b

On stability of traveling wave solutions for integro-differential equations related to branching Markov processes

Pasha Tkachov.

Source: Bernoulli, Volume 26, Number 2, 1354--1380.

Abstract:
The aim of this paper is to prove stability of traveling waves for integro-differential equations connected with branching Markov processes. In other words, the limiting law of the left-most particle of a (time-continuous) branching Markov process with a Lévy non-branching part is demonstrated. The key idea is to approximate the branching Markov process by a branching random walk and apply the result of Aïdékon [ Ann. Probab. 41 (2013) 1362–1426] on the limiting law of the latter one.




b

A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case

Denis Talay, Milica Tomašević.

Source: Bernoulli, Volume 26, Number 2, 1323--1353.

Abstract:
In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model.




b

Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem

Emanuele Dolera, Stefano Favaro.

Source: Bernoulli, Volume 26, Number 2, 1294--1322.

Abstract:
Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem.




b

Strictly weak consensus in the uniform compass model on $mathbb{Z}$

Nina Gantert, Markus Heydenreich, Timo Hirscher.

Source: Bernoulli, Volume 26, Number 2, 1269--1293.

Abstract:
We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on strong consensus (i.e., global agreement of all individuals) versus weak consensus (i.e., local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice $mathbb{Z}$ with weak consensus but no strong consensus.




b

Consistent structure estimation of exponential-family random graph models with block structure

Michael Schweinberger.

Source: Bernoulli, Volume 26, Number 2, 1205--1233.

Abstract:
We consider the challenging problem of statistical inference for exponential-family random graph models based on a single observation of a random graph with complex dependence. To facilitate statistical inference, we consider random graphs with additional structure in the form of block structure. We have shown elsewhere that when the block structure is known, it facilitates consistency results for $M$-estimators of canonical and curved exponential-family random graph models with complex dependence, such as transitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is unknown in others. When the block structure is unknown, the first and foremost question is whether it can be recovered with high probability based on a single observation of a random graph with complex dependence. The main consistency results of the paper show that it is possible to do so under weak dependence and smoothness conditions. These results confirm that exponential-family random graph models with block structure constitute a promising direction of statistical network analysis.




b

Characterization of probability distribution convergence in Wasserstein distance by $L^{p}$-quantization error function

Yating Liu, Gilles Pagès.

Source: Bernoulli, Volume 26, Number 2, 1171--1204.

Abstract:
We establish conditions to characterize probability measures by their $L^{p}$-quantization error functions in both $mathbb{R}^{d}$ and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the $L^{p}$-Wasserstein distance). We first propose a criterion on the quantization level $N$, valid for any norm on $mathbb{R}^{d}$ and any order $p$ based on a geometrical approach involving the Voronoï diagram. Then, we prove that in the $L^{2}$-case on a (separable) Hilbert space, the condition on the level $N$ can be reduced to $N=2$, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper.




b

Robust regression via mutivariate regression depth

Chao Gao.

Source: Bernoulli, Volume 26, Number 2, 1139--1170.

Abstract:
This paper studies robust regression in the settings of Huber’s $epsilon$-contamination models. We consider estimators that are maximizers of multivariate regression depth functions. These estimators are shown to achieve minimax rates in the settings of $epsilon$-contamination models for various regression problems including nonparametric regression, sparse linear regression, reduced rank regression, etc. We also discuss a general notion of depth function for linear operators that has potential applications in robust functional linear regression.




b

Interacting reinforced stochastic processes: Statistical inference based on the weighted empirical means

Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti.

Source: Bernoulli, Volume 26, Number 2, 1098--1138.

Abstract:
This work deals with a system of interacting reinforced stochastic processes , where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted directed graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h eq j$, of the other agents according to the entries of $W$. The best known example of reinforced stochastic process is the Pólya urn. The present paper focuses on the weighted empirical means $N_{n,j}=sum_{k=1}^{n}q_{n,k}X_{k,j}$, since, for example, the current experience is more important than the past one in reinforced learning. Their almost sure synchronization and some central limit theorems in the sense of stable convergence are proven. The new approach with weighted means highlights the key points in proving some recent results for the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ and for the empirical means $overline{X}^{j}=(sum_{k=1}^{n}X_{k,j}/n)_{n}$ given in recent papers (e.g. Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered processes, we can understand how the different convergence rates of the involved stochastic processes combine. From an application point of view, we provide confidence intervals for the common limit inclination of the agents and a test statistics to make inference on the matrix $W$, based on the weighted empirical means. In particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019).




b

A Bayesian nonparametric approach to log-concave density estimation

Ester Mariucci, Kolyan Ray, Botond Szabó.

Source: Bernoulli, Volume 26, Number 2, 1070--1097.

Abstract:
The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.




b

A unified principled framework for resampling based on pseudo-populations: Asymptotic theory

Pier Luigi Conti, Daniela Marella, Fulvia Mecatti, Federico Andreis.

Source: Bernoulli, Volume 26, Number 2, 1044--1069.

Abstract:
In this paper, a class of resampling techniques for finite populations under $pi $ps sampling design is introduced. The basic idea on which they rest is a two-step procedure consisting in: (i) constructing a “pseudo-population” on the basis of sample data; (ii) drawing a sample from the predicted population according to an appropriate resampling design. From a logical point of view, this approach is essentially based on the plug-in principle by Efron, at the “sampling design level”. Theoretical justifications based on large sample theory are provided. New approaches to construct pseudo populations based on various forms of calibrations are proposed. Finally, a simulation study is performed.




b

Stable processes conditioned to hit an interval continuously from the outside

Leif Döring, Philip Weissmann.

Source: Bernoulli, Volume 26, Number 2, 980--1015.

Abstract:
Conditioning stable Lévy processes on zero probability events recently became a tractable subject since several explicit formulas emerged from a deep analysis using the Lamperti transformations for self-similar Markov processes. In this article, we derive new harmonic functions and use them to explain how to condition stable processes to hit continuously a compact interval from the outside.




b

Robust estimation of mixing measures in finite mixture models

Nhat Ho, XuanLong Nguyen, Ya’acov Ritov.

Source: Bernoulli, Volume 26, Number 2, 828--857.

Abstract:
In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical inference of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon. We demonstrate that our estimators consistently recover the true number of components and achieve the optimal convergence rates of parameter estimation under both the well- and misspecified kernel settings for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies with both synthetic and real data.




b

Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces

Jing Lei.

Source: Bernoulli, Volume 26, Number 1, 767--798.

Abstract:
We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions.




b

A Feynman–Kac result via Markov BSDEs with generalised drivers

Elena Issoglio, Francesco Russo.

Source: Bernoulli, Volume 26, Number 1, 728--766.

Abstract:
In this paper, we investigate BSDEs where the driver contains a distributional term (in the sense of generalised functions) and derive general Feynman–Kac formulae related to these BSDEs. We introduce an integral operator to give sense to the equation and then we show the existence of a strong solution employing results on a related PDE. Due to the irregularity of the driver, the $Y$-component of a couple $(Y,Z)$ solving the BSDE is not necessarily a semimartingale but a weak Dirichlet process.




b

Robust modifications of U-statistics and applications to covariance estimation problems

Stanislav Minsker, Xiaohan Wei.

Source: Bernoulli, Volume 26, Number 1, 694--727.

Abstract:
Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions.




b

A unified approach to coupling SDEs driven by Lévy noise and some applications

Mingjie Liang, René L. Schilling, Jian Wang.

Source: Bernoulli, Volume 26, Number 1, 664--693.

Abstract:
We present a general method to construct couplings of stochastic differential equations driven by Lévy noise in terms of coupling operators. This approach covers both coupling by reflection and refined basic coupling which are often discussed in the literature. As applications, we prove regularity results for the transition semigroups and obtain successful couplings for the solutions to stochastic differential equations driven by additive Lévy noise.




b

On frequentist coverage errors of Bayesian credible sets in moderately high dimensions

Keisuke Yano, Kengo Kato.

Source: Bernoulli, Volume 26, Number 1, 616--641.

Abstract:
In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory.




b

Normal approximation for sums of weighted $U$-statistics – application to Kolmogorov bounds in random subgraph counting

Nicolas Privault, Grzegorz Serafin.

Source: Bernoulli, Volume 26, Number 1, 587--615.

Abstract:
We derive normal approximation bounds in the Kolmogorov distance for sums of discrete multiple integrals and weighted $U$-statistics made of independent Bernoulli random variables. Such bounds are applied to normal approximation for the renormalized subgraph counts in the Erdős–Rényi random graph. This approach completely solves a long-standing conjecture in the general setting of arbitrary graph counting, while recovering recent results obtained for triangles and improving other bounds in the Wasserstein distance.




b

Subspace perspective on canonical correlation analysis: Dimension reduction and minimax rates

Zhuang Ma, Xiaodong Li.

Source: Bernoulli, Volume 26, Number 1, 432--470.

Abstract:
Canonical correlation analysis (CCA) is a fundamental statistical tool for exploring the correlation structure between two sets of random variables. In this paper, motivated by the recent success of applying CCA to learn low dimensional representations of high dimensional objects, we propose two losses based on the principal angles between the model spaces spanned by the sample canonical variates and their population correspondents, respectively. We further characterize the non-asymptotic error bounds for the estimation risks under the proposed error metrics, which reveal how the performance of sample CCA depends adaptively on key quantities including the dimensions, the sample size, the condition number of the covariance matrices and particularly the population canonical correlation coefficients. The optimality of our uniform upper bounds is also justified by lower-bound analysis based on stringent and localized parameter spaces. To the best of our knowledge, for the first time our paper separates $p_{1}$ and $p_{2}$ for the first order term in the upper bounds without assuming the residual correlations are zeros. More significantly, our paper derives $(1-lambda_{k}^{2})(1-lambda_{k+1}^{2})/(lambda_{k}-lambda_{k+1})^{2}$ for the first time in the non-asymptotic CCA estimation convergence rates, which is essential to understand the behavior of CCA when the leading canonical correlation coefficients are close to $1$.




b

Estimation of the linear fractional stable motion

Stepan Mazur, Dmitry Otryakhin, Mark Podolskij.

Source: Bernoulli, Volume 26, Number 1, 226--252.

Abstract:
In this paper, we investigate the parametric inference for the linear fractional stable motion in high and low frequency setting. The symmetric linear fractional stable motion is a three-parameter family, which constitutes a natural non-Gaussian analogue of the scaled fractional Brownian motion. It is fully characterised by the scaling parameter $sigma>0$, the self-similarity parameter $Hin(0,1)$ and the stability index $alphain(0,2)$ of the driving stable motion. The parametric estimation of the model is inspired by the limit theory for stationary increments Lévy moving average processes that has been recently studied in ( Ann. Probab. 45 (2017) 4477–4528). More specifically, we combine (negative) power variation statistics and empirical characteristic functions to obtain consistent estimates of $(sigma,alpha,H)$. We present the law of large numbers and some fully feasible weak limit theorems.




b

Needles and straw in a haystack: Robust confidence for possibly sparse sequences

Eduard Belitser, Nurzhan Nurushev.

Source: Bernoulli, Volume 26, Number 1, 191--225.

Abstract:
In the general signal$+$noise (allowing non-normal, non-independent observations) model, we construct an empirical Bayes posterior which we then use for uncertainty quantification for the unknown, possibly sparse, signal. We introduce a novel excessive bias restriction (EBR) condition, which gives rise to a new slicing of the entire space that is suitable for uncertainty quantification. Under EBR and some mild exchangeable exponential moment condition on the noise, we establish the local (oracle) optimality of the proposed confidence ball. Without EBR, we propose another confidence ball of full coverage, but its radius contains an additional $sigma n^{1/4}$-term. In passing, we also get the local optimal results for estimation , posterior contraction problems, and the problem of weak recovery of sparsity structure . Adaptive minimax results (also for the estimation and posterior contraction problems) over various sparsity classes follow from our local results.




b

A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables

Michael V. Boutsikas, Eutichia Vaggelatou

Source: Bernoulli, Volume 16, Number 2, 301--330.

Abstract:
Let X 1 , X 2 , …, X n be a sequence of independent or locally dependent random variables taking values in ℤ + . In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance between the distribution of the sum ∑ i =1 n X i and an appropriate Poisson or compound Poisson distribution. These bounds include a factor which depends on the smoothness of the approximating Poisson or compound Poisson distribution. This “smoothness factor” is of order O( σ −2 ), according to a heuristic argument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error estimates for a large range of values of the parameters. Finally, specific examples concerning appearances of rare runs in sequences of Bernoulli trials are presented by way of illustration.




b

English given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter.

Names, Personal -- England.




b

The Thomson family : fisherman in Buckhaven, retailers in Kapunda / compiled by Elizabeth Anne Howell.

Thomson (Family)




b

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




b

The Mercer story and Amy's story / by Amy Moore ; with Ray Moore.

Moore, Amy, 1908-2005.




b

The Barnes story / by Amy Moore ; with Ray Moore.

Moore, Amy, 1908-2005 -- Family.




b

From Westphalia to South Australia : the story of Franz Heinrich Ernst Siekmann / by Peter Brinkworth.

Siekmann, Francis Heinrich Ernst, 1830-1917.




b

From the coalfields of Somerset to the Adelaide Hills and beyond : the story of the Hewish Family : three centuries of one family's journey through time / Maureen Brown.

Hewish Henry -- Family.




b

With a bottle of whisky in my hand : the family of James Grant and Isabella Masson / by Carolyn Cowgill.

Grant (Family)




b

The Yangya Hicks : tales from the Hicks family of Yangya near Gladstone, South Australia, written from the 12th of May 1998 / by Joyce Coralie Hale (nee Hicks) (28.12.1923-17.12.2003).

Hicks (Family)




b

Gordon of Huntly : heraldic heritage : cadets to South Australia / Robin Gregory Gordon.

South Australia -- Genealogy.




b

By the richest of God's grace / Anna Penney.

Penney, Anna -- Travels.




b

List of family history books owned by Roy Klemm.

Family histories -- South Australia -- Bibliography.




b

The Klemm family : descendants of Johann Gottfried Klemm and Anna Louise Klemm : these forebears are honoured and remembered at a reunion at Gruenberg, Moculta 11th-12th March 1995.

Klemm (Family)




b

The story of Thomas & Ann Stone family : including Helping Hobart's Orphans, the King's Orphan School for Boys 1831-1836 / Alexander E.H. Stone.

King's Orphan Schools (New Town, Tas.)




b

Discover Protestant nonconformity in England and Wales / Paul Blake.

Dissenters, Religious -- Great Britain.




b

Welsh given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter.

Names, Personal -- Welsh.




b

Scottish given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter.

Names, Personal -- Scottish.




b

GEDmatch : tools for DNA & genealogy research / by Kerry Farmer.

Genetic genealogy -- Handbooks, manuals, etc.




b

The Kuerschner story : 1848 - 1999 / compiled by Gerald Kuerschner.

Kuerschner (Family)




b

Our Lady of Grace family page of history : a bookweek bicentennial project / edited by Janeen Brian.

Our Lady of Grace School (Glengowrie, S.A.)




b

No turning back : stories of our ancestors / by David Gambling.

Gambling (Family)




b

Descendants of John & Barbara Cheesman, 1839-1999 / Gary Cheesman.

Cheesman, John -- Family.




b

South Australian history sources / by Andrew Guy Peake.

South Australia -- History -- Sources.




b

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




b

Hubbe family history items

Hubbe (Family)




b

Living through English history : stories of the Urlwin, Brittridge, Vasper, Partridge and Ellerby families / Janet McLeod.

Urlwin (Family).




b

From Wends we came : the story of Johann and Maria Huppatz & their descendants / compiled by Frank Huppatz and Rone McDonnell.

Huppatz (Family).




b

From alms house to first nation : a story of my ancestors in South Australia : a Sherwell family story / by Pamela Coad (nee Sherwell).

Sherwell (Family)