ies Methadone substitution therapy : policies and practices / edited by Hamid Ghodse, Carmel Clancy, Adenekan Oyefeso. By search.wellcomelibrary.org Published On :: London : European Collaborating Centres in Addiction Studies, 1998. Full Article
ies Series 02: Merle Highet sound recordings of Frederick Rose, 1990 By feedproxy.google.com Published On :: 30/09/2015 9:43:23 AM Full Article
ies Series 01: H.C. Dorman further papers, 1950-2012 By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
ies Series 02: H.C. Dorman pictorial material, 1960-1967 By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
ies Series 01: Slides of towns in country NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:28:44 AM Full Article
ies Series 02: Slides of suburbs in Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:40:58 AM Full Article
ies Series 03: Negatives of suburbs of Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:48:12 AM Full Article
ies Series 04: Contact prints of suburbs of Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 8/10/2015 12:18:12 PM Full Article
ies Series 02 Part 01: Sir Augustus Charles Gregory letterbook, 1852-1854 By feedproxy.google.com Published On :: 9/10/2015 8:45:45 AM Full Article
ies Herbert Compton diaries, 17 May – 29 July 1973 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
ies Sydney Wiese, recovering from coronavirus, continually talking with friends and family: 'Our world is uniting' By sports.yahoo.com Published On :: Mon, 06 Apr 2020 16:11:35 GMT Hear how former Oregon State guard and current member of the WNBA's LA Sparks Sydney Wiese is recovering from a COVID-19 diagnosis, seeing friends and family show support and love during a trying time. Full Article video Sports
ies Former OSU guard Sydney Wiese talks unwavering support while recovering from coronavirus By sports.yahoo.com Published On :: Mon, 06 Apr 2020 21:41:23 GMT Pac-12 Networks' Mike Yam interviews former Oregon State guard Sydney Wiese to hear how she's recovering from contracting COVID-19. Wiese recounts her recent travel and how she's been lifted up by steadfast support from friends, family and fellow WNBA players. See more from Wiese during "Pac-12 Playlist" on Monday, April 6 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network. Full Article video Sports
ies Inside Sabrina Ionescu and Ruthy Hebard's lasting bond on quick look of 'Our Stories' By sports.yahoo.com Published On :: Fri, 10 Apr 2020 20:26:20 GMT Learn how Oregon stars Sabrina Ionescu and Ruthy Hebard developed a lasting bond as college freshmen and carried that through storied four-year careers for the Ducks. Watch "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" debuting Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network. Full Article video News
ies Natalie Chou breaks through stereotypes, inspires young Asian American girls on 'Our Stories' quick look By sports.yahoo.com Published On :: Thu, 07 May 2020 17:34:41 GMT Watch the debut of "Our Stories - Natalie Chou" on Sunday, May 10 at 12:30 p.m. PT/ 1:30 p.m. MT on Pac-12 Network. Full Article video Sports
ies Generalised cepstral models for the spectrum of vector time series By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Maddalena Cavicchioli. Source: Electronic Journal of Statistics, Volume 14, Number 1, 605--631.Abstract: The paper treats the modeling of stationary multivariate stochastic processes via a frequency domain model expressed in terms of cepstrum theory. The proposed model nests the vector exponential model of [20] as a special case, and extends the generalised cepstral model of [36] to the multivariate setting, answering a question raised by the last authors in their paper. Contemporarily, we extend the notion of generalised autocovariance function of [35] to vector time series. Then we derive explicit matrix formulas connecting generalised cepstral and autocovariance matrices of the process, and prove the consistency and asymptotic properties of the Whittle likelihood estimators of model parameters. Asymptotic theory for the special case of the vector exponential model is a significant addition to the paper of [20]. We also provide a mathematical machinery, based on matrix differentiation, and computational methods to derive our results, which differ significantly from those employed in the univariate case. The utility of the proposed model is illustrated through Monte Carlo simulation from a bivariate process characterized by a high dynamic range, and an empirical application on time varying minimum variance hedge ratios through the second moments of future and spot prices in the corn commodity market. Full Article
ies Parseval inequalities and lower bounds for variance-based sensitivity indices By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Olivier Roustant, Fabrice Gamboa, Bertrand Iooss. Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.Abstract: The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy. Full Article
ies Consistent model selection criteria and goodness-of-fit test for common time series models By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Jean-Marc Bardet, Kare Kamila, William Kengne. Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.Abstract: This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test. Full Article
ies Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.Abstract: The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations. Full Article
ies Sparsely observed functional time series: estimation and prediction By projecteuclid.org Published On :: Thu, 27 Feb 2020 22:04 EST Tomáš Rubín, Victor M. Panaretos. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1137--1210.Abstract: Functional time series analysis, whether based on time or frequency domain methodology, has traditionally been carried out under the assumption of complete observation of the constituent series of curves, assumed stationary. Nevertheless, as is often the case with independent functional data, it may well happen that the data available to the analyst are not the actual sequence of curves, but relatively few and noisy measurements per curve, potentially at different locations in each curve’s domain. Under this sparse sampling regime, neither the established estimators of the time series’ dynamics nor their corresponding theoretical analysis will apply. The subject of this paper is to tackle the problem of estimating the dynamics and of recovering the latent process of smooth curves in the sparse regime. Assuming smoothness of the latent curves, we construct a consistent nonparametric estimator of the series’ spectral density operator and use it to develop a frequency-domain recovery approach, that predicts the latent curve at a given time by borrowing strength from the (estimated) dynamic correlations in the series across time. This new methodology is seen to comprehensively outperform a naive recovery approach that would ignore temporal dependence and use only methodology employed in the i.i.d. setting and hinging on the lag zero covariance. Further to predicting the latent curves from their noisy point samples, the method fills in gaps in the sequence (curves nowhere sampled), denoises the data, and serves as a basis for forecasting. Means of providing corresponding confidence bands are also investigated. A simulation study interestingly suggests that sparse observation for a longer time period may provide better performance than dense observation for a shorter period, in the presence of smoothness. The methodology is further illustrated by application to an environmental data set on fair-weather atmospheric electricity, which naturally leads to a sparse functional time series. Full Article
ies On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions By projecteuclid.org Published On :: Mon, 17 Feb 2020 22:06 EST Karl Ewald, Ulrike Schneider. Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.Abstract: We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient. Full Article
ies pyts: A Python Package for Time Series Classification By Published On :: 2020 pyts is an open-source Python package for time series classification. This versatile toolbox provides implementations of many algorithms published in the literature, preprocessing functionalities, and data set loading utilities. pyts relies on the standard scientific Python packages numpy, scipy, scikit-learn, joblib, and numba, and is distributed under the BSD-3-Clause license. Documentation contains installation instructions, a detailed user guide, a full API description, and concrete self-contained examples. Full Article
ies Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Durba Bhattacharya, Sourabh Bhattacharya. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.Abstract: Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI. Full Article
ies Subjective Bayesian testing using calibrated prior probabilities By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Dan J. Spitzner. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 861--893.Abstract: This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology. Full Article
ies Bayesian modelling of the abilities in dichotomous IRT models via regression with missing values in the covariates By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Flávio B. Gonçalves, Bárbara C. C. Dias. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 782--800.Abstract: Educational assessment usually considers a contextual questionnaire to extract relevant information from the applicants. This may include items related to socio-economical profile as well as items to extract other characteristics potentially related to applicant’s performance in the test. A careful analysis of the questionnaires jointly with the test’s results may evidence important relations between profiles and test performance. The most coherent way to perform this task in a statistical context is to use the information from the questionnaire to help explain the variability of the abilities in a joint model-based approach. Nevertheless, the responses to the questionnaire typically present missing values which, in some cases, may be missing not at random. This paper proposes a statistical methodology to model the abilities in dichotomous IRT models using the information of the contextual questionnaires via linear regression. The proposed methodology models the missing data jointly with the all the observed data, which allows for the estimation of the former. The missing data modelling is flexible enough to allow the specification of missing not at random structures. Furthermore, even if those structures are not assumed a priori, they can be estimated from the posterior results when assuming missing (completely) at random structures a priori. Statistical inference is performed under the Bayesian paradigm via an efficient MCMC algorithm. Simulated and real examples are presented to investigate the efficiency and applicability of the proposed methodology. Full Article
ies Time series of count data: A review, empirical comparisons and data analysis By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Glaura C. Franco, Helio S. Migon, Marcos O. Prates. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 756--781.Abstract: Observation and parameter driven models are commonly used in the literature to analyse time series of counts. In this paper, we study the characteristics of a variety of models and point out the main differences and similarities among these procedures, concerning parameter estimation, model fitting and forecasting. Alternatively to the literature, all inference was performed under the Bayesian paradigm. The models are fitted with a latent AR($p$) process in the mean, which accounts for autocorrelation in the data. An extensive simulation study shows that the estimates for the covariate parameters are remarkably similar across the different models. However, estimates for autoregressive coefficients and forecasts of future values depend heavily on the underlying process which generates the data. A real data set of bankruptcy in the United States is also analysed. Full Article
ies Fractional backward stochastic variational inequalities with non-Lipschitz coefficient By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Katarzyna Jańczak-Borkowska. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 480--497.Abstract: We prove the existence and uniqueness of the solution of backward stochastic variational inequalities with respect to fractional Brownian motion and with non-Lipschitz coefficient. We assume that $H>1/2$. Full Article
ies Novel bodies : disability and sexuality in eighteenth-century British literature By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Farr, Jason S., 1978- author.Callnumber: PR 858 P425 F37 2019ISBN: 9781684481088 hardcover alkaline paper Full Article
ies Adaptive clinical trial designs for phase I cancer studies By projecteuclid.org Published On :: Thu, 29 May 2014 09:11 EDT Oleksandr Sverdlov, Weng Kee Wong, Yevgen Ryeznik. Source: Statistics Surveys, Volume 8, 2--44.Abstract: Adaptive clinical trials are becoming increasingly popular research designs for clinical investigation. Adaptive designs are particularly useful in phase I cancer studies where clinical data are scant and the goals are to assess the drug dose-toxicity profile and to determine the maximum tolerated dose while minimizing the number of study patients treated at suboptimal dose levels. In the current work we give an overview of adaptive design methods for phase I cancer trials. We find that modern statistical literature is replete with novel adaptive designs that have clearly defined objectives and established statistical properties, and are shown to outperform conventional dose finding methods such as the 3+3 design, both in terms of statistical efficiency and in terms of minimizing the number of patients treated at highly toxic or nonefficacious doses. We discuss statistical, logistical, and regulatory aspects of these designs and present some links to non-commercial statistical software for implementing these methods in practice. Full Article
ies Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview By projecteuclid.org Published On :: Fri, 12 Nov 2010 11:39 EST A. Philip Dawid, Vanessa DidelezSource: Statist. Surv., Volume 4, 184--231.Abstract: We consider the problem of learning about and comparing the consequences of dynamic treatment strategies on the basis of observational data. We formulate this within a probabilistic decision-theoretic framework. Our approach is compared with related work by Robins and others: in particular, we show how Robins’s ‘ G -computation’ algorithm arises naturally from this decision-theoretic perspective. Careful attention is paid to the mathematical and substantive conditions required to justify the use of this formula. These conditions revolve around a property we term stability , which relates the probabilistic behaviours of observational and interventional regimes. We show how an assumption of ‘sequential randomization’ (or ‘no unmeasured confounders’), or an alternative assumption of ‘sequential irrelevance’, can be used to infer stability. Probabilistic influence diagrams are used to simplify manipulations, and their power and limitations are discussed. We compare our approach with alternative formulations based on causal DAGs or potential response models. We aim to show that formulating the problem of assessing dynamic treatment strategies as a problem of decision analysis brings clarity, simplicity and generality. References:Arjas, E. and Parner, J. (2004). Causal reasoning from longitudinal data. Scandinavian Journal of Statistics 31 171–187.Arjas, E. and Saarela, O. (2010). Optimal dynamic regimes: Presenting a case for predictive inference. The International Journal of Biostatistics 6. http://tinyurl.com/33dfssfCowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York.Dawid, A. P. (1979). Conditional independence in statistical theory (with Discussion). Journal of the Royal Statistical Society, Series B 41 1–31.Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing 2 25–36.Dawid, A. P. (1998). Conditional independence. In Encyclopedia of Statistical Science ({U}pdate Volume 2) ( S. Kotz, C. B. Read and D. L. Banks, eds.) 146–155. Wiley-Interscience, New York.Dawid, A. P. (2000). Causal inference without counterfactuals (with Discussion). Journal of the American Statistical Association 95 407–448.Dawid, A. P. (2001). Separoids: A mathematical framework for conditional independence and irrelevance. Annals of Mathematics and Artificial Intelligence 32 335–372.Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. International Statistical Review 70 161–189. Corrigenda, ibid ., 437.Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with Discussion). In Highly Structured Stochastic Systems ( P. J. Green, N. L. Hjort and S. Richardson, eds.) 45–81. Oxford University Press.Dawid, A. P. (2010). Beware of the DAG! In Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings ( D. Janzing, I. Guyon and B. Schölkopf, eds.) 6 59–86. http://tinyurl.com/33va7tmDawid, A. P. and Didelez, V. (2008). Identifying optimal sequential decisions. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 113-120. AUAI Press, Corvallis, Oregon. http://tinyurl.com/3899qppDechter, R. (2003). Constraint Processing. Morgan Kaufmann Publishers.Didelez, V., Dawid, A. P. and Geneletti, S. G. (2006). Direct and indirect effects of sequential treatments. In Proceedings of the Twenty-Second Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 138-146. AUAI Press, Arlington, Virginia. http://tinyurl.com/32w3f4eDidelez, V., Kreiner, S. and Keiding, N. (2010). Graphical models for inference under outcome dependent sampling. Statistical Science (to appear).Didelez, V. and Sheehan, N. S. (2007). Mendelian randomisation: Why epidemiology needs a formal language for causality. In Causality and Probability in the Sciences, ( F. Russo and J. Williamson, eds.). Texts in Philosophy Series 5 263–292. College Publications, London.Eichler, M. and Didelez, V. (2010). Granger-causality and the effect of interventions in time series. Lifetime Data Analysis 16 3–32.Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York, London.Geneletti, S. G. (2007). Identifying direct and indirect effects in a non–counterfactual framework. Journal of the Royal Statistical Society: Series B 69 199–215.Geneletti, S. G. and Dawid, A. P. (2010). Defining and identifying the effect of treatment on the treated. In Causality in the Sciences ( P. M. Illari, F. Russo and J. Williamson, eds.) Oxford University Press (to appear).Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case. Annals of Statistics 29 1785–1811.Guo, H. and Dawid, A. P. (2010). Sufficient covariates and linear propensity analysis. In Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, (AISTATS) 2010, Chia Laguna, Sardinia, Italy, May 13-15, 2010. Journal of Machine Learning Research Workshop and Conference Proceedings ( Y. W. Teh and D. M. Titterington, eds.) 9 281–288. http://tinyurl.com/33lmuj7Henderson, R., Ansel, P. and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics (to appear). doi:10.1111/j.1541-0420.2009.01368.xHernán, M. A. and Taubman, S. L. (2008). Does obesity shorten life? The importance of well defined interventions to answer causal questions. International Journal of Obesity 32 S8–S14.Holland, P. W. (1986). Statistics and causal inference (with Discussion). Journal of the American Statistical Association 81 945–970.Huang, Y. and Valtorta, M. (2006). Identifiability in causal Bayesian networks: A sound and complete algorithm. In AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence 1149–1154. AAAI Press.Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 22 523–539.Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H. G. (1990). Independence properties of directed Markov fields. Networks 20 491–505.Lok, J., Gill, R., van der Vaart, A. and Robins, J. (2004). Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models. Statistica Neerlandica 58 271–295.Moodie, E. M., Richardson, T. S. and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes. Biometrics 63 447–455.Murphy, S. A. (2003). Optimal dynamic treatment regimes (with Discussion). Journal of the Royal Statistical Society, Series B 65 331-366.Oliver, R. M. and Smith, J. Q., eds. (1990). Influence Diagrams, Belief Nets and Decision Analysis. John Wiley and Sons, Chichester, United Kingdom.Pearl, J. (1995). Causal diagrams for empirical research (with Discussion). Biometrika 82 669-710.Pearl, J. (2009). Causality: Models, Reasoning and Inference, Second ed. Cambridge University Press, Cambridge.Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasoning about relevance relations. In Advances in Artificial Intelligence ( D. Hogg and L. Steels, eds.) II 357–363. North-Holland, Amsterdam.Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence ( P. Besnard and S. Hanks, eds.) 444–453. Morgan Kaufmann Publishers, San Francisco.Raiffa, H. (1968). Decision Analysis. Addison-Wesley, Reading, Massachusetts.Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect. Mathematical Modelling 7 1393–1512.Robins, J. M. (1987). Addendum to “A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect”. Computers & Mathematics with Applications 14 923–945.Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS ( L. Sechrest, H. Freeman and A. Mulley, eds.) 113–159. NCSHR, U.S. Public Health Service.Robins, J. M. (1992). Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika 79 321–324.Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality, ( M. Berkane, ed.). Lecture Notes in Statistics 120 69–117. Springer-Verlag, New York.Robins, J. M. (1998). Structural nested failure time models. In Survival Analysis, ( P. K. Andersen and N. Keiding, eds.). Encyclopedia of Biostatistics 6 4372–4389. John Wiley and Sons, Chichester, UK.Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. In Proceedings of the American Statistical Association Section on Bayesian Statistical Science 1999 6–10.Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics ( D. Y. Lin and P. Heagerty, eds.) 189–326. Springer, New York.Robins, J. M., Greenland, S. and Hu, F. C. (1999). Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. Journal of the American Statistical Association 94 687–700.Robins, J. M., Hernán, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11 550–560.Robins, J. M. and Wasserman, L. A. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence ( D. Geiger and P. Shenoy, eds.) 409-420. Morgan Kaufmann Publishers, San Francisco. http://tinyurl.com/33ghsasRosthøj, S., Fullwood, C., Henderson, R. and Stewart, S. (2006). Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach. Statistics in Medicine 25 4197–4215.Shpitser, I. and Pearl, J. (2006a). Identification of conditional interventional distributions. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 437–444. AUAI Press, Corvallis, Oregon. http://tinyurl.com/2um8w47Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence 1219–1226. AAAI Press, Menlo Park, California.Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation, Prediction and Search, Second ed. Springer-Verlag, New York.Sterne, J. A. C., May, M., Costagliola, D., de Wolf, F., Phillips, A. N., Harris, R., Funk, M. J., Geskus, R. B., Gill, J., Dabis, F., Miro, J. M., Justice, A. C., Ledergerber, B., Fatkenheuer, G., Hogg, R. S., D’Arminio-Monforte, A., Saag, M., Smith, C., Staszewski, S., Egger, M., Cole, S. R. and When To Start Consortium (2009). Timing of initiation of antiretroviral therapy in AIDS-Free HIV-1-infected patients: A collaborative analysis of 18 HIV cohort studies. Lancet 373 1352–1363.Taubman, S. L., Robins, J. M., Mittleman, M. A. and Hernán, M. A. (2009). Intervening on risk factors for coronary heart disease: An application of the parametric g-formula. International Journal of Epidemiology 38 1599–1611.Tian, J. (2008). Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 554–561. AUAI Press, Corvallis, Oregon. http://tinyurl.com/36ufx2hVerma, T. and Pearl, J. (1990). Causal networks: Semantics and expressiveness. In Uncertainty in Artificial Intelligence 4 ( R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, eds.) 69–76. North-Holland, Amsterdam. Full Article
ies Generating Thermal Image Data Samples using 3D Facial Modelling Techniques and Deep Learning Methodologies. (arXiv:2005.01923v2 [cs.CV] UPDATED) By arxiv.org Published On :: Methods for generating synthetic data have become of increasing importance to build large datasets required for Convolution Neural Networks (CNN) based deep learning techniques for a wide range of computer vision applications. In this work, we extend existing methodologies to show how 2D thermal facial data can be mapped to provide 3D facial models. For the proposed research work we have used tufts datasets for generating 3D varying face poses by using a single frontal face pose. The system works by refining the existing image quality by performing fusion based image preprocessing operations. The refined outputs have better contrast adjustments, decreased noise level and higher exposedness of the dark regions. It makes the facial landmarks and temperature patterns on the human face more discernible and visible when compared to original raw data. Different image quality metrics are used to compare the refined version of images with original images. In the next phase of the proposed study, the refined version of images is used to create 3D facial geometry structures by using Convolution Neural Networks (CNN). The generated outputs are then imported in blender software to finally extract the 3D thermal facial outputs of both males and females. The same technique is also used on our thermal face data acquired using prototype thermal camera (developed under Heliaus EU project) in an indoor lab environment which is then used for generating synthetic 3D face data along with varying yaw face angles and lastly facial depth map is generated. Full Article
ies Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization. (arXiv:2005.00061v2 [stat.ML] UPDATED) By arxiv.org Published On :: Data-space inversion (DSI) and related procedures represent a family of methods applicable for data assimilation in subsurface flow settings. These methods differ from model-based techniques in that they provide only posterior predictions for quantities (time series) of interest, not posterior models with calibrated parameters. DSI methods require a large number of flow simulations to first be performed on prior geological realizations. Given observed data, posterior predictions can then be generated directly. DSI operates in a Bayesian setting and provides posterior samples of the data vector. In this work we develop and evaluate a new approach for data parameterization in DSI. Parameterization reduces the number of variables to determine in the inversion, and it maintains the physical character of the data variables. The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-short-term memory (LSTM) network to represent flow-rate time series. The RAE-based parameterization is combined with an ensemble smoother with multiple data assimilation (ESMDA) for posterior generation. Results are presented for two- and three-phase flow in a 2D channelized system and a 3D multi-Gaussian model. The RAE procedure, along with existing DSI treatments, are assessed through comparison to reference rejection sampling (RS) results. The new DSI methodology is shown to consistently outperform existing approaches, in terms of statistical agreement with RS results. The method is also shown to accurately capture derived quantities, which are computed from variables considered directly in DSI. This requires correlation and covariance between variables to be properly captured, and accuracy in these relationships is demonstrated. The RAE-based parameterization developed here is clearly useful in DSI, and it may also find application in other subsurface flow problems. Full Article
ies A bimodal gamma distribution: Properties, regression model and applications. (arXiv:2004.12491v2 [stat.ME] UPDATED) By arxiv.org Published On :: In this paper we propose a bimodal gamma distribution using a quadratic transformation based on the alpha-skew-normal model. We discuss several properties of this distribution such as mean, variance, moments, hazard rate and entropy measures. Further, we propose a new regression model with censored data based on the bimodal gamma distribution. This regression model can be very useful to the analysis of real data and could give more realistic fits than other special regression models. Monte Carlo simulations were performed to check the bias in the maximum likelihood estimation. The proposed models are applied to two real data sets found in literature. Full Article
ies Capturing and Explaining Trajectory Singularities using Composite Signal Neural Networks. (arXiv:2003.10810v2 [cs.LG] UPDATED) By arxiv.org Published On :: Spatial trajectories are ubiquitous and complex signals. Their analysis is crucial in many research fields, from urban planning to neuroscience. Several approaches have been proposed to cluster trajectories. They rely on hand-crafted features, which struggle to capture the spatio-temporal complexity of the signal, or on Artificial Neural Networks (ANNs) which can be more efficient but less interpretable. In this paper we present a novel ANN architecture designed to capture the spatio-temporal patterns characteristic of a set of trajectories, while taking into account the demographics of the navigators. Hence, our model extracts markers linked to both behaviour and demographics. We propose a composite signal analyser (CompSNN) combining three simple ANN modules. Each of these modules uses different signal representations of the trajectory while remaining interpretable. Our CompSNN performs significantly better than its modules taken in isolation and allows to visualise which parts of the signal were most useful to discriminate the trajectories. Full Article
ies Modeling High-Dimensional Unit-Root Time Series. (arXiv:2005.03496v1 [stat.ME]) By arxiv.org Published On :: In this paper, we propose a new procedure to build a structural-factor model for a vector unit-root time series. For a $p$-dimensional unit-root process, we assume that each component consists of a set of common factors, which may be unit-root non-stationary, and a set of stationary components, which contain the cointegrations among the unit-root processes. To further reduce the dimensionality, we also postulate that the stationary part of the series is a nonsingular linear transformation of certain common factors and idiosyncratic white noise components as in Gao and Tsay (2019a, b). The estimation of linear loading spaces of the unit-root factors and the stationary components is achieved by an eigenanalysis of some nonnegative definite matrix, and the separation between the stationary factors and the white noises is based on an eigenanalysis and a projected principal component analysis. Asymptotic properties of the proposed method are established for both fixed $p$ and diverging $p$ as the sample size $n$ tends to infinity. Both simulated and real examples are used to demonstrate the performance of the proposed method in finite samples. Full Article
ies Detecting Latent Communities in Network Formation Models. (arXiv:2005.03226v1 [econ.EM]) By arxiv.org Published On :: This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets. Full Article
ies Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG]) By arxiv.org Published On :: Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations Full Article
ies Entries open for State Library’s $20,000 short film competition By feedproxy.google.com Published On :: Thu, 21 Nov 2019 05:39:54 +0000 Thursday 21 November 2019 The State Library of NSW is inviting entries for its short film prize Shortstacks, with a total of $20,000 on offer across two categories. Full Article
ies Entries now open for the 2020 National Biography Award By feedproxy.google.com Published On :: Mon, 09 Dec 2019 23:38:42 +0000 Tuesday 10 December 2019 Entries are now open for the 2020 National Biography Award – Australia's richest prize for biography and memoir writing. Full Article
ies State Library creates a new space for Aboriginal communities to connect with their cultural heritage By feedproxy.google.com Published On :: Wed, 19 Feb 2020 23:11:15 +0000 Thursday 20 February 2020 In an Australian first, the State Library of NSW launched a new digital space for Aboriginal communities to connect with their histories and cultures. Full Article
ies Entries open for $40,000 award for female scriptwriters By feedproxy.google.com Published On :: Thu, 05 Mar 2020 23:11:18 +0000 Friday 6 March 2020 Nominations opened for the 2020 Mona Brand Award for Women Stage and Screen Writers. Full Article
ies Public libraries report spike in demand for books in language By feedproxy.google.com Published On :: Mon, 16 Mar 2020 21:59:03 +0000 Tuesday 17 March 2020 NSW residents are reading more and more books in languages other than English than ever before with the State Library of NSW reporting a 20% increase in requests from public libraries for multicultural material just in the last 12 months. Full Article
ies History of Pre-Modern Medicine Seminar Series, Spring 2018 By blog.wellcomelibrary.org Published On :: Fri, 05 Jan 2018 12:26:55 +0000 The History of Pre-Modern Medicine seminar series returns this month. The 2017–18 series – organised by a group of historians of medicine based at London universities and hosted by the Wellcome Library – will conclude with four seminars. The series… Continue reading Full Article Early Medicine Events and Visits China Early Sex and Reproduction plague smell
ies Arabo-Persian physiological theories in late Imperial China By blog.wellcomelibrary.org Published On :: Thu, 22 Feb 2018 11:20:20 +0000 The last seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 27 February. Speaker: Dr Dror Weil (Max Planck Institute for the History of Science, Berlin) Bodies translated: the circulation of Arabo-Persian physiological theories in late… Continue reading Full Article Early Medicine Events and Visits China Chinese medicine physiology seminars
ies Upper extremity injuries in young athletes By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319566511 (electronic bk.) Full Article
ies The Best and Worst Places to be a Woman in Canada 2019 : The Gender Gap in Canada’s 26 Biggest Cities By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781771254434 (print) Full Article
ies Sustainable digital communities : 15th International Conference, iConference 2020, Boras, Sweden, March 23–26, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: iConference (Conference) (15th : 2020 : Boras, Sweden)Callnumber: OnlineISBN: 9783030436872 Full Article
ies Sowing legume seeds, reaping cash : a renaissance within communities in Sub-Saharan Africa By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Akpo, Essegbemon, author.Callnumber: OnlineISBN: 9789811508455 (electronic bk.) Full Article
ies Racing for the surface : pathogenesis of implant infection and advanced antimicrobial strategies By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030344757 (electronic bk.) Full Article
ies Pediatric pelvic and proximal femoral osteotomies By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319780337 978-3-319-78033-7 Full Article
ies Pediatric critical care : current controversies By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319964997 (electronic bk.) Full Article