-preparation methods have lagged behind. Most strategies still rely on blotting microscope grids with paper to produce a thin film of solution suitable for vitrification. This approach loses more than 99.9% of the applied sample and requires several seconds, leading to problematic air–water interface interactions for macromolecules in the resulting thin film of solution and complicating time-resolved studies. Recently developed self-wicking EM grids allow the use of small volumes of sample, with nanowires on the grid bars removing excess solution to produce a thin film within tens of milliseconds from sample application to freezing. Here, a simple cryo-EM specimen-preparation device that uses components from an ultrasonic humidifier to transfer protein solution onto a self-wicking EM grid is presented. The device is controlled by a Raspberry Pi single-board computer and all components are either widely available or can be manufactured by online services, allowing the device to be constructed in laboratories that specialize in cryo-EM rather than instrument design. The simple open-source design permits the straightforward customization of the instrument for specialized experiments.




cr

Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix

The refinement of biomolecular crystallographic models relies on geometric restraints to help to address the paucity of experimental data typical in these experiments. Limitations in these restraints can degrade the quality of the resulting atomic models. Here, an integration of the full all-atom Amber molecular-dynamics force field into Phenix crystallographic refinement is presented, which enables more complete modeling of biomolecular chemistry. The advantages of the force field include a carefully derived set of torsion-angle potentials, an extensive and flexible set of atom types, Lennard–Jones treatment of nonbonded interactions and a full treatment of crystalline electrostatics. The new combined method was tested against conventional geometry restraints for over 22 000 protein structures. Structures refined with the new method show substantially improved model quality. On average, Ramachandran and rotamer scores are somewhat better, clashscores and MolProbity scores are significantly improved, and the modeling of electrostatics leads to structures that exhibit more, and more correct, hydrogen bonds than those refined using traditional geometry restraints. In general it is found that model improvements are greatest at lower resolutions, prompting plans to add the Amber target function to real-space refinement for use in electron cryo-microscopy. This work opens the door to the future development of more advanced applications such as Amber-based ensemble refinement, quantum-mechanical representation of active sites and improved geometric restraints for simulated annealing.




cr

How far are we from automatic crystal structure solution via molecular-replacement techniques?

Although the success of molecular-replacement techniques requires the solution of a six-dimensional problem, this is often subdivided into two three-dimensional problems. REMO09 is one of the programs which have adopted this approach. It has been revisited in the light of a new probabilistic approach which is able to directly derive conditional distribution functions without passing through a previous calculation of the joint probability distributions. The conditional distributions take into account various types of prior information: in the rotation step the prior information may concern a non-oriented model molecule alone or together with one or more located model molecules. The formulae thus obtained are used to derive figures of merit for recognizing the correct orientation in the rotation step and the correct location in the translation step. The phases obtained by this new version of REMO09 are used as a starting point for a pipeline which in its first step extends and refines the molecular-replacement phases, and in its second step creates the final electron-density map which is automatically interpreted by CAB, an automatic model-building program for proteins and DNA/RNA structures.




cr

Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Corrigendum

Corrections are published for the article by Caldararu et al. [(2019), Acta Cryst. D75, 368–380].




cr

Noncrystallographic symmetry-constrained map obtained by direct density optimization

Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.




cr

Development of SPACE-II for rapid sample exchange at SPring-8 macromolecular crystallography beamlines

Reducing the sample-exchange time is a crucial issue in maximizing the throughput of macromolecular crystallography (MX) beamlines because the diffraction data collection itself is completed within a minute in the era of pixel-array detectors. To this end, an upgraded sample changer, SPACE-II, has been developed on the basis of the previous model, SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), at the BL41XU beamline at SPring-8. SPACE-II achieves one sample-exchange step within 16 s, of which its action accounts for only 11 s, because of three features: (i) the implementation of twin arms that enable samples to be exchanged in one cycle of mount-arm action, (ii) the implementation of long-stroke mount arms that allow samples to be exchanged without withdrawal of the detector and (iii) the use of a fast-moving translation and rotation stage for the mount arms. By pre-holding the next sample prior to the sample-exchange sequence, the time was further decreased to 11 s in the case of automatic data collection, of which the action of SPACE-II accounted for 8 s. Moreover, the sample capacity was expanded from four to eight Uni-Pucks. The performance of SPACE-II has been demonstrated in over two years of operation at BL41XU; the average number of samples mounted on the diffractometer in one day was increased from 132 to 185, with an error rate of 0.089%, which counted incidents in which users could not continue with an experiment without recovery work by entering the experimental hutch. On the basis of these results, SPACE-II has been installed at three other MX beamlines at SPring-8 as of July 2019. The fast and highly reliable SPACE-II is now one of the most important pieces of infrastructure for the MX beamlines at SPring-8, providing users with the opportunity to fully make use of limited beamtime with brilliant X-rays.




cr

Extending the scope of coiled-coil crystal structure solution by AMPLE through improved ab initio modelling

The phase problem remains a major barrier to overcome in protein structure solution by X-ray crystallography. In recent years, new molecular-replacement approaches using ab initio models and ideal secondary-structure components have greatly contributed to the solution of novel structures in the absence of clear homologues in the PDB or experimental phasing information. This has been particularly successful for highly α-helical structures, and especially coiled-coils, in which the relatively rigid α-helices provide very useful molecular-replacement fragments. This has been seen within the program AMPLE, which uses clustered and truncated ensembles of numerous ab initio models in structure solution, and is already accomplished for α-helical and coiled-coil structures. Here, an expansion in the scope of coiled-coil structure solution by AMPLE is reported, which has been achieved through general improvements in the pipeline, the removal of tNCS correction in molecular replacement and two improved methods for ab initio modelling. Of the latter improvements, enforcing the modelling of elongated helices overcame the bias towards globular folds and provided a rapid method (equivalent to the time requirements of the existing modelling procedures in AMPLE) for enhanced solution. Further, the modelling of two-, three- and four-helical oligomeric coiled-coils, and the use of full/partial oligomers in molecular replacement, provided additional success in difficult and lower resolution cases. Together, these approaches have enabled the solution of a number of parallel/antiparallel dimeric, trimeric and tetrameric coiled-coils at resolutions as low as 3.3 Å, and have thus overcome previous limitations in AMPLE and provided a new functionality in coiled-coil structure solution at lower resolutions. These new approaches have been incorporated into a new release of AMPLE in which automated elongated monomer and oligomer modelling may be activated by selecting `coiled-coil' mode.




cr

Towards the spatial resolution of metalloprotein charge states by detailed modeling of XFEL crystallographic diffraction

Oxidation states of individual metal atoms within a metalloprotein can be assigned by examining X-ray absorption edges, which shift to higher energy for progressively more positive valence numbers. Indeed, X-ray crystallography is well suited for such a measurement, owing to its ability to spatially resolve the scattering contributions of individual metal atoms that have distinct electronic environments contributing to protein function. However, as the magnitude of the shift is quite small, about +2 eV per valence state for iron, it has only been possible to measure the effect when performed with monochromated X-ray sources at synchrotron facilities with energy resolutions in the range 2–3 × 10−4 (ΔE/E). This paper tests whether X-ray free-electron laser (XFEL) pulses, which have a broader bandpass (ΔE/E = 3 × 10−3) when used without a monochromator, might also be useful for such studies. The program nanoBragg is used to simulate serial femtosecond crystallography (SFX) diffraction images with sufficient granularity to model the XFEL spectrum, the crystal mosaicity and the wavelength-dependent anomalous scattering factors contributed by two differently charged iron centers in the 110-amino-acid protein, ferredoxin. Bayesian methods are then used to deduce, from the simulated data, the most likely X-ray absorption curves for each metal atom in the protein, which agree well with the curves chosen for the simulation. The data analysis relies critically on the ability to measure the incident spectrum for each pulse, and also on the nanoBragg simulator to predict the size, shape and intensity profile of Bragg spots based on an underlying physical model that includes the absorption curves, which are then modified to produce the best agreement with the simulated data. This inference methodology potentially enables the use of SFX diffraction for the study of metalloenzyme mechanisms and, in general, offers a more detailed approach to Bragg spot data reduction.




cr

The use of local structural similarity of distant homologues for crystallographic model building from a molecular-replacement solution

The performance of automated protein model building usually decreases with resolution, mainly owing to the lower information content of the experimental data. This calls for a more elaborate use of the available structural information about macromolecules. Here, a new method is presented that uses structural homologues to improve the quality of protein models automatically constructed using ARP/wARP. The method uses local structural similarity between deposited models and the model being built, and results in longer main-chain fragments that in turn can be more reliably docked to the protein sequence. The application of the homology-based model extension method to the example of a CFA synthase at 2.7 Å resolution resulted in a more complete model with almost all of the residues correctly built and docked to the sequence. The method was also evaluated on 1493 molecular-replacement solutions at a resolution of 4.0 Å and better that were submitted to the ARP/wARP web service for model building. A significant improvement in the completeness and sequence coverage of the built models has been observed.




cr

Industrial cryo-EM facility setup and management

Cryo-electron microscopy (cryo-EM) has rapidly expanded with the introduction of direct electron detectors, improved image-processing software and automated image acquisition. Its recent adoption by industry, particularly in structure-based drug design, creates new requirements in terms of reliability, reproducibility and throughput. In 2016, Thermo Fisher Scientific (then FEI) partnered with the Medical Research Council Laboratory of Molecular Biology, the University of Cambridge Nanoscience Centre and five pharmaceutical companies [Astex Pharmaceuticals, AstraZeneca, GSK, Sosei Heptares and Union Chimique Belge (UCB)] to form the Cambridge Pharmaceutical Cryo-EM Consortium to share the risks of exploring cryo-EM for early-stage drug discovery. The Consortium expanded with a second Themo Scientific Krios Cryo-EM at the University of Cambridge Department of Materials Science and Metallurgy. Several Consortium members have set up in-house facilities, and a full service cryo-EM facility with Krios and Glacios has been created with the Electron Bio-Imaging Centre for Industry (eBIC for Industry) at Diamond Light Source (DLS), UK. This paper will cover the lessons learned during the setting up of these facilities, including two Consortium Krios microscopes and preparation laboratories, several Glacios microscopes at Consortium member sites, and a Krios and Glacios at eBIC for Industry, regarding site evaluation and selection for high-resolution cryo-EM microscopes, the installation process, scheduling, the operation and maintenance of the microscopes and preparation laboratories, and image processing.




cr

Sample deposition onto cryo-EM grids: from sprays to jets and back

Despite the great strides made in the field of single-particle cryogenic electron microscopy (cryo-EM) in microscope design, direct electron detectors and new processing suites, the area of sample preparation is still far from ideal. Traditionally, sample preparation involves blotting, which has been used to achieve high resolution, particularly for well behaved samples such as apoferritin. However, this approach is flawed since the blotting process can have adverse effects on some proteins and protein complexes, and the long blot time increases exposure to the damaging air–water interface. To overcome these problems, new blotless approaches have been designed for the direct deposition of the sample on the grid. Here, different methods of producing droplets for sample deposition are compared. Using gas dynamic virtual nozzles, small and high-velocity droplets were deposited on cryo-EM grids, which spread sufficiently for high-resolution cryo-EM imaging. For those wishing to pursue a similar approach, an overview is given of the current use of spray technology for cryo-EM grid preparation and areas for enhancement are pointed out. It is further shown how the broad aspects of sprayer design and operation conditions can be utilized to improve grid quality reproducibly.




cr

Confidence maps: statistical inference of cryo-EM maps

Confidence maps provide complementary information for interpreting cryo-EM densities as they indicate statistical significance with respect to background noise. They can be thresholded by specifying the expected false-discovery rate (FDR), and the displayed volume shows the parts of the map that have the corresponding level of significance. Here, the basic statistical concepts of confidence maps are reviewed and practical guidance is provided for their interpretation and usage inside the CCP-EM suite. Limitations of the approach are discussed and extensions towards other error criteria such as the family-wise error rate are presented. The observed map features can be rendered at a common isosurface threshold, which is particularly beneficial for the interpretation of weak and noisy densities. In the current article, a practical guide is provided to the recommended usage of confidence maps.




cr

The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo

Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC.




cr

Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling

In processing X-ray diffraction data, the intensities obtained from integration of the diffraction images must be corrected for experimental effects in order to place all intensities on a common scale both within and between data collections. Scaling corrects for effects such as changes in sample illumination, absorption and, to some extent, global radiation damage that cause the measured intensities of symmetry-equivalent observations to differ throughout a data set. This necessarily requires a prior evaluation of the point-group symmetry of the crystal. This paper describes and evaluates the scaling algorithms implemented within the DIALS data-processing package and demonstrates the effectiveness and key features of the implementation on example macromolecular crystallographic rotation data. In particular, the scaling algorithms enable new workflows for the scaling of multi-crystal or multi-sweep data sets, providing the analysis required to support current trends towards collecting data from ever-smaller samples. In addition, the implementation of a free-set validation method is discussed, which allows the quantification of the suitability of scaling-model and algorithm choices.




cr

Development of basic building blocks for cryo-EM: the emcore and emvis software libraries

Image-processing software has always been an integral part of structure determination by cryogenic electron microscopy (cryo-EM). Recent advances in hardware and software are recognized as one of the key factors in the so-called cryo-EM resolution revolution. Increasing computational power has opened many possibilities to consider more demanding algorithms, which in turn allow more complex biological problems to be tackled. Moreover, data processing has become more accessible to many experimental groups, with computations that used to last for many days at supercomputing facilities now being performed in hours on personal workstations. All of these advances, together with the rapid expansion of the community, continue to pose challenges and new demands on the software-development side. In this article, the development of emcore and emvis, two basic software libraries for image manipulation and data visualization in cryo-EM, is presented. The main goal is to provide basic functionality organized in modular components that other developers can reuse to implement new algorithms or build graphical applications. An additional aim is to showcase the importance of following established practices in software engineering, with the hope that this could be a first step towards a more standardized way of developing and distributing software in the field.




cr

Open-access and free articles in Acta Crystallographica Section D: Biological Crystallography




cr

Insight into the role of pre-assembly and desolvation in crystal nucleation: a case of p-nitro­benzoic acid

As one of the most important phenomena in crystallization, the crystal nucleation process has always been the focus of research. In this work, influences of pre-assembly species and the desolvation process on the crystal nucleation process were studied. p-Nitro­benzoic acid (PNBA) was taken as a model compound to investigate the relationship between solution chemistry and nucleation kinetics in seven different solvents. One unsolvated form and four solvates of PNBA were obtained and one of the solvates was newly discovered. The nucleation behaviours and nucleation kinetics of PNBA in the seven solvents were studied and analyzed. Density functional theory (DFT) and solvation energy calculation were adopted to evaluate the strength of solute–solvent interactions. Vibrational spectroscopy combined with molecular simulation was applied to reveal the pre-assembly species in the solution. Based on these results, a comprehensive understanding of the relationship between molecular structure, crystal structure, solution chemistry and nucleation dynamics was proposed and discussed. It was found that the structural similarity between solution chemistry and crystal structure, the interaction between specific sites and the overall strength of solvation will jointly affect the nucleation process.




cr

Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals

Multi-slice simulations of electron diffraction by three-dimensional protein crystals have indicated that structure solution would be severely impeded by dynamical diffraction, especially when crystals are more than a few unit cells thick. In practice, however, dynamical diffraction turned out to be less of a problem than anticipated on the basis of these simulations. Here it is shown that two scattering phenomena, which are usually omitted from multi-slice simulations, reduce the dynamical effect: solvent scattering reduces the phase differences within the exit beam and inelastic scattering followed by elastic scattering results in diffusion of dynamical scattering out of Bragg peaks. Thus, these independent phenomena provide potential reasons for the apparent discrepancy between theory and practice in protein electron crystallography.




cr

On the puzzling case of sodium saccharinate 1.875-hydrate: structure description in (3+1)-dimensional superspace

The structure of sodium saccharinate 1.875-hydrate is presented in three- and (3+1)-dimensional space. The present model is more accurate than previously published superstructures, due to an excellent data set collected up to a high resolution of 0.89 Å−1. The present study confirms the unusual complexity of the structure comprising a very large primitive unit cell with Z' = 16. A much smaller degree of correlated disorder of parts of the unit cell is found than is present in the previously published models. As a result of pseudo-symmetry, the structure can be described in a higher-dimensional space. The X-ray diffraction data clearly indicate a (3+1)-dimensional periodic structure with stronger main reflections and weaker superstructure reflections. Furthermore, the structure is established as being commensurate. The structure description in superspace results in a four times smaller unit cell with an additional base centring of the lattice, resulting in an eightfold substructure (Z' = 2) of the 3D superstructure. Therefore, such a superspace approach is desirable to work out this high-Z' structure. The displacement and occupational modulation of the saccharinate anions have been studied, as well as their conformational variation along the fourth dimension.




cr

The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr3

This paper discusses the full structural solution of the hybrid perovskite formamidinium lead tribromide (FAPbBr3) and its temperature-dependent phase transitions in the range from 3 K to 300 K using neutron powder diffraction and synchrotron X-ray diffraction. Special emphasis is put on the influence of deuteration on formamidinium, its position in the unit cell and disordering in comparison to fully hydrogenated FAPbBr3. The temperature-dependent measurements show that deuteration critically influences the crystal structures, i.e. results in partially-ordered temperature-dependent structural modifications in which two symmetry-independent molecule positions with additional dislocation of the molecular centre atom and molecular angle inclinations are present.




cr

The TELL automatic sample changer for macromolecular crystallography

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.




cr

ID30A-3 (MASSIF-3) – a beamline for macromolecular crystallography at the ESRF with a small intense beam

ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s−1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described.




cr

XTIP – the world's first beamline dedicated to the synchrotron X-ray scanning tunneling microscopy technique

In recent years, there have been numerous efforts worldwide to develop the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique. Here, the inauguration of XTIP, the world's first beamline fully dedicated to SX-STM, is reported. The XTIP beamline is located at Sector 4 of the Advanced Photon Source at Argonne National Laboratory. It features an insertion device that can provide left- or right-circular as well as horizontal- and vertical-linear polarization. XTIP delivers monochromatic soft X-rays of between 400 and 1900 eV focused into an environmental enclosure that houses the endstation instrument. This article discusses the beamline system design and its performance.




cr

TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers

The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.




cr

Versatile compact heater design for in situ nano-tomography by transmission X-ray microscopy

A versatile, compact heater designed at National Synchrotron Light Source-II for in situ X-ray nano-imaging in a full-field transmission X-ray microscope is presented. Heater design for nano-imaging is challenging, combining tight spatial constraints with stringent design requirements for the temperature range and stability. Finite-element modeling and analytical calculations were used to determine the heater design parameters. Performance tests demonstrated reliable and stable performance, including maintaining the exterior casing close to room temperature while the heater is operating at above 1100°C, a homogenous heating zone and small temperature fluctuations. Two scientific experiments are presented to demonstrate the heater capabilities: (i) in situ 3D nano-tomography including a study of metal dealloying in a liquid molten salt extreme environment, and (ii) a study of pore formation in icosahedral quasicrystals. The progression of structural changes in both studies were clearly resolved in 3D, showing that the new heater enables powerful capabilities to directly visualize and quantify 3D morphological evolution of materials under real conditions by X-ray nano-imaging at elevated temperature during synthesis, fabrication and operation processes. This heater design concept can be applied to other applications where a precise, compact heater design is required.




cr

LamNI – an instrument for X-ray scanning microscopy in laminography geometry

Across all branches of science, medicine and engineering, high-resolution microscopy is required to understand functionality. Although optical methods have been developed to `defeat' the diffraction limit and produce 3D images, and electrons have proven ever more useful in creating pictures of small objects or thin sections, so far there is no substitute for X-ray microscopy in providing multiscale 3D images of objects with a single instrument and minimal labeling and preparation. A powerful technique proven to continuously access length scales from 10 nm to 10 µm is ptychographic X-ray computed tomography, which, on account of the orthogonality of the tomographic rotation axis to the illuminating beam, still has the limitation of necessitating pillar-shaped samples of small (ca 10 µm) diameter. Large-area planar samples are common in science and engineering, and it is therefore highly desirable to create an X-ray microscope that can examine such samples without the extraction of pillars. Computed laminography, where the axis of rotation is not perpendicular to the illumination direction, solves this problem. This entailed the development of a new instrument, LamNI, dedicated to high-resolution 3D scanning X-ray microscopy via hard X-ray ptychographic laminography. Scanning precision is achieved by a dedicated interferometry scheme and the instrument covers a scan range of 12 mm × 12 mm with a position stability of 2 nm and positioning errors below 5 nm. A new feature of LamNI is a pair of counter-rotating stages carrying the sample and interferometric mirrors, respectively.




cr

Identification of Ca-rich dense granules in human platelets using scanning transmission X-ray microscopy

Whole-mount (WM) platelet preparation followed by transmission electron microscopy (TEM) observation is the standard method currently used to assess dense granule (DG) deficiency (DGD). However, due to the electron-density-based contrast mechanism in TEM, other granules such as α-granules might cause false DG detection. Here, scanning transmission X-ray microscopy (STXM) was used to identify DGs and minimize false DG detection of human platelets. STXM image stacks of human platelets were collected at the calcium (Ca) L2,3 absorption edge and then converted to optical density maps. Ca distribution maps, obtained by subtracting the optical density maps at the pre-edge region from those at the post-edge region, were used to identify DGs based on the Ca richness. DGs were successfully detected using this STXM method without false detection, based on Ca maps for four human platelets. Spectral analysis of granules in human platelets confirmed that DGs contain a richer Ca content than other granules. The Ca distribution maps facilitated more effective DG identification than TEM which might falsely detect DGs. Correct identification of DGs would be important to assess the status of platelets and DG-related diseases. Therefore, this STXM method is proposed as a promising approach for better DG identification and diagnosis, as a complementary tool to the current WM TEM approach.




cr

Quantifying redox heterogeneity in single-crystalline LiCoO2 cathode particles

Active cathode particles are fundamental architectural units for the composite electrode of Li-ion batteries. The microstructure of the particles has a profound impact on their behavior and, consequently, on the cell-level electrochemical performance. LiCoO2 (LCO, a dominant cathode material) is often in the form of well-shaped particles, a few micrometres in size, with good crystallinity. In contrast to secondary particles (an agglomeration of many fine primary grains), which are the other common form of battery particles populated with structural and chemical defects, it is often anticipated that good particle crystallinity leads to superior mechanical robustness and suppressed charge heterogeneity. Yet, sub-particle level charge inhomogeneity in LCO particles has been widely reported in the literature, posing a frontier challenge in this field. Herein, this topic is revisited and it is demonstrated that X-ray absorption spectra on single-crystalline particles with highly anisotropic lattice structures are sensitive to the polarization configuration of the incident X-rays, causing some degree of ambiguity in analyzing the local spectroscopic fingerprint. To tackle this issue, a methodology is developed that extracts the white-line peak energy in the X-ray absorption near-edge structure spectra as a key data attribute for representing the local state of charge in the LCO crystal. This method demonstrates significantly improved accuracy and reveals the mesoscale chemical complexity in LCO particles with better fidelity. In addition to the implications on the importance of particle engineering for LCO cathodes, the method developed herein also has significant impact on spectro-microscopic studies of single-crystalline materials at synchrotron facilities, which is broadly applicable to a wide range of scientific disciplines well beyond battery research.




cr

Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere

A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail. The feasibility of this spectromicroscope was demonstrated using soft X-ray undulator radiation. Here, based on these results, element-specific two-dimensional mapping and micro-XAFS (X-ray absorption fine structure) measurements are reported, as well as the observation of magnetic domain structures from using a reference sample of permalloy micro-dot patterns fabricated on a silicon substrate, with modest spatial resolution (e.g. ∼500 nm). Then, the X-ray radiation dose for Nafion® near the fluorine K-edge is discussed as a typical example of material that is not radiation hardened against a focused X-ray beam, for near future experiments.




cr

Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range

The unique diagnostic possibilities of X-ray diffraction, small X-ray scattering and phase-contrast imaging techniques applied with high-intensity coherent X-ray synchrotron and X-ray free-electron laser radiation can only be fully realized if a sufficient dynamic range and/or spatial resolution of the detector is available. In this work, it is demonstrated that the use of lithium fluoride (LiF) as a photoluminescence (PL) imaging detector allows measuring of an X-ray diffraction image with a dynamic range of ∼107 within the sub-micrometre spatial resolution. At the PETRA III facility, the diffraction pattern created behind a circular aperture with a diameter of 5 µm irradiated by a beam with a photon energy of 500 eV was recorded on a LiF crystal. In the diffraction pattern, the accumulated dose was varied from 1.7 × 105 J cm−3 in the central maximum to 2 × 10−2 J cm−3 in the 16th maximum of diffraction fringes. The period of the last fringe was measured with 0.8 µm width. The PL response of the LiF crystal being used as a detector on the irradiation dose of 500 eV photons was evaluated. For the particular model of laser-scanning confocal microscope Carl Zeiss LSM700, used for the readout of the PL signal, the calibration dependencies on the intensity of photopumping (excitation) radiation (λ = 488 nm) and the gain have been obtained.




cr

A single-crystal diamond X-ray pixel detector with embedded graphitic electrodes

The first experimental results from a new transmissive diagnostic instrument for synchrotron X-ray beamlines are presented. The instrument utilizes a single-crystal chemical-vapour-deposition diamond plate as the detector material, with graphitic wires embedded within the bulk diamond acting as electrodes. The resulting instrument is an all-carbon transmissive X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The graphitic electrodes are fabricated in situ within the bulk diamond using a laser-writing technique. Two separate arrays of parallel graphitic wires are fabricated, running parallel to the diamond surface and perpendicular to each other, at two different depths within the diamond. One array of wires has a modulated bias voltage applied; the perpendicular array is a series of readout electrodes. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionization, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. Each of the crossing points between perpendicular wires acts as an individual pixel. The simultaneous read-out of all pixels is achieved using a lock-in technique. The parallel wires within each array are separated by 50 µm, determining the pixel pitch. Readout is obtained at 100 Hz, and the resolution of the X-ray beam position measurement is 600 nm for a 180 µm size beam.




cr

Development of an X-ray imaging detector for high-energy X-ray microtomography

A dedicated X-ray imaging detector for 200 keV high-energy X-ray microtomography was developed to realize high-efficiency high-resolution imaging while keeping the field of view wide.




cr

Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography

A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics.