ma Developing an in situ LED irradiation system for small-angle X-ray scattering at B21, Diamond Light Source By journals.iucr.org Published On :: 2024-05-31 Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples. Full Article text
ma Enhanced X-ray free-electron laser performance with optical klystron and helical undulators By journals.iucr.org Published On :: 2024-06-11 This article presents a demonstration of the improved performance of an X-ray free-electron laser (FEL) using the optical klystron mechanism and helical undulator configuration, in comparison with the common planar undulator configuration without optical klystron. The demonstration was carried out at Athos, the soft X-ray beamline of SwissFEL. Athos has variable-polarization undulators, and small magnetic chicanes placed between every two undulators to fully exploit the optical klystron. It was found that, for wavelengths of 1.24 nm and 3.10 nm, the required length to achieve FEL saturation is reduced by about 35% when using both the optical klystron and helical undulators, with each effect accounting for about half of the improvement. Moreover, it is shown that a helical undulator configuration provides a 20% to 50% higher pulse energy than planar undulators. This work represents an important step towards more compact and high-power FELs, rendering this key technology more efficient, affordable and accessible to the scientific community. Full Article text
ma 3D imaging of magnetic domains in Nd2Fe14B using scanning hard X-ray nanotomography By journals.iucr.org Published On :: 2024-05-21 Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale. Full Article text
ma Mapping of lithium ion concentrations in 3D structures through development of in situ correlative imaging of X-ray Compton scattering-computed tomography By journals.iucr.org Published On :: 2024-06-05 Understanding the correlation between chemical and microstructural properties is critical for unraveling the fundamental relationship between materials chemistry and physical structures that can benefit materials science and engineering. Here, we demonstrate novel in situ correlative imaging of the X-ray Compton scattering computed tomography (XCS-CT) technique for studying this fundamental relationship. XCS-CT can image light elements that do not usually exhibit strong signals using other X-ray characterization techniques. This paper describes the XCS-CT setup and data analysis method for calculating the valence electron momentum density and lithium-ion concentration, and provides two examples of spatially and temporally resolved chemical properties inside batteries in 3D. XCS-CT was applied to study two types of rechargeable lithium batteries in standard coin cell casings: (1) a lithium-ion battery containing a cathode of bespoke microstructure and liquid electrolyte, and (2) a solid-state battery containing a solid-polymer electrolyte. The XCS-CT technique is beneficial to a wide variety of materials and systems to map chemical composition changes in 3D structures. Full Article text
ma Self-calibration strategies for reducing systematic slope measurement errors of autocollimators in deflectometric profilometry By journals.iucr.org Published On :: 2024-06-05 Deflectometric profilometers are used to precisely measure the form of beam shaping optics of synchrotrons and X-ray free-electron lasers. They often utilize autocollimators which measure slope by evaluating the displacement of a reticle image on a detector. Based on our privileged access to the raw image data of an autocollimator, novel strategies to reduce the systematic measurement errors by using a set of overlapping images of the reticle obtained at different positions on the detector are discussed. It is demonstrated that imaging properties such as, for example, geometrical distortions and vignetting, can be extracted from this redundant set of images without recourse to external calibration facilities. This approach is based on the fact that the properties of the reticle itself do not change – all changes in the reticle image are due to the imaging process. Firstly, by combining interpolation and correlation, it is possible to determine the shift of a reticle image relative to a reference image with minimal error propagation. Secondly, the intensity of the reticle image is analysed as a function of its position on the CCD and a vignetting correction is calculated. Thirdly, the size of the reticle image is analysed as a function of its position and an imaging distortion correction is derived. It is demonstrated that, for different measurement ranges and aperture diameters of the autocollimator, reductions in the systematic errors of up to a factor of four to five can be achieved without recourse to external measurements. Full Article text
ma High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system By journals.iucr.org Published On :: 2024-06-20 The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å−1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements. Full Article text
ma Investigation of fast and efficient lossless compression algorithms for macromolecular crystallography experiments By journals.iucr.org Published On :: 2024-06-05 Structural biology experiments benefit significantly from state-of-the-art synchrotron data collection. One can acquire macromolecular crystallography (MX) diffraction data on large-area photon-counting pixel-array detectors at framing rates exceeding 1000 frames per second, using 200 Gbps network connectivity, or higher when available. In extreme cases this represents a raw data throughput of about 25 GB s−1, which is nearly impossible to deliver at reasonable cost without compression. Our field has used lossless compression for decades to make such data collection manageable. Many MX beamlines are now fitted with DECTRIS Eiger detectors, all of which are delivered with optimized compression algorithms by default, and they perform well with current framing rates and typical diffraction data. However, better lossless compression algorithms have been developed and are now available to the research community. Here one of the latest and most promising lossless compression algorithms is investigated on a variety of diffraction data like those routinely acquired at state-of-the-art MX beamlines. Full Article text
ma X-ray phase-contrast tomography of cells manipulated with an optical stretcher By journals.iucr.org Published On :: 2024-06-11 X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations. Full Article text
ma Automated spectrometer alignment via machine learning By journals.iucr.org Published On :: 2024-06-20 During beam time at a research facility, alignment and optimization of instrumentation, such as spectrometers, is a time-intensive task and often needs to be performed multiple times throughout the operation of an experiment. Despite the motorization of individual components, automated alignment solutions are not always available. In this study, a novel approach that combines optimisers with neural network surrogate models to significantly reduce the alignment overhead for a mobile soft X-ray spectrometer is proposed. Neural networks were trained exclusively using simulated ray-tracing data, and the disparity between experiment and simulation was obtained through parameter optimization. Real-time validation of this process was performed using experimental data collected at the beamline. The results demonstrate the ability to reduce alignment time from one hour to approximately five minutes. This method can also be generalized beyond spectrometers, for example, towards the alignment of optical elements at beamlines, making it applicable to a broad spectrum of research facilities. Full Article text
ma The effect of transport apertures on relay-imaged, sharp-edged laser profiles in photoinjectors and the impact on electron beam properties By journals.iucr.org Published On :: 2024-06-06 In a photoinjector electron source, the initial transverse electron bunch properties are determined by the spatial properties of the laser beam on the photocathode. Spatial shaping of the laser is commonly achieved by relay imaging an illuminated circular mask onto the photocathode. However, the Gibbs phenomenon shows that recreating the sharp edge and discontinuity of the cut profile at the mask on the cathode is not possible with an optical relay of finite aperture. Furthermore, the practical injection of the laser into the photoinjector results in the beam passing through small or asymmetrically positioned apertures. This work uses wavefront propagation to show how the transport apertures cause ripple structures to appear in the transverse laser profile even when effectively the full laser power is transmitted. The impact of these structures on the propagated electron bunch has also been studied with electron bunches of high and low charge density. With high charge density, the ripples in the initial charge distribution rapidly wash-out through space charge effects. However, for bunches with low charge density, the ripples can persist through the bunch transport. Although statistical properties of the electron bunch in the cases studied are not greatly affected, there is the potential for the distorted electron bunch to negatively impact machine performance. Therefore, these effects should be considered in the design phase of accelerators using photoinjectors. Full Article text
ma Signal-to-noise and spatial resolution in in-line imaging. 1. Basic theory, numerical simulations and planar experimental images By journals.iucr.org Published On :: 2024-06-06 Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper. Full Article text
ma X-ray scattering based scanning tomography for imaging and structural characterization of cellulose in plants By journals.iucr.org Published On :: 2024-06-25 X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle. Full Article text
ma Mango wiggler as a novel insertion device providing a large and symmetrical imaging field of view By journals.iucr.org Published On :: 2024-06-21 A novel insertion device is introduced, designated as the Mango wiggler, designed for synchrotron radiation (SR) imaging that provides a large field of view. This innovative device is constructed from two orthogonal planar wigglers with a small difference in their period lengths, eliciting the phase difference of the magnetic fields to incrementally transitions from 0 to π/2. Such a configuration enlarges the vertical divergence of the light source, as with the horizontal divergence. The appellation `Mango wiggler' derives from the distinctive mango-shaped contour of its radiation field. A comprehensive suite of theoretical analyses and simulations has been executed to elucidate the radiation properties of the Mango wiggler, employing SPECTRA and Mathematica as calculation tools. In conjunction with the ongoing construction of the High Energy Photon Source in Beijing a practical Mango wiggler device has been fabricated for utilization in SR imaging applications. Theoretical analyses were applied to this particular Mango wiggler to yield several theoretical conclusions, and several simulations were performed according to the measured magnetic field results. Full Article text
ma Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning By journals.iucr.org Published On :: 2024-06-25 Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co–N–C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co–N–C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co–N–C catalysts, and further optimization of this class of electrocatalytic systems. Full Article text
ma In situ photodeposition of ultra-small palladium particles on TiO2 By journals.iucr.org Published On :: 2024-07-15 In situ and operando investigation of photocatalysts plays a fundamental role in understanding the processes of active phase formation and the mechanisms of catalytic reactions, which is crucial for the rational design of more efficient materials. Using a custom-made operando photocatalytic cell, an in situ procedure to follow the formation steps of Pd/TiO2 photocatalyst by synchrotron-based X-ray absorption spectroscopy (XAS) is proposed. The procedure resulted in the formation of ∼1 nm Pd particles with a much narrower size distribution and homogeneous spreading over TiO2 support compared with the samples generated in a conventional batch reactor. The combination of in situ XAS spectroscopy with high-angle annular dark-field scanning transmission electron microscopy demonstrated the formation of single-atom Pd(0) sites on TiO2 as the initial step of the photodeposition process. Palladium hydride particles were observed for all investigated samples upon exposure to formic acid solutions. Full Article text
ma X-ray lens figure errors retrieved by deep learning from several beam intensity images By journals.iucr.org Published On :: 2024-07-23 The phase problem in the context of focusing synchrotron beams with X-ray lenses is addressed. The feasibility of retrieving the surface error of a lens system by using only the intensity of the propagated beam at several distances is demonstrated. A neural network, trained with a few thousand simulations using random errors, can predict accurately the lens error profile that accounts for all aberrations. It demonstrates the feasibility of routinely measuring the aberrations induced by an X-ray lens, or another optical system, using only a few intensity images. Full Article text
ma Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source By journals.iucr.org Published On :: 2024-07-15 The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users. Full Article text
ma Study on the UV FEL single-shot damage threshold of an Au thin film By journals.iucr.org Published On :: 2024-07-23 The damage threshold of an Au-coated flat mirror, one of the reflective optics installed on the FEL-2 beamline of the Dalian Coherent Light Source, China, upon far-UV free-electron laser irradiation is evaluated. The surface of the coating is characterized by profilometer and optical microscope. A theoretical approach of the phenomenon is also presented, by application of conventional single-pulse damage threshold calculations, a one-dimensional thermal diffusion model, as well as finite-element analysis with ANSYS. Full Article text
ma New opportunities for time-resolved imaging using diffraction-limited storage rings By journals.iucr.org Published On :: 2024-07-30 The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system. Full Article text
ma Area normalization of HERFD-XANES spectra By journals.iucr.org Published On :: 2024-08-06 The normalization of X-ray absorption near-edge structure (XANES) spectra is required for comparing spectral features and extracting quantitative information in analytical techniques such as linear combination analysis, principal component analysis and multivariate curve resolution. Most published data are normalized to the edge-jump, but normalization to the spectral area has also been applied. The latter is particularly attractive if only a small energy range around the absorption can be recorded reliably. Here, the two normalization methods are compared at the L3-edge of Pt, Pd and Rh, and at the Ni K-edge using experimental and calculated spectra. Normalization to the spectral area is found to be a viable approach if the range for the area normalization is sufficiently large. Full Article text
ma A versatile sample-delivery system for X-ray photoelectron spectroscopy of in-flight aerosols and free nanoparticles at MAX IV Laboratory By journals.iucr.org Published On :: 2024-08-07 Aerosol science is of utmost importance for both climate and public health research, and in recent years X-ray techniques have proven effective tools for aerosol-particle characterization. To date, such methods have often involved the study of particles collected onto a substrate, but a high photon flux may cause radiation damage to such deposited particles and volatile components can potentially react with the surrounding environment after sampling. These and many other factors make studies on collected aerosol particles challenging. Therefore, a new aerosol sample-delivery system dedicated to X-ray photoelectron spectroscopy studies of aerosol particles and gas molecules in-flight has been developed at the MAX IV Laboratory. The aerosol particles are brought from atmospheric pressure to vacuum in a continuous flow, ensuring that the sample is constantly renewed, thus avoiding radiation damage, and allowing measurements on the true unsupported aerosol. At the same time, available gas molecules can be used for energy calibration and to study gas-particle partitioning. The design features of the aerosol sample-delivery system and important information on the operation procedures are described in detail here. Furthermore, to demonstrate the experimental range of the aerosol sample-delivery system, results from aerosol particles of different shape, size and composition are presented, including inorganic atmospheric aerosols, secondary organic aerosols and engineered nanoparticles. Full Article text
ma Development of a high-performance and cost-effective in-vacuum undulator By journals.iucr.org Published On :: 2024-08-01 In-vacuum undulators (IVUs), which have become an essential tool in synchrotron radiation facilities, have two technical challenges toward further advancement: one is a strong attractive force between top and bottom magnetic arrays, and the other is a stringent requirement on magnetic materials to avoid demagnetization. The former imposes a complicated design on mechanical and vacuum structures, while the latter limits the possibility of using high-performance permanent magnets. To solve these issues, a number of technical developments have been made, such as force cancellation and modularization of magnetic arrays, and enhancement of resistance against demagnetization by means of a special magnetic circuit. The performance of a new IVU built upon these technologies has revealed their effectiveness for constructing high-performance IVUs in a cost-effective manner. Full Article text
ma A 1D imaging soft X-ray spectrometer for the small quantum systems instrument at the European XFEL By journals.iucr.org Published On :: 2024-07-30 A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump–probe measurements and in investigations of propagation effects and other nonlinear phenomena. Full Article text
ma The diamond–silicon carbide composite Skeleton® as a promising material for substrates of intense X-ray beam optics By journals.iucr.org Published On :: 2024-08-06 The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10−6 K−1, and the values of thermal conductivity (5.0 W cm−1 K−1) and heat capacity (1.2 J K−1 g−1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample. Full Article text
ma Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump–probe experiments By journals.iucr.org Published On :: 2024-08-05 The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction. Full Article text
ma New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick–Baez active optical system KAOS By journals.iucr.org Published On :: 2024-08-16 Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick–Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions. Full Article text
ma In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum By journals.iucr.org Published On :: 2024-08-06 Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected. Full Article text
ma Characterizing electron-collecting CdTe for use in a 77 ns burst-rate imager By journals.iucr.org Published On :: 2024-08-07 The Keck-PAD (pixel array detector) was developed at Cornell as a burst-rate imager capable of recording images from successive electron bunches (153 ns period) from the Advanced Photon Source (APS). Both Si and hole-collecting Schottky CdTe have been successfully bonded to this ASIC (application-specific integrated circuit) and used with this frame rate. The facility upgrades at the APS will lower the bunch period to 77 ns, which will require modifications to the Keck-PAD electronics to image properly at this reduced period. In addition, operation at high X-ray energies will require a different sensor material having a shorter charge collection time. For the target energy of 40 keV for this project, simulations have shown that electron-collecting CdTe should allow >90% charge collection within 35 ns. This collection time will be sufficient to sample the signal from one frame and prepare for the next. 750 µm-thick electron-collecting Schottky CdTe has been obtained from Acrorad and bonded to two different charge-integrating ASICs developed at Cornell, the Keck-PAD and the CU-APS-PAD. Carrier mobility has been investigated using the detector response to single X-ray bunches at the Cornell High Energy Synchrotron Source and to a pulsed optical laser. The tests indicate that the collection time will meet the requirements for 77 ns imaging. Full Article text
ma Vibrational stability improvement of a mirror system using active mass damping By journals.iucr.org Published On :: 2024-08-08 Addressing the demand for high stability of beamline instruments at the SHINE facility, a high stability mirror regulating mechanism has been developed for mirror adjustments. Active mass damping was adopted to attenuate pitch angle vibrations of mirrors caused by structural vibrations. An internal absolute velocity feedback was used to reduce the negative impact of spillover effects and to improve performance. The experiment was conducted on a prototype structure of a mirror regulating mechanism, and results showed that the vibration RMS of the pitch angle was effectively attenuated from 47 nrad to 27 nrad above 1 Hz. Full Article text
ma Correcting angular distortions in Bragg coherent X-ray diffraction imaging By journals.iucr.org Published On :: 2024-08-08 Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval. Full Article text
ma Using convolutional neural network denoising to reduce ambiguity in X-ray coherent diffraction imaging By journals.iucr.org Published On :: 2024-08-05 The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions. Full Article text
ma Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions By journals.iucr.org Published On :: 2024-08-23 Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed. Full Article text
ma Development of a flat jet delivery system for soft X-ray spectroscopy at MAX IV By journals.iucr.org Published On :: 2024-08-22 One of the most challenging aspects of X-ray research is the delivery of liquid sample flows into the soft X-ray beam. Currently, cylindrical microjets are the most commonly used sample injection systems for soft X-ray liquid spectroscopy. However, they suffer from several drawbacks, such as complicated geometry due to their curved surface. In this study, we propose a novel 3D-printed nozzle design by introducing microscopic flat sheet jets that provide micrometre-thick liquid sheets with high stability, intending to make this technology more widely available to users. Our research is a collaboration between the EuXFEL and MAX IV research facilities. This collaboration aims to develop and refine a 3D-printed flat sheet nozzle design and a versatile jetting platform that is compatible with multiple endstations and measurement techniques. Our flat sheet jet platform improves the stability of the jet and increases its surface area, enabling more precise scanning and differential measurements in X-ray absorption, scattering, and imaging applications. Here, we demonstrate the performance of this new arrangement for a flat sheet jet setup with X-ray photoelectron spectroscopy, photoelectron angular distribution, and soft X-ray absorption spectroscopy experiments performed at the photoemission endstation of the FlexPES beamline at MAX IV Laboratory in Lund, Sweden. Full Article text
ma Investigating the missing-wedge problem in small-angle X-ray scattering tensor tomography across real and reciprocal space By journals.iucr.org Published On :: 2024-08-28 Small-angle-scattering tensor tomography is a technique for studying anisotropic nanostructures of millimetre-sized samples in a volume-resolved manner. It requires the acquisition of data through repeated tomographic rotations about an axis which is subjected to a series of tilts. The tilt that can be achieved with a typical setup is geometrically constrained, which leads to limits in the set of directions from which the different parts of the reciprocal space map can be probed. Here, we characterize the impact of this limitation on reconstructions in terms of the missing wedge problem of tomography, by treating the problem of tensor tomography as the reconstruction of a three-dimensional field of functions on the unit sphere, represented by a grid of Gaussian radial basis functions. We then devise an acquisition scheme to obtain complete data by remounting the sample, which we apply to a sample of human trabecular bone. Performing tensor tomographic reconstructions of limited data sets as well as the complete data set, we further investigate and validate the missing wedge problem by investigating reconstruction errors due to data incompleteness across both real and reciprocal space. Finally, we carry out an analysis of orientations and derived scalar quantities, to quantify the impact of this missing wedge problem on a typical tensor tomographic analysis. We conclude that the effects of data incompleteness are consistent with the predicted impact of the missing wedge problem, and that the impact on tensor tomographic analysis is appreciable but limited, especially if precautions are taken. In particular, there is only limited impact on the means and relative anisotropies of the reconstructed reciprocal space maps. Full Article text
ma A distributed software system for integrating data-intensive imaging methods in a hard X-ray nanoprobe beamline at the SSRF By journals.iucr.org Published On :: 2024-08-22 The development of hard X-ray nanoprobe techniques has given rise to a number of experimental methods, like nano-XAS, nano-XRD, nano-XRF, ptychography and tomography. Each method has its own unique data processing algorithms. With the increase in data acquisition rate, the large amount of generated data is now a big challenge to these algorithms. In this work, an intuitive, user-friendly software system is introduced to integrate and manage these algorithms; by taking advantage of the loosely coupled, component-based design approach of the system, the data processing speed of the imaging algorithm is enhanced through optimization of the parallelism efficiency. This study provides meaningful solutions to tackle complexity challenges faced in synchrotron data processing. Full Article text
ma Accelerating imaging research at large-scale scientific facilities through scientific computing By journals.iucr.org Published On :: 2024-08-27 To date, computed tomography experiments, carried-out at synchrotron radiation facilities worldwide, pose a tremendous challenge in terms of the breadth and complexity of the experimental datasets produced. Furthermore, near real-time three-dimensional reconstruction capabilities are becoming a crucial requirement in order to perform high-quality and result-informed synchrotron imaging experiments, where a large amount of data is collected and processed within a short time window. To address these challenges, we have developed and deployed a synchrotron computed tomography framework designed to automatically process online the experimental data from the synchrotron imaging beamlines, while leveraging the high-performance computing cluster capabilities to accelerate the real-time feedback to the users on their experimental results. We have, further, integrated it within a modern unified national authentication and data management framework, which we have developed and deployed, spanning the entire data lifecycle of a large-scale scientific facility. In this study, the overall architecture, functional modules and workflow design of our synchrotron computed tomography framework are presented in detail. Moreover, the successful integration of the imaging beamlines at the Shanghai Synchrotron Radiation Facility into our scientific computing framework is also detailed, which, ultimately, resulted in accelerating and fully automating their entire data processing pipelines. In fact, when compared with the original three-dimensional tomography reconstruction approaches, the implementation of our synchrotron computed tomography framework led to an acceleration in the experimental data processing capabilities, while maintaining a high level of integration with all the beamline processing software and systems. Full Article text
ma Comparing single-shot damage thresholds of boron carbide and silicon at the European XFEL By journals.iucr.org Published On :: 2024-08-25 Xray free-electron lasers (XFELs) enable experiments that would have been impractical or impossible at conventional X-ray laser facilities. Indeed, more XFEL facilities are being built and planned, with their aim to deliver larger pulse energies and higher peak brilliance. While seeking to increase the pulse power, it is quintessential to consider the maximum pulse fluence that a grazing-incidence FEL mirror can withstand. To address this issue, several studies were conducted on grazing-incidence damage by soft X-ray FEL pulses at the European XFEL facility. Boron carbide (B4C) coatings on polished silicon substrate were investigated using 1 keV photon energy, similar to the X-ray mirrors currently installed at the soft X-ray beamlines (SASE3). The purpose of this study is to compare the damage threshold of B4C and Si to determine the advantages, tolerance and limits of using B4C coatings. Full Article text
ma Indirect detector for ultra-high-speed X-ray micro-imaging with increased sensitivity to near-ultraviolet scintillator emission By journals.iucr.org Published On :: 2024-08-28 Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310–430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2−xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps. Full Article text
ma A new dual-thickness semi-transparent beamstop for small-angle X-ray scattering By journals.iucr.org Published On :: 2024-08-25 An innovative dual-thickness semi-transparent beamstop designed to enhance the performance of small-angle X-ray scattering (SAXS) experiments is introduced. This design integrates two absorbers of differing thicknesses side by side into a single attenuator, known as a beamstop. Instead of completely stopping the direct beam, it attenuates it, allowing the SAXS detector to measure the transmitted beam through the sample. This approach achieves true synchronization in measuring both scattered and transmitted signals and effectively eliminates higher-order harmonic contributions when determining the transmission light intensity through the sample. This facilitates and optimizes signal detection and background subtraction. This contribution details the theoretical basis and practical implementation of this solution at the SAXS station on the 1W2A beamline at the Beijing Synchrotron Radiation Facility. It also anticipates its application at other SAXS stations, including that at the forthcoming High Energy Photon Source, providing an effective solution for high-precision SAXS experiments. Full Article text
ma Synthesis and structure of trans-bis(4-amino-3-nitrobenzoato-κO)bis(4-amino-3-nitrobenzoic acid-κO)diaquamanganese(II) dihydrate By journals.iucr.org Published On :: 2024-01-19 The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitrobenzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex molecules located on inversion centers. Four 4 A3NBA ligand molecules are monodentately coordinated by the Mn2+ ion through the carboxylic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water molecules, giving rise to a distorted octahedron, and two water molecules are in the outer coordination sphere. There are two intramolecular hydrogen bonds in the complex molecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxylate groups. In the crystal, an intricate system of intermolecular hydrogen bonds links the complex molecules into a three-dimensional-network. Full Article text
ma Methyl N-{(1R)-2-[(methoxycarbonyl)oxy]-1-phenylethyl}carbamate By journals.iucr.org Published On :: 2024-03-21 The title molecule, C12H15NO5, is a methyl carbamate derivative obtained by reacting (R)-2-phenylglycinol and methyl chloroformate, with calcium hydroxide as heterogeneous catalyst. Supramolecular chains are formed in the [100] direction, based on N—H⋯O hydrogen bonds between the amide and carboxylate groups. These chains weakly interact in the crystal, and the phenyl rings do not display significant π–π interactions. Full Article text
ma trans-Dibromidotetrakis(5-methyl-1H-pyrazole-κN2)manganese(II) By journals.iucr.org Published On :: 2024-03-19 The title compound, trans-dibromidotetrakis(5-methyl-1H-pyrazole-κN2)manganese(II), [MnBr2(C4H6N2)4] or [Mn(3-MePzH)4Br2] (1) crystallizes in the triclinic Poverline{1} space group with the cell parameters a = 7.6288 (3), b = 8.7530 (4), c = 9.3794 (4) Å and α = 90.707 (4), β = 106.138 (4), γ = 114.285 (5)°, V = 542.62 (5) Å3, T = 120 K. The asymmetric unit contains only half the molecule with the manganese atom is situated on a crystallographic inversion center. The 3-MePzH ligands are present in an AABB type manner with two methyl groups pointing up and the other two down. The supramolecular architecture is characterized by several intermolecular C—H⋯N, N—H⋯Br, and C—H⋯π interactions. Earlier, a polymorphic structure of [Mn(3-MePzH)4Br2] (2) with a similar geometry and also an AABB arrangement for the pyrazole ligands was described [Reedijk et al. (1971). Inorg. Chem. 10, 2594–2599; a = 8.802 (6), b = 9.695 (5), c = 7.613 (8) Å and α = 105.12 (4), β = 114.98 (4), γ = 92.90 (3)°, V = 558.826 (5) Å3, T = 295 K]. A varying supramolecular pattern was reported, with the structure of 1 featuring a herringbone type pattern while that of structure 2 shows a pillared network type of arrangement along the a axis. A nickel complex [Ni(3-MePzH)4Br2] isomorphic to 1 and the analogous chloro derivatives of FeII, CoII and CuII are also known. Full Article text
ma Redetermination of germacrone type II based on single-crystal X-ray data By journals.iucr.org Published On :: 2024-04-26 The extraction and purification procedures, crystallization and crystal structure refinement (single-crystal X-ray data) of germacrone type II, C15H22O, are presented. The structural results are compared with a previous powder X-ray synchrotron study [Kaduk et al. (2022). Powder Diffr. 37, 98–104], revealing significant improvements in terms of accuracy and precision. Hirshfeld atom refinement (HAR), as well as Hirshfeld surface analysis, give insight into the intermolecular interactions of germacrone type II. Full Article text
ma Poly[[{μ2-5-[(dimethylamino)(thioxo)methoxy]benzene-1,3-dicarboxylato-κ4O1,O1':O3,O3'}(μ2-4,4'-dipyridylamine-κ2N4:N4')cobalt(II)] dimethylformamide hemisolvate monohydrate] By journals.iucr.org Published On :: 2024-06-04 In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(dimethylamino)thioxomethoxy]-1,3-benzenedicarboxylate and dpa = 4,4'-dipyridylamine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octahedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and dimethylformamide (DMF) solvent molecules are located in the voids of the network to which they are connected through hydrogen-bonding interactions. Full Article text
ma (2,5-Dimethylimidazole){N,N',N'',N'''-[porphyrin-5,10,15,20-tetrayltetra(2,1-phenylene)]tetrakis(pyridine-3-carboxamide)}manganese(II) chlorobenzene disolvate By journals.iucr.org Published On :: 2024-06-04 In the title compound, [Mn(C68H44N12O4)(C5H8N2)]·2C6H5Cl, the central MnII ion is coordinated by four pyrrole N atoms of the porphyrin core in the basal sites and one N atom of the 2,5-dimethylimidazole ligand in the apical site. Two chlorobenzene solvent molecules are also present in the asymmetric unit. Due to the apical imidazole ligand, the Mn atom is displaced out of the 24-atom porphyrin mean plane by 0.66 Å. The average Mn—Np (p = porphyrin) bond length is 2.143 (8) Å, and the axial Mn—NIm (Im = 2,5-dimethylimidazole) bond length is 2.171 (8) Å. The structure displays intermolecular and intramolecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonding. The crystal studied was refined as a two-component inversion twin. Full Article text
ma Absolute structure determination of Berkecoumarin by X-ray and electron diffraction By journals.iucr.org Published On :: 2024-04-10 X-ray and electron diffraction methods independently identify the S-enantiomer of Berkecoumarin [systematic name: (S)-8-hydroxy-3-(2-hydroxypropyl)-6-methoxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom composition (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination. Full Article text
ma Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate By journals.iucr.org Published On :: 2024-05-07 The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host–guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1–TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N—H⋯O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N—H⋯O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1–TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction. Full Article text
ma Formation of extended polyiodides at large cation templates By journals.iucr.org Published On :: 2024-05-13 By studying the structures of (μ-1,4,10,13-tetrathia-7,16-diazacyclooctadecane)bis[iodidopalladium(II)] diiodide penta(diiodine), [Pd2I2(C12H26N2S4)](I)2·5I2 or [Pd2I2([18]aneN2S4)](I)2·(I2)5, and 4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane triiodide iodide hemipenta(diiodine) dichloromethane monosolvate, C18H38N2O62+·I3−·I−·2.5I2·CH2Cl2 or [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2, we confirm the structural variety of extended polyiodides achievable upon changing the shape, charge and dimensions of the cation template, by altering the synthetic strategy adopted and/or the experimental conditions. Although it is still often difficult to characterize discrete [I2m+n]n− polyiodides higher than I3− on the basis of structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to identify them as aggregates of I2, I− and (symmetric or slightly asymmetric) I3− building blocks linked by I⋯I interactions of varying strengths. However, because FT–Raman spectroscopy carries no information about the topological features of extended polyiodides, the two techniques should therefore be applied in combination to enhance the analysis of this kind of compounds. Full Article text
ma The crystal structure of the ammonium salt of 2-aminomalonic acid By journals.iucr.org Published On :: 2024-06-19 The salt ammonium 2-aminomalonate (systematic name: ammonium 2-azaniumylpropanedioate), NH4+·C3H4NO4−, was synthesized in diethyl ether from the starting materials malonic acid, ammonia and bromine. The salt was recrystallized from water as colourless blocks. In the solid state, intramolecular medium–strong N—H⋯O, weak C—H⋯O and weak C—H⋯N hydrogen bonds build a three-dimensional network. Full Article text
ma Crystal structure and cryomagnetic study of a mononuclear erbium(III) oxamate inclusion complex By journals.iucr.org Published On :: 2024-07-10 The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)–dimethyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K. Full Article text