b Nitric Oxide Signaling Strengthens Inhibitory Synapses of Cerebellar Molecular Layer Interneurons through a GABARAP-Dependent Mechanism By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Nitric oxide (NO) is an important signaling molecule that fulfills diverse functional roles as a neurotransmitter or diffusible second messenger in the developing and adult CNS. Although the impact of NO on different behaviors such as movement, sleep, learning, and memory has been well documented, the identity of its molecular and cellular targets is still an area of ongoing investigation. Here, we identify a novel role for NO in strengthening inhibitory GABAA receptor-mediated transmission in molecular layer interneurons of the mouse cerebellum. NO levels are elevated by the activity of neuronal NO synthase (nNOS) following Ca2+ entry through extrasynaptic NMDA-type ionotropic glutamate receptors (NMDARs). NO activates protein kinase G with the subsequent production of cGMP, which prompts the stimulation of NADPH oxidase and protein kinase C (PKC). The activation of PKC promotes the selective strengthening of α3-containing GABAARs synapses through a GABA receptor-associated protein-dependent mechanism. Given the widespread but cell type-specific expression of the NMDAR/nNOS complex in the mammalian brain, our data suggest that NMDARs may uniquely strengthen inhibitory GABAergic transmission in these cells through a novel NO-mediated pathway. SIGNIFICANCE STATEMENT Long-term changes in the efficacy of GABAergic transmission is mediated by multiple presynaptic and postsynaptic mechanisms. A prominent pathway involves crosstalk between excitatory and inhibitory synapses whereby Ca2+-entering through postsynaptic NMDARs promotes the recruitment and strengthening of GABAA receptor synapses via Ca2+/calmodulin-dependent protein kinase II. Although Ca2+ transport by NMDARs is also tightly coupled to nNOS activity and NO production, it has yet to be determined whether this pathway affects inhibitory synapses. Here, we show that activation of NMDARs trigger a NO-dependent pathway that strengthens inhibitory GABAergic synapses of cerebellar molecular layer interneurons. Given the widespread expression of NMDARs and nNOS in the mammalian brain, we speculate that NO control of GABAergic synapse efficacy may be more widespread than has been appreciated. Full Article
b Deletion of Voltage-Gated Calcium Channels in Astrocytes during Demyelination Reduces Brain Inflammation and Promotes Myelin Regeneration in Mice By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 To determine whether Cav1.2 voltage-gated Ca2+ channels contribute to astrocyte activation, we generated an inducible conditional knock-out mouse in which the Cav1.2 α subunit was deleted in GFAP-positive astrocytes. This astrocytic Cav1.2 knock-out mouse was tested in the cuprizone model of myelin injury and repair which causes astrocyte and microglia activation in the absence of a lymphocytic response. Deletion of Cav1.2 channels in GFAP-positive astrocytes during cuprizone-induced demyelination leads to a significant reduction in the degree of astrocyte and microglia activation and proliferation in mice of either sex. Concomitantly, the production of proinflammatory factors such as TNFα, IL1β and TGFβ1 was significantly decreased in the corpus callosum and cortex of Cav1.2 knock-out mice through demyelination. Furthermore, this mild inflammatory environment promotes oligodendrocyte progenitor cells maturation and myelin regeneration across the remyelination phase of the cuprizone model. Similar results were found in animals treated with nimodipine, a Cav1.2 Ca2+ channel inhibitor with high affinity to the CNS. Mice of either sex injected with nimodipine during the demyelination stage of the cuprizone treatment displayed a reduced number of reactive astrocytes and showed a faster and more efficient brain remyelination. Together, these results indicate that Cav1.2 Ca2+ channels play a crucial role in the induction and proliferation of reactive astrocytes during demyelination; and that attenuation of astrocytic voltage-gated Ca2+ influx may be an effective therapy to reduce brain inflammation and promote myelin recovery in demyelinating diseases. SIGNIFICANCE STATEMENT Reducing voltage-gated Ca2+ influx in astrocytes during brain demyelination significantly attenuates brain inflammation and astrocyte reactivity. Furthermore, these changes promote myelin restoration and oligodendrocyte maturation throughout remyelination. Full Article
b Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 The transcription factor Nurr1 has been identified to be ectopically induced in the striatum of rodents expressing l-DOPA-induced dyskinesia (LID). In the present study, we sought to characterize Nurr1 as a causative factor in LID expression. We used rAAV2/5 to overexpress Nurr1 or GFP in the parkinsonian striatum of LID-resistant Lewis or LID-prone Fischer-344 (F344) male rats. In a second cohort, rats received the Nurr1 agonist amodiaquine (AQ) together with l-DOPA or ropinirole. All rats received a chronic DA agonist and were evaluated for LID severity. Finally, we performed single-unit recordings and dendritic spine analyses on striatal medium spiny neurons (MSNs) in drug-naïve rAAV-injected male parkinsonian rats. rAAV-GFP injected LID-resistant hemi-parkinsonian Lewis rats displayed mild LID and no induction of striatal Nurr1 despite receiving a high dose of l-DOPA. However, Lewis rats overexpressing Nurr1 developed severe LID. Nurr1 agonism with AQ exacerbated LID in F344 rats. We additionally determined that in l-DOPA-naïve rats striatal rAAV-Nurr1 overexpression (1) increased cortically-evoked firing in a subpopulation of identified striatonigral MSNs, and (2) altered spine density and thin-spine morphology on striatal MSNs; both phenomena mimicking changes seen in dyskinetic rats. Finally, we provide postmortem evidence of Nurr1 expression in striatal neurons of l-DOPA-treated PD patients. Our data demonstrate that ectopic induction of striatal Nurr1 is capable of inducing LID behavior and associated neuropathology, even in resistant subjects. These data support a direct role of Nurr1 in aberrant neuronal plasticity and LID induction, providing a potential novel target for therapeutic development. SIGNIFICANCE STATEMENT The transcription factor Nurr1 is ectopically induced in striatal neurons of rats exhibiting levodopa-induced dyskinesia [LID; a side-effect to dopamine replacement strategies in Parkinson's disease (PD)]. Here we asked whether Nurr1 is causing LID. Indeed, rAAV-mediated expression of Nurr1 in striatal neurons was sufficient to overcome LID-resistance, and Nurr1 agonism exacerbated LID severity in dyskinetic rats. Moreover, we found that expression of Nurr1 in l-DOPA naïve hemi-parkinsonian rats resulted in the formation of morphologic and electrophysiological signatures of maladaptive neuronal plasticity; a phenomenon associated with LID. Finally, we determined that ectopic Nurr1 expression can be found in the putamen of l-DOPA-treated PD patients. These data suggest that striatal Nurr1 is an important mediator of the formation of LID. Full Article
b Coding of Navigational Distance and Functional Constraint of Boundaries in the Human Scene-Selective Cortex By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 For visually guided navigation, the use of environmental cues is essential. Particularly, detecting local boundaries that impose limits to locomotion and estimating their location is crucial. In a series of three fMRI experiments, we investigated whether there is a neural coding of navigational distance in the human visual cortex (both female and male). We used virtual reality software to systematically manipulate the distance from a viewer perspective to different types of a boundary. Using a multivoxel pattern classification employing a linear support vector machine, we found that the occipital place area (OPA) is sensitive to the navigational distance restricted by the transparent glass wall. Further, the OPA was sensitive to a non-crossable boundary only, suggesting an importance of the functional constraint of a boundary. Together, we propose the OPA as a perceptual source of external environmental features relevant for navigation. SIGNIFICANCE STATEMENT One of major goals in cognitive neuroscience has been to understand the nature of visual scene representation in human ventral visual cortex. An aspect of scene perception that has been overlooked despite its ecological importance is the analysis of space for navigation. One of critical computation necessary for navigation is coding of distance to environmental boundaries that impose limit on navigator's movements. This paper reports the first empirical evidence for coding of navigational distance in the human visual cortex and its striking sensitivity to functional constraint of environmental boundaries. Such finding links the paper to previous neurological and behavioral works that emphasized the distance to boundaries as a crucial geometric property for reorientation behavior of children and other animal species. Full Article
b Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understanding of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the correct action in the presence of distractors, while also improving execution through increased speed and maintenance of accuracy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor performance without compromising accuracy. SIGNIFICANCE STATEMENT While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreciated, role in the reward-based imporvemenets in motor control. Full Article
b Impairment of Pattern Separation of Ambiguous Scenes by Single Units in the CA3 in the Absence of the Dentate Gyrus By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Theoretical models and experimental evidence have suggested that connections from the dentate gyrus (DG) to CA3 play important roles in representing orthogonal information (i.e., pattern separation) in the hippocampus. However, the effects of eliminating the DG on neural firing patterns in the CA3 have rarely been tested in a goal-directed memory task that requires both the DG and CA3. In this study, selective lesions in the DG were made using colchicine in male Long–Evans rats, and single units from the CA3 were recorded as the rats performed visual scene memory tasks. The original scenes used in training were altered during testing by blurring to varying degrees or by using visual masks, resulting in maximal recruitment of the DG–CA3 circuits. Compared with controls, the performance of rats with DG lesions was particularly impaired when blurred scenes were used in the task. In addition, the firing rate modulation associated with visual scenes in these rats was significantly reduced in the single units recorded from the CA3 when ambiguous scenes were presented, largely because DG-deprived CA3 cells did not show stepwise, categorical rate changes across varying degrees of scene ambiguity compared with controls. These findings suggest that the DG plays key roles not only during the acquisition of scene memories but also during retrieval when modified visual scenes are processed in conjunction with the CA3 by making the CA3 network respond orthogonally to ambiguous scenes. SIGNIFICANCE STATEMENT Despite the behavioral evidence supporting the role of the dentate gyrus in pattern separation in the hippocampus, the underlying neural mechanisms are largely unknown. By recording single units from the CA3 in DG-lesioned rats performing a visual scene memory task, we report that the scene-related modulation of neural firing was significantly reduced in the DG-lesion rats compared with controls, especially when the original scene stimuli were ambiguously altered. Our findings suggest that the dentate gyrus plays an essential role during memory retrieval and performs a critical computation to make categorical rate modulation occur in the CA3 between different scenes, especially when ambiguity is present in the environment. Full Article
b Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Sensory systems integrate multiple stimulus features to generate coherent percepts. Spectral surround suppression, the phenomenon by which sound-evoked responses of auditory neurons are suppressed by stimuli outside their receptive field, is an example of this integration taking place in the auditory system. While this form of global integration is commonly observed in auditory cortical neurons, and potentially used by the nervous system to separate signals from noise, the mechanisms that underlie this suppression of activity are not well understood. We evaluated the contributions to spectral surround suppression of the two most common inhibitory cell types in the cortex, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, in mice of both sexes. We found that inactivating SOM+ cells, but not PV+ cells, significantly reduces sustained spectral surround suppression in excitatory cells, indicating a dominant causal role for SOM+ cells in the integration of information across multiple frequencies. The similarity of these results to those from other sensory cortices provides evidence of common mechanisms across the cerebral cortex for generating global percepts from separate features. SIGNIFICANCE STATEMENT To generate coherent percepts, sensory systems integrate simultaneously occurring features of a stimulus, yet the mechanisms by which this integration occurs are not fully understood. Our results show that neurochemically distinct neuronal subtypes in the primary auditory cortex have different contributions to the integration of different frequency components of an acoustic stimulus. Together with findings from other sensory cortices, our results provide evidence of a common mechanism for cortical computations used for global integration of stimulus features. Full Article
b Carbon Monoxide, a Retrograde Messenger Generated in Postsynaptic Mushroom Body Neurons, Evokes Noncanonical Dopamine Release By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Dopaminergic neurons innervate extensive areas of the brain and release dopamine (DA) onto a wide range of target neurons. However, DA release is also precisely regulated. In Drosophila melanogaster brain explant preparations, DA is released specifically onto α3/α'3 compartments of mushroom body (MB) neurons that have been coincidentally activated by cholinergic and glutamatergic inputs. The mechanism for this precise release has been unclear. Here we found that coincidentally activated MB neurons generate carbon monoxide (CO), which functions as a retrograde signal evoking local DA release from presynaptic terminals. CO production depends on activity of heme oxygenase in postsynaptic MB neurons, and CO-evoked DA release requires Ca2+ efflux through ryanodine receptors in DA terminals. CO is only produced in MB areas receiving coincident activation, and removal of CO using scavengers blocks DA release. We propose that DA neurons use two distinct modes of transmission to produce global and local DA signaling. SIGNIFICANCE STATEMENT Dopamine (DA) is needed for various higher brain functions, including memory formation. However, DA neurons form extensive synaptic connections, while memory formation requires highly specific and localized DA release. Here we identify a mechanism through which DA release from presynaptic terminals is controlled by postsynaptic activity. Postsynaptic neurons activated by cholinergic and glutamatergic inputs generate carbon monoxide, which acts as a retrograde messenger inducing presynaptic DA release. Released DA is required for memory-associated plasticity. Our work identifies a novel mechanism that restricts DA release to the specific postsynaptic sites that require DA during memory formation. Full Article
b The Frog Motor Nerve Terminal Has Very Brief Action Potentials and Three Electrical Regions Predicted to Differentially Control Transmitter Release By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 The action potential (AP) waveform controls the opening of voltage-gated calcium channels and contributes to the driving force for calcium ion flux that triggers neurotransmission at presynaptic nerve terminals. Although the frog neuromuscular junction (NMJ) has long been a model synapse for the study of neurotransmission, its presynaptic AP waveform has never been directly studied, and thus the AP waveform shape and propagation through this long presynaptic nerve terminal are unknown. Using a fast voltage-sensitive dye, we have imaged the AP waveform from the presynaptic terminal of male and female frog NMJs and shown that the AP is very brief in duration and actively propagated along the entire length of the terminal. Furthermore, based on measured AP waveforms at different regions along the length of the nerve terminal, we show that the terminal is divided into three distinct electrical regions: A beginning region immediately after the last node of Ranvier where the AP is broadest, a middle region with a relatively consistent AP duration, and an end region near the tip of nerve terminal branches where the AP is briefer. We hypothesize that these measured changes in the AP waveform along the length of the motor nerve terminal may explain the proximal-distal gradient in transmitter release previously reported at the frog NMJ. SIGNIFICANCE STATEMENT The AP waveform plays an essential role in determining the behavior of neurotransmission at the presynaptic terminal. Although the frog NMJ is a model synapse for the study of synaptic transmission, there are many unknowns centered around the shape and propagation of its presynaptic AP waveform. Here, we demonstrate that the presynaptic terminal of the frog NMJ has a very brief AP waveform and that the motor nerve terminal contains three distinct electrical regions. We propose that the changes in the AP waveform as it propagates along the terminal can explain the proximal-distal gradient in transmitter release seen in electrophysiological studies. Full Article
b Cognitive Effort Modulates Connectivity between Dorsal Anterior Cingulate Cortex and Task-Relevant Cortical Areas By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Investment of cognitive effort is required in everyday life and has received ample attention in recent neurocognitive frameworks. The neural mechanism of effort investment is thought to be structured hierarchically, with dorsal anterior cingulate cortex (dACC) at the highest level, recruiting task-specific upstream areas. In the current fMRI study, we tested whether dACC is generally active when effort demand is high across tasks with different stimuli, and whether connectivity between dACC and task-specific areas is increased depending on the task requirements and effort level at hand. For that purpose, a perceptual detection task was administered that required male and female human participants to detect either a face or a house in a noisy image. Effort demand was manipulated by adding little (low effort) or much (high effort) noise to the images. Results showed a network of dACC, anterior insula (AI), and intraparietal sulcus (IPS) to be more active when effort demand was high, independent of the performed task (face or house detection). Importantly, effort demand modulated functional connectivity between dACC and face-responsive or house-responsive perceptual areas, depending on the task at hand. This shows that dACC, AI, and IPS constitute a general effort-responsive network and suggests that the neural implementation of cognitive effort involves dACC-initiated sensitization of task-relevant areas. SIGNIFICANCE STATEMENT Although cognitive effort is generally perceived as aversive, its investment is inevitable when navigating an increasingly complex society. In this study, we demonstrate how the human brain tailors the implementation of effort to the requirements of the task at hand. We show increased effort-related activity in a network of brain areas consisting of dorsal anterior cingulate cortex (dACC), anterior insula, and intraparietal sulcus, independent of task specifics. Crucially, we also show that effort-induced functional connectivity between dACC and task-relevant areas tracks specific task demands. These results demonstrate how brain regions specialized to solve a task may be energized by dACC when effort demand is high. Full Article
b Modulations of Insular Projections by Prior Belief Mediate the Precision of Prediction Error during Tactile Learning By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Awareness for surprising sensory events is shaped by prior belief inferred from past experience. Here, we combined hierarchical Bayesian modeling with fMRI on an associative learning task in 28 male human participants to characterize the effect of the prior belief of tactile events on connections mediating the outcome of perceptual decisions. Activity in anterior insular cortex (AIC), premotor cortex (PMd), and inferior parietal lobule (IPL) were modulated by prior belief on unexpected targets compared with expected targets. On expected targets, prior belief decreased the connection strength from AIC to IPL, whereas it increased the connection strength from AIC to PMd when targets were unexpected. Individual differences in the modulatory strength of prior belief on insular projections correlated with the precision that increases the influence of prediction errors on belief updating. These results suggest complementary effects of prior belief on insular-frontoparietal projections mediating the precision of prediction during probabilistic tactile learning. SIGNIFICANCE STATEMENT In a probabilistic environment, the prior belief of sensory events can be inferred from past experiences. How this prior belief modulates effective brain connectivity for updating expectations for future decision-making remains unexplored. Combining hierarchical Bayesian modeling with fMRI, we show that during tactile associative learning, prior expectations modulate connections originating in the anterior insula cortex and targeting salience-related and attention-related frontoparietal areas (i.e., parietal and premotor cortex). These connections seem to be involved in updating evidence based on the precision of ascending inputs to guide future decision-making. Full Article
b MECP2 Duplication Causes Aberrant GABA Pathways, Circuits and Behaviors in Transgenic Monkeys: Neural Mappings to Patients with Autism By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 MECP2 gain-of-function and loss-of-function in genetically engineered monkeys recapitulates typical phenotypes in patients with autism, yet where MECP2 mutation affects the monkey brain and whether/how it relates to autism pathology remain unknown. Here we report a combination of gene–circuit–behavior analyses including MECP2 coexpression network, locomotive and cognitive behaviors, and EEG and fMRI findings in 5 MECP2 overexpressed monkeys (Macaca fascicularis; 3 females) and 20 wild-type monkeys (Macaca fascicularis; 11 females). Whole-genome expression analysis revealed MECP2 coexpressed genes significantly enriched in GABA-related signaling pathways, whereby reduced β-synchronization within fronto-parieto-occipital networks was associated with abnormal locomotive behaviors. Meanwhile, MECP2-induced hyperconnectivity in prefrontal and cingulate networks accounted for regressive deficits in reversal learning tasks. Furthermore, we stratified a cohort of 49 patients with autism and 72 healthy controls of 1112 subjects using functional connectivity patterns, and identified dysconnectivity profiles similar to those in monkeys. By establishing a circuit-based construct link between genetically defined models and stratified patients, these results pave new avenues to deconstruct clinical heterogeneity and advance accurate diagnosis in psychiatric disorders. SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a complex disorder with co-occurring symptoms caused by multiple genetic variations and brain circuit abnormalities. To dissect the gene–circuit–behavior causal chain underlying ASD, animal models are established by manipulating causative genes such as MECP2. However, it is unknown whether such models have captured any circuit-level pathology in ASD patients, as demonstrated by human brain imaging studies. Here, we use transgenic macaques to examine the causal effect of MECP2 overexpression on gene coexpression, brain circuits, and behaviors. For the first time, we demonstrate that the circuit abnormalities linked to MECP2 and autism-like traits in the monkeys can be mapped to a homogeneous ASD subgroup, thereby offering a new strategy to deconstruct clinical heterogeneity in ASD. Full Article
b The Correlation of Neuronal Signals with Behavior at Different Levels of Visual Cortex and Their Relative Reliability for Behavioral Decisions By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Behavior can be guided by neuronal activity in visual, auditory, or somatosensory cerebral cortex, depending on task requirements. In contrast to this flexible access of cortical signals, several observations suggest that behaviors depend more on neurons in later areas of visual cortex than those in earlier areas, although neurons in earlier areas would provide more reliable signals for many tasks. We recorded from neurons in different levels of visual cortex of 2 male rhesus monkeys while the animals did a visual discrimination task and examined trial-to-trial correlations between neuronal and behavioral responses. These correlations became stronger in primary visual cortex as neuronal signals in that area became more reliable relative to the other areas. The results suggest that the mechanisms that read signals from cortex might access any cortical area depending on the relative value of those signals for the task at hand. SIGNIFICANCE STATEMENT Information is encoded by the action potentials of neurons in various cortical areas in a hierarchical manner such that increasingly complex stimulus features are encoded in successive stages. The brain must extract information from the response of appropriate neurons to drive optimal behavior. A widely held view of this decoding process is that the brain relies on the output of later cortical areas to make decisions, although neurons in earlier areas can provide more reliable signals. We examined correlations between perceptual decisions and the responses of neurons in different levels of monkey visual cortex. The results suggest that the brain may access signals in any cortical area depending on the relative value of those signals for the task at hand. Full Article
b Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown. SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons. Full Article
b Calcineurin Inhibition Causes {alpha}2{delta}-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2-1–GluN1 complexes in the spinal cord and the level of α2-1–bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2-1 with gabapentin or disrupting the α2-1–NMDAR interaction with α2-1Tat peptide completely reversed the effects of FK506. In α2-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2-1–bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS. SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2-1 and NMDARs and their synaptic trafficking in the spinal cord. α2-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2-1 or disrupting α2-1–NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition. Full Article
b M-Current Inhibition in Hippocampal Excitatory Neurons Triggers Intrinsic and Synaptic Homeostatic Responses at Different Temporal Scales By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Persistent alterations in neuronal activity elicit homeostatic plastic changes in synaptic transmission and/or intrinsic excitability. However, it is unknown whether these homeostatic processes operate in concert or at different temporal scales to maintain network activity around a set-point value. Here we show that chronic neuronal hyperactivity, induced by M-channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in cultured hippocampal pyramidal neurons from mice of either sex. Homeostatic changes of intrinsic excitability occurred at a fast timescale (1–4 h) and depended on ongoing spiking activity. This fast intrinsic adaptation included plastic changes in the threshold current and a distal relocation of FGF14, a protein physically bridging Nav1.6 and Kv7.2 channels along the axon initial segment. In contrast, synaptic adaptations occurred at a slower timescale (~2 d) and involved decreases in miniature EPSC amplitude. To examine how these temporally distinct homeostatic responses influenced hippocampal network activity, we quantified the rate of spontaneous spiking measured by multielectrode arrays at extended timescales. M-Channel blockade triggered slow homeostatic renormalization of the mean firing rate (MFR), concomitantly accompanied by a slow synaptic adaptation. Thus, the fast intrinsic adaptation of excitatory neurons is not sufficient to account for the homeostatic normalization of the MFR. In striking contrast, homeostatic adaptations of intrinsic excitability and spontaneous MFR failed in hippocampal GABAergic inhibitory neurons, which remained hyperexcitable following chronic M-channel blockage. Our results indicate that a single perturbation such as M-channel inhibition triggers multiple homeostatic mechanisms that operate at different timescales to maintain network mean firing rate. SIGNIFICANCE STATEMENT Persistent alterations in synaptic input elicit homeostatic plastic changes in neuronal activity. Here we show that chronic neuronal hyperexcitability, induced by M-type potassium channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in hippocampal excitatory neurons. The data indicate that the fast adaptation of intrinsic excitability depends on ongoing spiking activity but is not sufficient to provide homeostasis of the mean firing rate. Our results show that a single perturbation such as M-channel inhibition can trigger multiple homeostatic processes that operate at different timescales to maintain network mean firing rate. Full Article
b Zero Hunger is possible ‘within our lifetimes' By www.fao.org Published On :: Tue, 24 Sep 2013 00:00:00 GMT FAO Director-General José Graziano da Silva underlined his firm belief that a hunger-free world is possible "within our lifetimes," during high-level talks in New York. "The Zero Hunger Challenge calls for something new – something bold, but long overdue," he said. It was a "decisive global commitment to end hunger, eliminate childhood stunting, make all food systems sustainable, eradicate rural poverty, [...] Full Article
b ‘We must be voices of the hungry' By www.fao.org Published On :: Mon, 14 Oct 2013 00:00:00 GMT We will only achieve zero hunger if we speak on behalf of those unable to represent themselves. That was a key message during an event titled “Zero Hunger: are we ready?” at FAO headquarters in Rome, Italy, on Friday, 11 October. “Hungry people have no voice, they are different from all others,” said FAO Director-General José Graziano da Silva (pictured, left). “We [...] Full Article
b Help families in the Philippines rebuild their lives – Donate Now!!! By www.fao.org Published On :: Tue, 17 Dec 2013 00:00:00 GMT FAO is working to help typhoon-affected farmers to ensure the next harvests in 2014 – You can help as well. Philippine farmers need urgent assistance to avoid a double tragedy befalling rural survivors of Typhoon Haiyan. The typhoon hit just as farmers were beginning a new planting season, and FAO estimates that over one million farmers have been affected and hundreds of [...] Full Article
b Download the free “Quinoa in the kitchen” book and try out new recipes! By www.fao.org Published On :: Wed, 08 Jan 2014 00:00:00 GMT Once known as “the gold of the Incas,” quinoa has been one of the world’s neglected crops but is currently becoming more and more popular. For centuries, quinoa remained a hidden treasure grown almost exclusively by indigenous communities in the Andean heights. Lately, quinoa has been growing in popularity with foodies and health-conscious consumers around the world. It was even [...] Full Article
b Learn how cash transfer programmes improve lives in sub-Saharan Africa and share the infographics By www.fao.org Published On :: Wed, 22 Jan 2014 00:00:00 GMT Did you know that cash transfer (CT) programmes in countries of the sub-Saharan Africa actually have a significant impact? In Malawi, these programmes helped families invest in agricultural equipment and livestock to produce their own food and reduce levels of negative coping strategies, like begging and school drop-outs. In Kenya, secondary school attendance rose by 9 percent and access to [...] Full Article
b Vegetable garden tips – for better homes and gardens By www.fao.org Published On :: Wed, 05 Feb 2014 00:00:00 GMT Enjoy a low-cost, healthy diet from your very own vegetable garden and get the chance to make money by selling your own products. Start your own vegetable garden to grow, prepare and eat your own delicious fruits and vegetables with these tips: Do your research: When you begin your own vegetable garden you should understand the type of soil you work [...] Full Article
b Think about our forests – Plant a tree! By www.fao.org Published On :: Wed, 19 Mar 2014 00:00:00 GMT Forests and trees sustain and protect us, providing clean air and water, safeguarding biodiversity and acting as a buffer against climate change. For many people, they also offer food, shelter and employment. Here are ten facts about trees you might not be aware of: The world’s forests store 289 gigatonnes (Gt) of carbon in their biomass alone. Deforestation accounts for up to 20% [...] Full Article
b 7 things you should know about FAO and the Post-2015 development agenda By www.fao.org Published On :: Thu, 03 Apr 2014 00:00:00 GMT As FAO launches dedicated webpages on post-2015, here are seven things to know about the process and how FAO is playing its part. 7 - Post-2015 development agenda - The name refers to the process through which Member States agree on a new global development framework to succeed the Millennium Development Goals (MDGs), eight goals that followed the UN Millennium Declaration [...] Full Article
b Asia-Pacific countries take Zero Hunger Challenge by the horns By www.fao.org Published On :: Wed, 16 Apr 2014 00:00:00 GMT The mission for an end to hunger in the world’s most populous region has received a boost, with member countries responding positively to a call by FAO for a “massive effort” to end hunger in Asia and the Pacific. 1. Asia-Pacific is home to nearly two-thirds of the world’s chronically hungry people. |True| Asia-Pacific, with over 4.2 billion people, is home [...] Full Article
b Water – the most basic resource but also the most essential By www.fao.org Published On :: Wed, 07 May 2014 00:00:00 GMT Basic facts The world contains an estimated 1 400 million cubic km of water. Only 0.003% of this vast amount, about 45 000 cubic km, are what is called “fresh water resources” - water that theoretically can be used for drinking, hygiene, agriculture and industry. But not all of this water is accessible. For example, seasonal flooding makes water extremely difficult [...] Full Article
b Blue growth - unlocking the potential of seas and oceans By www.fao.org Published On :: Wed, 02 Jul 2014 00:00:00 GMT Today’s fisheries sector hosts a multibillion dollar industry that is a vital source of food and nutrition, employment, trade, economic wellbeing and recreation. What is blue growth? The concept of a "blue economy" came out of the 2012 Rio+20 Conference and emphasizes conservation and sustainable management, based on the premise that healthy ocean ecosystems are more productive and a must for sustainable [...] Full Article
b Top 5 need-to-knows about Conservation Agriculture By www.fao.org Published On :: Wed, 30 Jul 2014 00:00:00 GMT In the face of changing weather driven by climate change and the increasing demand for food, Conservation Agriculture (CA) aims to achieve sustainable and profitable agriculture and improve farmers’ livelihoods. Here are five things you need to know. 1. CA observes three main principles that you should remember Direct seeding involves growing crops without mechanical seedbed preparation and with minimal soil disturbance [...] Full Article
b Nutrition on the front burner By www.fao.org Published On :: Thu, 21 Aug 2014 00:00:00 GMT Hundreds of millions of people around the world continue to suffer from hunger and malnutrition. Governments are urged to make stronger commitments at November’s Second International Conference on Nutrition (ICN2) to ensure healthier diets for all. That's according to the Food and Agriculture Organization and the World Health Organization of the United Nations. Watch this video to find out the challenges that [...] Full Article
b How much do you know about Farmer Field Schools By www.fao.org Published On :: Wed, 03 Sep 2014 00:00:00 GMT Farmer field schools (FFS) are essentially schools without walls that introduce new technological innovations while building on indigenous knowledge. In FFS, farmers are the experts. Key features and principles of the FFS approach – TRUE or FALSE? The FFS approach allows farmers to learn through testing changes in a controlled, group-based environment TRUE: Discovery-based learning is an essential part of the FFS as [...] Full Article
b If we had to pay the bill to nature, what would food waste cost us? By www.fao.org Published On :: Wed, 17 Sep 2014 00:00:00 GMT Each year, 30 percent of global food production is lost after harvest or wasted in shops, households and catering services. This represents 750 billion USD in terms of producer or farmgate prices, going up to almost a trillion US dollars of trade value of food every year – half the GDP of Italy!If nature asked us to pay the total [...] Full Article
b Genetic diversity is our hidden jewel, we should treasure every bit of it By www.fao.org Published On :: Wed, 29 Oct 2014 00:00:00 GMT Biodiversity for food and agriculture is among the earth’s most important resources. Biodiversity is indispensable: be it the insects that pollinate plants, the microscopic bacteria used for making cheese, the diverse livestock breeds used to make a living in harsh environments, the thousands species of fish, and other aquatic species in our lakes, rivers and oceans, or the thousands of [...] Full Article
b Mothers and children hold the key to better global nutrition By www.fao.org Published On :: Wed, 12 Nov 2014 00:00:00 GMT In the past 20 years, malnutrition in mothers and children has decreased by almost half. But despite this progress, child undernutrition is still the greatest nutrition-related health burden in the world. One of the biggest problems with child undernutrition is that it continues the cycle of stunting: stunted girls grow up to be stunted mothers, and stunted mothers are much [...] Full Article
b Family farming is part of the solution to the hunger problem By www.fao.org Published On :: Wed, 24 Dec 2014 00:00:00 GMT The United Nations launched the 2014 International Year of Family Farming to stress the vast potential family farmers have to eradicate hunger and preserve natural resources. In both developed and developing countries, more than 500 million, or nine out of ten, farms are managed by families, making family farms the predominant form of agriculture. They not only produce about 80% [...] Full Article
b It's about time we talk about soil! By www.fao.org Published On :: Thu, 08 Jan 2015 00:00:00 GMT There can be no life without it, it feeds us and we are responsible for it! Soil is formed from rocks that are decomposed slowly by sun, the wind and the rain, by animals and plants. But it is in danger because of expanding cities, deforestation, unsustainable land use and management practices, pollution, overgrazing and climate change. The current rate [...] Full Article
b Aboard the EAF-Nansen By www.fao.org Published On :: Wed, 21 Jan 2015 00:00:00 GMT Join us virtually on the Dr Fridtjof Nansen, a marine research vessel, as it embarks on a month-long cruise departing from Cape Town, South Africa, to conduct scientific research in the deep seas of the Southeast Atlantic Fisheries Organization (SEAFO) convention area before arriving at Walvis Bay, Namibia. Since 1975, FAO and the Norwegian Agency for Development Cooperation have collaborated with [...] Full Article
b 6 incredible plants you might not have heard of By www.fao.org Published On :: Wed, 04 Feb 2015 00:00:00 GMT All over the world local varieties of fruit, vegetables and grain are grown. Many are seemingly forgotten or are underutilized despite having outstanding nutritional or taste qualities. Some have good commercial potential and could be an excellent cash crop for a smallscale or family farmers, aimed at the local, regional or international market. Here are six traditional crops and six facts [...] Full Article
b How much do you know about the awesomeness of forests? By www.fao.org Published On :: Wed, 18 Mar 2015 00:00:00 GMT // Full Article
b 7 actions to build a sustainable planet By www.fao.org Published On :: Wed, 01 Apr 2015 00:00:00 GMT As the clock ticks on the Millennium Development Goals (MDGs), the world community is deep in discussion over the successor global framework. Many current practices are damaging the planet’s ecosystems and the biodiversity essential for healthy food production. By 2050 an estimated additional 2 billion people will be living on Earth. This means food production must rise by 60%. From 8 MDGs [...] Full Article
b Quinoa breaches the boundaries of outer space By www.fao.org Published On :: Wed, 15 Apr 2015 00:00:00 GMT It’s been around for thousands of years; the UN General Assembly named an international year for it in 2013; and now it has been sent into space. Quinoa is a superfood in more ways than one. It is a good source of protein, the highest of all the whole grains; and its edible seeds provide all of the essential amino acids the body [...] Full Article
b Food waste & loss – the blind spot in the fight against hunger By www.fao.org Published On :: Wed, 13 May 2015 00:00:00 GMT Whether we categorize uneaten food as “lost” or “wasted” depends on where it goes out of the food supply chain. Imagine how everything we eat travels across a food supply chain, a complex journey that stretches from farm to table. Studies show that an astounding 1/3 of all the food we produce for human consumption never actually reaches our plates. Most [...] Full Article
b Whittling down instances of child labour in agriculture By www.fao.org Published On :: Wed, 10 Jun 2015 00:00:00 GMT “Children subjected to child labour need our support and action so they can enjoy their right to education and health and become productive farmers and workers as adults to escape poverty and hunger.” - José Graziano da Silva, FAO Director- General Child labour is not unique to a particular country, ethnicity, culture, or ideology. Today, there are about 100 million boys [...] Full Article
b How berry knowledgeable are you? By www.fao.org Published On :: Wed, 22 Jul 2015 00:00:00 GMT Ripe, juicy, and practically begging to be eaten, berries are a spring and summer treat that make your mouth water. To celebrate the pinnacle of berry season, we gathered some facts and figures and are challenging you to see how far your berry knowledge really goes. Full Article
b 7 #UNFAO ebooks you should have in your e-library By www.fao.org Published On :: Wed, 05 Aug 2015 00:00:00 GMT Feeding the world’s growing population, which is expected to go beyond 9 billion by 2050, is one of the world’s biggest challenges. Some of the highest rates of population growth are predicted to occur in areas that are highly dependent on the agriculture sector (i.e. crops, livestock, forests and fisheries). Sustainable agricultural growth is one of the most effective means [...] Full Article
b 7 rules-of-thumb to follow in aquaponics By www.fao.org Published On :: Wed, 19 Aug 2015 00:00:00 GMT From a media bed unit start-up in Bangkok to a fully developed 120 households deep water culture (DWC) unit in Ethiopia, aquaponics is showcasing its true potential to produce sustainable food anytime, anywhere. A marriage between aquaculture (raising aquatic animals such as fish, snails or prawns in tanks) and hydroponics (cultivating plants in water), aquaponics is a ‘clean and green’ [...] Full Article
b Forests and people from around the globe – in pictures By www.fao.org Published On :: Wed, 02 Sep 2015 00:00:00 GMT The photos below were entries in the XIV World Forestry Congress ‘Forests and People’ photo contest. Take a tour with us around the world and learn interesting facts on forests and the socioeconomic benefits they provide to people around the world. Full Article
b Spotlight: Seven bee-friendly fruits and veggies By www.fao.org Published On :: Wed, 16 Sep 2015 00:00:00 GMT Bees pollinate a third of what we eat and play a vital role in sustaining the planet’s ecosystems. Some 84% of the crops grown for human consumption need bees or other insects to pollinate them to increase their yields and quality. Bee pollination not only results in a higher number of fruits, berries or seeds, it may also give a [...] Full Article
b Quiz - How much do you know about FAO? By www.fao.org Published On :: Tue, 13 Oct 2015 00:00:00 GMT As we celebrate our 70-year anniversary, find out how much you know about the work that FAO is doing around the world. Answer these 7 questions and help us fight hunger by becoming an ambassador of FAO! Full Article
b Quiz - Celebrating International Mountain Day By www.fao.org Published On :: Wed, 09 Dec 2015 00:00:00 GMT Mountains provide freshwater and biodiversity, and are a major source of food. By definition, they dominate their surroundings with towering height and protect valleys and their inhabitants. They play a critical part in moving the world towards sustainable economic growth and have a leading role as indicators of climate change. As we celebrate the International Mountain Day, see how much you [...] Full Article