id

What preparing for an asteroid strike teaches us about climate change

Averting an asteroid strike will need many of the same skills we must hone to tackle climate change and future pandemics




id

Chinese rover finds further evidence for an ancient ocean on Mars

Data collected by the Zhurong rover and orbiting satellites suggests the existence of an ancient shoreline in the Utopia Planitia region of Mars




id

If an asteroid were heading towards Earth, could you avert disaster?

From nuclear strikes to giant spikes, discover the systems in place to prevent a collision and test your decision-making to see if you could avoid a catastrophic impact




id

AI can predict tipping points for systems from forests to power grids

Combining two neural networks has helped researchers predict potentially disastrous collapses in complex systems, such as financial crashes or power blackouts




id

How to avoid being fooled by AI-generated misinformation

Advances in generative AI mean fake images, videos, audio and bots are now everywhere. But studies have revealed the best ways to tell if something is real




id

Smart speakers at crime scenes could provide valuable clues to police

Information on faces recognised, voice commands and internet searches can be extracted from an Amazon Echo smart assistant without help from the user or manufacturer




id

Meet Valkyrie, NASA’s humanoid robot paving way to the moon and Mars

NASA’s Valkyrie is undergoing tests to understand what it would take to get a humanoid robot onto offshore facilities or into space. New Scientist's James Woodford took the controls to see what it is capable of




id

The deepfakes of Trump and Biden that you are most likely to fall for

Experiments show that viewers can usually identify video deepfakes of famous politicians – but fake audio and text are harder to detect




id

AI tweaks to photos and videos can alter our memories

It has become trivially easy to use artificial intelligence to edit images or generate video to remove unwanted objects or beautify scenes, but doing so leads to people misremembering what they have seen




id

Forcing people to change their passwords is officially a bad idea

A US standards agency has issued new guidance saying organisations shouldn’t require users to change their passwords periodically – advice that is backed up by decades of research




id

Which AI chatbot is best at avoiding disinformation?

AI chatbots from Google and Microsoft sometimes parrot disinformation when answering questions about Russia’s invasion of Ukraine – but their performance depends on language and changes over time




id

Bill Gates's Netflix series offers some dubious ideas about the future

In What's Next? Bill Gates digs into AI, climate, inequality, malaria and more. But the man looms too large for alternative solutions to emerge, says Bethan Ackerley




id

Writing backwards can trick an AI into providing a bomb recipe

AI models have safeguards in place to prevent them creating dangerous or illegal output, but a range of jailbreaks have been found to evade them. Now researchers show that writing backwards can trick AI models into revealing bomb-making instructions.




id

How a ride in a friendly Waymo saw me fall for robotaxis

I have a confession to make. After taking a handful of autonomous taxi rides, I have gone from a hater to a friend of robot cars in just a few weeks, says Annalee Newitz




id

Amazon Prime Video Lets Freevee Go

Don’t worry, you’ll still be able to watch Jury Duty for freevee.




id

Gary Lineker replacement decided as BBC tipped for rogue MOTD appointment



Express Sport writers have decided who should replace Gary Lineker




id

Howard Webb breaks silence on leaked David Coote Liverpool video as ref suspended



PGMOL chief Howard Webb has responded after referee David Coote was suspended for comments he appeared to make in a video.




id

Video Friday: Disney Robot Dance



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

I think it’s time for us all to admit that some of the most interesting bipedal and humanoid research is being done by Disney.

[ Research Paper from ETH Zurich and Disney Research]

Over the past few months, Unitree G1 robot has been upgraded into a mass production version, with stronger performance, ultimate appearance, and being more in line with mass production requirements.

[ Unitree ]

This robot is from Kinisi Robotics, which was founded by Brennand Pierce, who also founded Bear Robotics. You can’t really tell from this video, but check out the website because the reach this robot has is bonkers.

Kinisi Robotics is on a mission to democratize access to advanced robotics with our latest innovation—a low-cost, dual-arm robot designed for warehouses, factories, and supermarkets. What sets our robot apart is its integration of LLM technology, enabling it to learn from demonstrations and perform complex tasks with minimal setup. Leveraging Brennand’s extensive experience in scaling robotic solutions, we’re able to produce this robot for under $20k, making it a game-changer in the industry.

[ Kinisi Robotics ]

Thanks Bren!

Finally, something that Atlas does that I am also physically capable of doing. In theory.

Okay, never mind. I don’t have those hips.

[ Boston Dynamics ]

Researchers in the Department of Mechanical Engineering at Carnegie Mellon University have created the first legged robot of its size to run, turn, push loads, and climb miniature stairs.

They say it can “run,” but I’m skeptical that there’s a flight phase unless someone sneezes nearby.

[ Carnegie Mellon University ]

The lights are cool and all, but it’s the pulsing soft skin that’s squigging me out.

[ Paper, Robotics Reports Vol.2 ]

Roofing is a difficult and dangerous enough job that it would be great if robots could take it over. It’ll be a challenge though.

[ Renovate Robotics ] via [ TechCrunch ]

Kento Kawaharazuka from JSK Robotics Laboratory at the University of Tokyo wrote in to share this paper, just accepted at RA-L, which (among other things) shows a robot using its flexible hands to identify objects through random finger motion.

[ Paper accepted by IEEE Robotics and Automation Letters ]

Thanks Kento!

It’s one thing to make robots that are reliable, and it’s another to make robots that are reliable and repairable by the end user. I don’t think iRobot gets enough credit for this.

[ iRobot ]

I like competitions where they say, “just relax and forget about the competition and show us what you can do.”

[ MBZIRC Maritime Grand Challenge ]

I kid you not, this used to be my job.

[ RoboHike ]




id

Robot Metalsmiths Are Resurrecting Toroidal Tanks for NASA



In the 1960s and 1970s, NASA spent a lot of time thinking about whether toroidal (donut-shaped) fuel tanks were the way to go with its spacecraft. Toroidal tanks have a bunch of potential advantages over conventional spherical fuel tanks. For example, you can fit nearly 40% more volume within a toroidal tank than if you were using multiple spherical tanks within the same space. And perhaps most interestingly, you can shove stuff (like the back of an engine) through the middle of a toroidal tank, which could lead to some substantial efficiency gains if the tanks could also handle structural loads.

Because of their relatively complex shape, toroidal tanks are much more difficult to make than spherical tanks. Even though these tanks can perform better, NASA simply doesn’t have the expertise to manufacture them anymore, since each one has to be hand-built by highly skilled humans. But a company called Machina Labs thinks that they can do this with robots instead. And their vision is to completely change how we make things out of metal.


The fundamental problem that Machina Labs is trying to solve is that if you want to build parts out of metal efficiently at scale, it’s a slow process. Large metal parts need their own custom dies, which are very expensive one-offs that are about as inflexible as it’s possible to get, and then entire factories are built around these parts. It’s a huge investment, which means that it doesn’t matter if you find some new geometry or technique or material or market, because you have to justify that enormous up-front cost by making as much of the original thing as you possibly can, stifling the potential for rapid and flexible innovation.

On the other end of the spectrum you have the also very slow and expensive process of making metal parts one at a time by hand. A few hundred years ago, this was the only way of making metal parts: skilled metalworkers using hand tools for months to make things like armor and weapons. The nice thing about an expert metalworker is that they can use their skills and experience to make anything at all, which is where Machina Labs’ vision comes from, explains CEO Edward Mehr who co-founded Machina Labs after spending time at SpaceX followed by leading the 3D printing team at Relativity Space.

“Craftsmen can pick up different tools and apply them creatively to metal to do all kinds of different things. One day they can pick up a hammer and form a shield out of a sheet of metal,” says Mehr. “Next, they pick up the same hammer, and create a sword out of a metal rod. They’re very flexible.”

The technique that a human metalworker uses to shape metal is called forging, which preserves the grain flow of the metal as it’s worked. Casting, stamping, or milling metal (which are all ways of automating metal part production) are simply not as strong or as durable as parts that are forged, which can be an important differentiator for (say) things that have to go into space. But more on that in a bit.

The problem with human metalworkers is that the throughput is bad—humans are slow, and highly skilled humans in particular don’t scale well. For Mehr and Machina Labs, this is where the robots come in.

“We want to automate and scale using a platform called the ‘robotic craftsman.’ Our core enablers are robots that give us the kinematics of a human craftsman, and artificial intelligence that gives us control over the process,” Mehr says. “The concept is that we can do any process that a human craftsman can do, and actually some that humans can’t do because we can apply more force with better accuracy.”

This flexibility that robot metalworkers offer also enables the crafting of bespoke parts that would be impractical to make in any other way. These include toroidal (donut-shaped) fuel tanks that NASA has had its eye on for the last half century or so.

Machina Labs’ CEO Edward Mehr (on right) stands behind a 15 foot toroidal fuel tank.Machina Labs

“The main challenge of these tanks is that the geometry is complex,” Mehr says. “Sixty years ago, NASA was bump-forming them with very skilled craftspeople, but a lot of them aren’t around anymore.” Mehr explains that the only other way to get that geometry is with dies, but for NASA, getting a die made for a fuel tank that’s necessarily been customized for one single spacecraft would be pretty much impossible to justify. “So one of the main reasons we’re not using toroidal tanks is because it’s just hard to make them.”

Machina Labs is now making toroidal tanks for NASA. For the moment, the robots are just doing the shaping, which is the tough part. Humans then weld the pieces together. But there’s no reason why the robots couldn’t do the entire process end-to-end and even more efficiently. Currently, they’re doing it the “human” way based on existing plans from NASA. “In the future,” Mehr tells us, “we can actually form these tanks in one or two pieces. That’s the next area that we’re exploring with NASA—how can we do things differently now that we don’t need to design around human ergonomics?”

Machina Labs’ ‘robotic craftsmen’ work in pairs to shape sheet metal, with one robot on each side of the sheet. The robots align their tools slightly offset from each other with the metal between them such that as the robots move across the sheet, it bends between the tools. Machina Labs

The video above shows Machina’s robots working on a tank that’s 4.572 m (15 feet) in diameter, likely destined for the Moon. “The main application is for lunar landers,” says Mehr. “The toroidal tanks bring the center of gravity of the vehicle lower than what you would have with spherical or pill-shaped tanks.”

Training these robots to work metal like this is done primarily through physics-based simulations that Machina developed in house (existing software being too slow), followed by human-guided iterations based on the resulting real-world data. The way that metal moves under pressure can be simulated pretty well, and although there’s certainly still a sim-to-real gap (simulating how the robot’s tool adheres to the surface of the material is particularly tricky), the robots are collecting so much empirical data that Machina is making substantial progress towards full autonomy, and even finding ways to improve the process.

An example of the kind of complex metal parts that Machina’s robots are able to make.Machina Labs

Ultimately, Machina wants to use robots to produce all kinds of metal parts. On the commercial side, they’re exploring things like car body panels, offering the option to change how your car looks in geometry rather than just color. The requirement for a couple of beefy robots to make this work means that roboforming is unlikely to become as pervasive as 3D printing, but the broader concept is the same: making physical objects a software problem rather than a hardware problem to enable customization at scale.




id

Video Friday: Robots Solving Table Tennis



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Imbuing robots with “human-level performance” in anything is an enormous challenge, but it’s worth it when you see a robot with the skill to interact with a human on a (nearly) human level. Google DeepMind has managed to achieve amateur human-level competence at table tennis, which is much harder than it looks, even for humans. Pannag Sanketi, a tech-lead manager in the robotics team at DeepMind, shared some interesting insights about performing the research. But first, video!

Some behind the scenes detail from Pannag:

  • The robot had not seen any participants before. So we knew we had a cool agent, but we had no idea how it was going to fare in a full match with real humans. To witness it outmaneuver even some of the most advanced players was such a delightful moment for team!
  • All the participants had a lot of fun playing against the robot, irrespective of who won the match. And all of them wanted to play more. Some of them said it will be great to have the robot as a playing partner. From the videos, you can even see how much fun the user study hosts sitting there (who are not authors on the paper) are having watching the games!
  • Barney, who is a professional coach, was an advisor on the project, and our chief evaluator of robot’s skills the way he evaluates his students. He also got surprised by how the robot is always able to learn from the last few weeks’ sessions.
  • We invested a lot in remote and automated 24x7 operations. So not the setup in this video, but there are other cells that we can run 24x7 with a ball thrower.
  • We even tried robot-vs-robot, i.e. 2 robots playing against each other! :) The line between collaboration and competition becomes very interesting when they try to learn by playing with each other.

[ DeepMind ]

Thanks, Heni!

Yoink.

[ MIT ]

Considering how their stability and recovery is often tested, teaching robot dogs to be shy of humans is an excellent idea.

[ Deep Robotics ]

Yes, quadruped robots need tow truck hooks.

[ Paper ]

Earthworm-inspired robots require novel actuators, and Ayato Kanada at Kyushu University has come up with a neat one.

[ Paper ]

Thanks, Ayato!

Meet the AstroAnt! This miniaturized swarm robot can ride atop a lunar rover and collect data related to its health, including surface temperatures and damage from micrometeoroid impacts. In the summer of 2024, with support from our collaborator Castrol, the Media Lab’s Space Exploration Initiative tested AstroAnt in the Canary Islands, where the volcanic landscape resembles the lunar surface.

[ MIT ]

Kengoro has a new forearm that mimics the human radioulnar joint giving it an even more natural badminton swing.

[ JSK Lab ]

Thanks, Kento!

Gromit’s concern that Wallace is becoming too dependent on his inventions proves justified, when Wallace invents a “smart” gnome that seems to develop a mind of its own. When it emerges that a vengeful figure from the past might be masterminding things, it falls to Gromit to battle sinister forces and save his master… or Wallace may never be able to invent again!

[ Wallace and Gromit ]

ASTORINO is a modern 6-axis robot based on 3D printing technology. Programmable in AS-language, it facilitates the preparation of classes with ready-made teaching materials, is easy both to use and to repair, and gives the opportunity to learn and make mistakes without fear of breaking it.

[ Kawasaki ]

Engineers at NASA’s Jet Propulsion Laboratory are testing a prototype of IceNode, a robot designed to access one of the most difficult-to-reach places on Earth. The team envisions a fleet of these autonomous robots deploying into unmapped underwater cavities beneath Antarctic ice shelves. There, they’d measure how fast the ice is melting — data that’s crucial to helping scientists accurately project how much global sea levels will rise.

[ IceNode ]

Los Alamos National Laboratory, in a consortium with four other National Laboratories, is leading the charge in finding the best practices to find orphaned wells. These abandoned wells can leak methane gas into the atmosphere and possibly leak liquid into the ground water.

[ LANL ]

Looks like Fourier has been working on something new, although this is still at the point of “looks like” rather than something real.

[ Fourier ]

Bio-Inspired Robot Hands: Altus Dexterity is a collaboration between researchers and professionals from Carnegie Mellon University, UPMC, the University of Illinois and the University of Houston.

[ Altus Dexterity ]

PiPER is a lightweight robotic arm with six integrated joint motors for smooth, precise control. Weighing just 4.2kg, it easily handles a 1.5kg payload and is made from durable yet lightweight materials for versatile use across various environments. Available for just $2,499 USD.

[ AgileX ]

At 104 years old, Lilabel has seen over a century of automotive transformation, from sharing a single car with her family in the 1920s to experiencing her first ride in a robotaxi.

[ Zoox ]

Traditionally, blind juggling robots use plates that are slightly concave to help them with ball control, but it’s also possible to make a blind juggler the hard way. Which, honestly, is much more impressive.

[ Jugglebot ]




id

Video Friday: HAND to Take on Robotic Hands



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

The National Science Foundation Human AugmentatioN via Dexterity Engineering Research Center (HAND ERC) was announced in August 2024. Funded for up to 10 years and $52 million, the HAND ERC is led by Northwestern University, with core members Texas A&M, Florida A&M, Carnegie Mellon, and MIT, and support from Wisconsin-Madison, Syracuse, and an innovation ecosystem consisting of companies, national labs, and civic and advocacy organizations. HAND will develop versatile, easy-to-use dexterous robot end effectors (hands).

[ HAND ]

The Environmental Robotics Lab at ETH Zurich, in partnership with Wilderness International (and some help from DJI and Audi), is using drones to sample DNA from the tops of trees in the Peruvian rainforest. Somehow, the treetops are where 60 to 90 percent of biodiversity is found, and these drones can help researchers determine what the heck is going on up there.

[ ERL ]

Thanks, Steffen!

1X introduces NEO Beta, “the pre-production build of our home humanoid.”

“Our priority is safety,” said Bernt Børnich, CEO at 1X. “Safety is the cornerstone that allows us to confidently introduce NEO Beta into homes, where it will gather essential feedback and demonstrate its capabilities in real-world settings. This year, we are deploying a limited number of NEO units in selected homes for research and development purposes. Doing so means we are taking another step toward achieving our mission.”

[ 1X ]

We love MangDang’s fun and affordable approach to robotics with Mini Pupper. The next generation of the little legged robot has just launched on Kickstarter, featuring new and updated robots that make it easy to explore embodied AI.

The Kickstarter is already fully funded after just a day or two, but there are still plenty of robots up for grabs.

[ Kickstarter ]

Quadrupeds in space can use their legs to reorient themselves. Or, if you throw one off a roof, it can learn to land on its feet.

To be presented at CoRL 2024.

[ ARL ]

HEBI Robotics, which apparently was once headquartered inside a Pittsburgh public bus, has imbued a table with actuators and a mind of its own.

[ HEBI Robotics ]

Carcinization is a concept in evolutionary biology where a crustacean that isn’t a crab eventually becomes a crab. So why not do the same thing with robots? Crab robots solve all problems!

[ KAIST ]

Waymo is smart, but also humans are really, really dumb sometimes.

[ Waymo ]

The Robotics Department of the University of Michigan created an interactive community art project. The group that led the creation believed that while roboticists typically take on critical and impactful problems in transportation, medicine, mobility, logistics, and manufacturing, there are many opportunities to find play and amusement. The final piece is a grid of art boxes, produced by different members of our robotics community, which offer an eight-inch-square view into their own work with robotics.

[ Michigan Robotics ]

I appreciate that UBTECH’s humanoid is doing an actual job, but why would you use a humanoid for this?

[ UBTECH ]

I’m sure most actuators go through some form of life-cycle testing. But if you really want to test an electric motor, put it into a BattleBot and see what happens.

[ Hardcore Robotics ]

Yes, but have you tried fighting a BattleBot?

[ AgileX ]

In this video, we present collaboration aerial grasping and transportation using multiple quadrotors with cable-suspended payloads. Grasping using a suspended gripper requires accurate tracking of the electromagnet to ensure a successful grasp while switching between different slack and taut modes. In this work, we grasp the payload using a hybrid control approach that switches between a quadrotor position control and a payload position control based on cable slackness. Finally, we use two quadrotors with suspended electromagnet systems to collaboratively grasp and pick up a larger payload for transportation.

[ Hybrid Robotics ]

I had not realized that the floretizing of broccoli was so violent.

[ Oxipital ]

While the RoboCup was held over a month ago, we still wanted to make a small summary of our results, the most memorable moments, and of course an homage to everyone who is involved with the B-Human team: the team members, the sponsors, and the fans at home. Thank you so much for making B-Human the team it is!

[ B-Human ]




id

Video Friday: Jumping Robot Leg, Walking Robot Table



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Researchers at the Max Planck Institute for Intelligent Systems and ETH Zurich have developed a robotic leg with artificial muscles. Inspired by living creatures, it jumps across different terrains in an agile and energy-efficient manner.

[ Nature ] via [ MPI ]

Thanks, Toshi!

ETH Zurich researchers have now developed a fast robotic printing process for earth-based materials that does not require cement. In what is known as “impact printing,” a robot shoots material from above, gradually building a wall. On impact, the parts bond together, and very minimal additives are required.

[ ETH Zurich ]

How could you not be excited to see this happen for real?

[ arXiv paper ]

Can we all agree that sanding, grinding, deburring, and polishing tasks are really best done by robots, for the most part?

[ Cohesive Robotics ]

Thanks, David!

Using doors is a longstanding challenge in robotics and is of significant practical interest in giving robots greater access to human-centric spaces. The task is challenging due to the need for online adaptation to varying door properties and precise control in manipulating the door panel and navigating through the confined doorway. To address this, we propose a learning-based controller for a legged manipulator to open and traverse through doors.

[ arXiv paper ]

Isaac is the first robot assistant that’s built for the home. And we’re shipping it in fall of 2025.

Fall of 2025 is a long enough time from now that I’m not even going to speculate about it.

[ Weave Robotics ]

By patterning liquid metal paste onto a soft sheet of silicone or acrylic foam tape, we developed stretchable versions of conventional rigid circuits (like Arduinos). Our soft circuits can be stretched to over 300% strain (over 4x their length) and are integrated into active soft robots.

[ Science Robotics ] via [ Yale ]

NASA’s Curiosity rover is exploring a scientifically exciting area on Mars, but communicating with the mission team on Earth has recently been a challenge due to both the current season and the surrounding terrain. In this Mars Report, Curiosity engineer Reidar Larsen takes you inside the uplink room where the team talks to the rover.

[ NASA ]

I love this and want to burn it with fire.

[ Carpentopod ]

Very often, people ask us what Reachy 2 is capable of, which is why we’re showing you the manipulation possibilities (through teleoperation) of our technology. The robot shown in this video is the Beta version of Reachy 2, our new robot coming very soon!

[ Pollen Robotics ]

The Scalable Autonomous Robots (ScalAR) Lab is an interdisciplinary lab focused on fundamental research problems in robotics that lie at the intersection of robotics, nonlinear dynamical systems theory, and uncertainty.

[ ScalAR Lab ]

Astorino is a 6-axis educational robot created for practical and affordable teaching of robotics in schools and beyond. It has been created with 3D printing, so it allows for experimentation and the possible addition of parts. With its design and programming, it replicates the actions of #KawasakiRobotics industrial robots, giving students the necessary skills for future work.

[ Astorino ]

I guess fish-fillet-shaping robots need to exist because otherwise customers will freak out if all their fish fillets are not identical, or something?

[ Flexiv ]

Watch the second episode of the ExoMars Rosalind Franklin rover mission—Europe’s ambitious exploration journey to search for past and present signs of life on Mars. The rover will dig, collect, and investigate the chemical composition of material collected by a drill. Rosalind Franklin will be the first rover to reach a depth of up to two meters below the surface, acquiring samples that have been protected from surface radiation and extreme temperatures.

[ ESA ]




id

Driving Middle East’s Innovation in Robotics and Future of Automation



This is a sponsored article brought to you by Khalifa University of Science and Technology.

Abu Dhabi-based Khalifa University of Science and Technology in the United Arab Emirates (UAE) will be hosting the 36th edition of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024) to highlight the Middle East and North Africa (MENA) region’s rapidly advancing capabilities in the robotics and intelligent transport systems.

aspect_ratio

Themed “Robotics for Sustainable Development,” the IROS 2024 will be held from 14-18 October 2024 at the Abu Dhabi National Exhibition Center (ADNEC) in the UAE’s capital city. It will offer a platform for universities and research institutions to display their research and innovation activities and initiatives in robotics, gathering researchers, academics, leading corporate majors, and industry professionals from around the globe.

A total of 13 forums, nine global-level competitions and challenges covering various aspects of robotics and AI, an IROS Expo, as well as an exclusive Career Fair will also be part of IROS 2024. The challenges and competitions will focus on physical or athletic intelligence of robots, remote robot navigation, robot manipulation, underwater robotics, as well as perception and sensing.

Delegates for the event will represent sectors including manufacturing, healthcare, logistics, agriculture, defense, security, and mining sectors with 60 percent of the talent pool having over six years of experience in robotics. A major component of the conference will be the poster sessions, keynotes, panel discussions by researchers and scientists, and networking events.

Khalifa University will be hosting IROS 2024 to highlight the Middle East and North Africa (MENA) region’s rapidly advancing capabilities in the robotics and intelligent transport systems.Khalifa University

Abu Dhabi ranks first on the world’s safest cities list in 2024, according to online database Numbeo, out of 329 global cities in the 2024 standings, holding the title for eight consecutive years since 2017, reflecting the emirate’s ongoing efforts to ensure a good quality of life for citizens and residents.

With a multicultural community, Abu Dhabi is home to people from more than 200 nationalities and draws a large number of tourists to some of the top art galleries in the city such as Louvre Abu Dhabi and the Guggenheim Abu Dhabi, as well as other destinations such as Ferrari World Abu Dhabi and Warner Bros. World Abu Dhabi.

The UAE and Abu Dhabi have increasingly become a center for creative skillsets, human capital and advanced technologies, attracting several international and regional events such as the global COP28 UAE climate summit, in which more than 160 countries participated.

Abu Dhabi city itself has hosted a number of association conventions such as the 34th International Nursing Research Congress and is set to host the UNCTAD World Investment Forum, the 13th World Trade Organization (WTO) Ministerial Conference (MC13), the 12th World Environment Education Congress in 2024, and the IUCN World Conservation Congress in 2025.

Khalifa University’s Center for Robotics and Autonomous Systems (KU-CARS) includes a vibrant multidisciplinary environment for conducting robotics and autonomous vehicle-related research and innovation.Khalifa University

Dr. Jorge Dias, IROS 2024 General Chair, said: “Khalifa University is delighted to bring the Intelligent Robots and Systems 2024 to Abu Dhabi in the UAE and highlight the innovations in line with the theme Robotics for Sustainable Development. As the region’s rapidly advancing capabilities in robotics and intelligent transport systems gain momentum, this event serves as a platform to incubate ideas, exchange knowledge, foster collaboration, and showcase our research and innovation activities. By hosting IROS 2024, Khalifa University aims to reaffirm the UAE’s status as a global innovation hub and destination for all industry stakeholders to collaborate on cutting-edge research and explore opportunities for growth within the UAE’s innovation ecosystem.”

“This event serves as a platform to incubate ideas, exchange knowledge, foster collaboration, and showcase our research and innovation activities” —Dr. Jorge Dias, IROS 2024 General Chair

Dr. Dias added: “The organizing committee of IROS 2024 has received over 4000 submissions representing 60 countries, with China leading with 1,029 papers, followed by the U.S. (777), Germany (302), and Japan (253), as well as the U.K. and South Korea (173 each). The UAE with a total of 68 papers comes atop the Arab region.”

Driving innovation at Khalifa University is the Center for Robotics and Autonomous Systems (KU-CARS) with around 50 researchers and state-of-the-art laboratory facilities, including a vibrant multidisciplinary environment for conducting robotics and autonomous vehicle-related research and innovation.

IROS 2024 is sponsored by IEEE Robotics and Automation Society, Abu Dhabi Convention and Exhibition Bureau, the Robotics Society of Japan (RSJ), the Society of Instrument and Control Engineers (SICE), the New Technology Foundation, and the IEEE Industrial Electronics Society (IES).

More information at https://iros2024-abudhabi.org/




id

Video Friday: Zipline Delivers



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Zipline has (finally) posted some real live footage of its new Platform 2 drone, and while it’s just as weird looking as before, it seems to actually work really well.

[ Zipline ]

I appreciate Disney Research’s insistence on always eventually asking, “okay, but can we get this to work on a real robot in the real world?”

[ Paper from ETH Zurich and Disney Research [PDF] ]

In this video, we showcase our humanoid robot, Nadia, being remotely controlled for boxing training using a simple VR motion capture setup. A remote user takes charge of Nadia’s movements, demonstrating the power of our advanced teleoperation system. Watch as Nadia performs precise boxing moves, highlighting the potential for humanoid robots in dynamic, real-world tasks.

[ IHMC ]

Guide dogs are expensive to train and maintain—if available at all. Because of these limiting factors, relatively few blind people use them. Computer science assistant professor Donghyun Kim and Ph.D candidate Hochul Hwang are hoping to change that with the help of UMass database analyst Gail Gunn and her guide dog, Brawny.

[ University of Massachusetts, Amherst ]

Thanks Julia!

The current paradigm for motion planning generates solutions from scratch for every new problem, which consumes significant amounts of time and computational resources. Our approach builds a large number of complex scenes in simulation, collects expert data from a motion planner, then distills it into a reactive generalist policy. We then combine this with lightweight optimization to obtain a safe path for real world deployment.

[ Neural MP ]

A nice mix of NAO and AI for embodied teaching.

[ Aldebaran ]

When retail and logistics giant Otto Group set out to strengthen its operational efficiency and safety, it turned to robotics and automation. The Otto Group has become the first company in Europe to deploy the mobile case handling robot Stretch, which unloads floor-loaded trailers and containers.

[ Boston Dynamics ]

From groceries to last-minute treats, Wing is here to make sure deliveries arrive quickly and safely. Our latest aircraft design features a larger, more standardized box and can carry a higher payload which came directly from customer and partner feedback.

[ Wing ]

It’s the jacket that gets me.

[ Devanthro ]

In this video, we introduce Rotograb, a robotic hand that merges the dexterity of human hands with the strength and efficiency of industrial grippers. Rotograb features a new rotating thumb mechanism, allowing for precision in-hand manipulation and power grasps while being adaptable. The robotic hand was developed by students during “Real World Robotics”, a master course by the Soft Robotics Lab at ETH Zurich.

[ ETH Zurich ]

A small scene where Rémi, our distinguished professor, is teaching chess to the person remotely operating Reachy! The grippers allow for easy and precise handling of chess pieces, even the small ones! The robot shown in this video is the Beta version of Reachy 2, our new robot coming very soon!

[ Pollen ]

Enhancing the adaptability and versatility of unmanned micro aerial vehicles (MAVs) is crucial for expanding their application range. In this article, we present a bimodal reconfigurable robot capable of operating in both regular quadcopter flight mode and a unique revolving flight mode, which allows independent control of the vehicle’s position and roll-pitch attitude.

[ City University Hong Kong ]

The Parallel Continuum Manipulator (PACOMA) is an advanced robotic system designed to replace traditional robotic arms in space missions, such as exploration, in-orbit servicing, and docking. Its design emphasizes robustness against misalignments and impacts, high precision and payload capacity, and sufficient mechanical damping for stable, controlled movements.

[ DFKI Robotics Innovation Center ]

Even the FPV pros from Team BlackSheep do, very occasionally, crash.

[ Team BlackSheep ]

This is a one-hour uninterrupted video of a robot cleaning bathrooms in real time. I’m not sure if it’s practical, but I am sure that it’s impressive, honestly.

[ Somatic ]




id

Video Friday: ICRA Turns 40



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH
Humanoids 204: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

The interaction between humans and machines is gaining increasing importance due to the advancing degree of automation. This video showcases the development of robotic systems capable of recognizing and responding to human wishes.

By Jana Jost, Sebastian Hoose, Nils Gramse, Benedikt Pschera, and Jan Emmerich from Fraunhofer IML

[ Fraunhofer IML ]

Humans are capable of continuously manipulating a wide variety of deformable objects into complex shapes, owing largely to our ability to reason about material properties as well as our ability to reason in the presence of geometric occlusion in the object’s state. To study the robotic systems and algorithms capable of deforming volumetric objects, we introduce a novel robotics task of continuously deforming clay on a pottery wheel, and we present a baseline approach for tackling such a task by learning from demonstration.

By Adam Hung, Uksang Yoo, Jonathan Francis, Jean Oh, and Jeffrey Ichnowski from CMU Robotics Insittute

[ Carnegie Mellon University Robotics Institute ]

Suction-based robotic grippers are common in industrial applications due to their simplicity and robustness, but [they] struggle with geometric complexity. Grippers that can handle varied surfaces as easily as traditional suction grippers would be more effective. Here we show how a fractal structure allows suction-based grippers to increase conformability and expand approach angle range.

By Patrick O’Brien, Jakub F. Kowalewski, Chad C. Kessens, and Jeffrey Ian Lipton from Northeastern University Transformative Robotics Lab

[ Northeastern University ]

We introduce a newly developed robotic musician designed to play an acoustic guitar in a rich and expressive manner. Unlike previous robotic guitarists, our Expressive Robotic Guitarist (ERG) is designed to play a commercial acoustic guitar while controlling a wide dynamic range, millisecond-level note generation, and a variety of playing techniques such as strumming, picking, overtones, and hammer-ons.

By Ning Yang , Amit Rogel , and Gil Weinberg from Georgia Tech

[ Georgia Tech ]

The iCub project was initiated in 2004 by Giorgio Metta, Giulio Sandini, and David Vernon to create a robotic platform for embodied cognition research. The main goals of the project were to design a humanoid robot, named iCub, to create a community by leveraging on open-source licensing, and implement several basic elements of artificial cognition and developmental robotics. More than 50 iCub have been built and used worldwide for various research projects.

[ Istituto Italiano di Tecnologia ]

In our video, we present SCALER-B, a multi-modal versatile climbing robot that is a quadruped robot capable of standing up, bipedal locomotion, bipedal climbing, and pullups with two finger grippers.

By Yusuke Tanaka, Alexander Schperberg, Alvin Zhu, and Dennis Hong from UCLA

[ Robotics Mechanical Laboratory at UCLA ]

This video explores Waseda University’s innovative journey in developing wind instrument-playing robots, from automated performance to interactive musical engagement. Through demonstrations of technical advancements and collaborative performances, the video illustrates how Waseda University is pushing the boundaries of robotics, blending technology and artistry to create interactive robotic musicians.

By Jia-Yeu Lin and Atsuo Takanishi from Waseda University

[ Waseda University ]

This video presents a brief history of robot painting projects with the intention of educating viewers about the specific, core robotics challenges that people developing robot painters face. We focus on four robotics challenges: controls, the simulation-to-reality gap, generative intelligence, and human-robot interaction. We show how various projects tackle these challenges with quotes from experts in the field.

By Peter Schaldenbrand, Gerry Chen, Vihaan Misra, Lorie Chen, Ken Goldberg, and Jean Oh from CMU

[ Carnegie Mellon University ]

The wheeled humanoid neoDavid is one of the most complex humanoid robots worldwide. All finger joints can be controlled individually, giving the system exceptional dexterity. neoDavids Variable Stiffness Actuators (VSAs) enable very high performance in the tasks with fast collisions, highly energetic vibrations, or explosive motions, such as hammering, using power-tools, e.g. a drill-hammer, or throwing a ball.

[ DLR Institute of Robotics andMechatronics ]

LG Electronics’ journey to commercialize robot navigation technology in various areas such as home, public spaces, and factories will be introduced in this paper. Technical challenges ahead in robot navigation to make an innovation for our better life will be discussed. With the vision on ‘Zero Labor Home’, the next smart home agent robot will bring us next innovation in our lives with the advances of spatial AI, i.e. combination of robot navigation and AI technology.

By Hyoung-Rock Kim, DongKi Noh and Seung-Min Baek from LG

[ LG ]

HILARE stands for: Heuristiques Intégrées aux Logiciels et aux Automatismes dans un Robot Evolutif. The HILARE project started by the end of 1977 at LAAS (Laboratoire d’Automatique et d’Analyse des Systèmes at this time) under the leadership of Georges Giralt. The video features HILARE robot and delivers explanations.

By Aurelie Clodic, Raja Chatila, Marc Vaisset, Matthieu Herrb, Stephy Le Foll, Jerome Lamy, and Simon Lacroix from LAAS/CNRS (Note that the video narration is in French with English subtitles.)

[ LAAS/CNRS ]

Humanoid legged locomotion is versatile, but typically used for reaching nearby targets. Employing a personal transporter (PT) designed for humans, such as a Segway, offers an alternative for humanoids navigating the real world, enabling them to switch from walking to wheeled locomotion for covering larger distances, similar to humans. In this work, we develop control strategies that allow humanoids to operate PTs while maintaining balance.

By Vidyasagar Rajendran, William Thibault, Francisco Javier Andrade Chavez, and Katja Mombaur from University of Waterloo

[ University of Waterloo ]

Motion planning, and in particular in tight settings, is a key problem in robotics and manufacturing. One infamous example for a difficult, tight motion planning problem is the Alpha Puzzle. We present a first demonstration in the real world of an Alpha Puzzle solution with a Universal Robotics UR5e, using a solution path generated from our previous work.

By Dror Livnat, Yuval Lavi, Michael M. Bilevich, Tomer Buber, and Dan Halperin from Tel Aviv University

[ Tel Aviv University ]

Interaction between humans and their environment has been a key factor in the evolution and the expansion of intelligent species. Here we present methods to design and build an artificial environment through interactive robotic surfaces.

By Fabio Zuliani, Neil Chennoufi, Alihan Bakir, Francesco Bruno, and Jamie Paik from EPFL

[ EPFL Reconfigurable Robotics Lab ]

At the intersection of swarm robotics and architecture, we created the Swarm Garden, a novel responsive system to be deployed on façades. The Swarm Garden is an adaptive shading system made of a swarm of robotic modules that respond to humans and the environment while creating beautiful spaces. In this video, we showcase 35 robotic modules that we designed and built for The Swarm Garden.

By Merihan Alhafnawi, Lucia Stein-Montalvo, Jad Bendarkawi, Yenet Tafesse, Vicky Chow, Sigrid Adriaenssens, and Radhika Nagpal from Princeton University

[ Princeton University ]

My team at the University of Southern Denmark has been pioneering the field of self-recharging drones since 2017. These drones are equipped with a robust perception and navigation system, enabling them to identify powerlines and approach them for landing. A unique feature of our drones is their self-recharging capability. They accomplish this by landing on powerlines and utilizing a passively actuated gripping mechanism to secure themselves to the powerline cable.

By Emad Ebeid from University of southern Denmark

[ University of Southern Denmark (SDU) ]

This paper explores the design and implementation of Furnituroids, shape-changing mobile furniture robots that embrace ambiguity to offer multiple and dynamic affordances for both individual and social behaviors.

By Yasuto Nakanishi from Keio University

[ Keio University ]




id

Video Friday: Quadruped Ladder Climbing



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH
Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

Not even ladders can keep you safe from quadruped robots anymore.

[ ETH Zürich Robot Systems Lab ]

Introducing Azi (right), the new desktop robot from Engineered Arts Ltd. Azi and Ameca are having a little chat, demonstrating their wide range of expressive capabilities. Engineered Arts desktop robots feature 32 actuators, 27 for facial control alone, and 5 for the neck. They include AI conversational ability including GPT-4o support which makes them great robotic companions.

[ Engineered Arts ]

Quadruped robots that individual researchers can build by themselves are crucial for expanding the scope of research due to their high scalability and customizability. In this study, we develop a metal quadruped robot MEVIUS, that can be constructed and assembled using only materials ordered through e-commerce. We have considered the minimum set of components required for a quadruped robot, employing metal machining, sheet metal welding, and off-the-shelf components only.

[ MEVIUS from JSK Robotics Laboratory ]

Thanks Kento!

Avian perching maneuvers are one of the most frequent and agile flight scenarios, where highly optimized flight trajectories, produced by rapid wing and tail morphing that generate high angular rates and accelerations, reduce kinetic energy at impact. Here, we use optimal control methods on an avian-inspired drone with morphing wing and tail to test a recent hypothesis derived from perching maneuver experiments of Harris’ hawks that birds minimize the distance flown at high angles of attack to dissipate kinetic energy before impact.

[ EPFL Laboratory of Intelligent Systems ]

The earliest signs of bearing failures are inaudible to you, but not to Spot . Introducing acoustic vibration sensing—Automate ultrasonic inspections of rotating equipment to keep your factory humming.

The only thing I want to know is whether Spot is programmed to actually do that cute little tilt when using its acoustic sensors.

[ Boston Dynamics ]

Hear from Jonathan Hurst, our co-founder and Chief Robot Officer, why legs are ideally suited for Digit’s work.

[ Agility Robotics ]

I don’t think “IP67” really does this justice.

[ ANYbotics ]

This paper presents a teleportation system with floating robotic arms that traverse parallel cables to perform long-distance manipulation. The system benefits from the cable-based infrastructure, which is easy to set up and cost-effective with expandable workspace range.

[ EPFL ]

It seems to be just renderings for now, but here’s the next version of Fourier’s humanoid.

[ Fourier ]

Happy Oktoberfest from Dino Robotics!

[ Dino Robotics ]

This paper introduces a learning-based low-level controller for quadcopters, which adaptively controls quadcopters with significant variations in mass, size, and actuator capabilities. Our approach leverages a combination of imitation learning and reinforcement learning, creating a fast-adapting and general control framework for quadcopters that eliminates the need for precise model estimation or manual tuning.

[ HiPeR Lab ]

Parkour poses a significant challenge for legged robots, requiring navigation through complex environments with agility and precision based on limited sensory inputs. In this work, we introduce a novel method for training end-to-end visual policies, from depth pixels to robot control commands, to achieve agile and safe quadruped locomotion.

[ SoloParkour ]




id

Video Friday: Reachy 2



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH
Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

At ICRA 2024, we sat down with Pollen Robotics to talk about Reachy 2 O_o

[ Pollen Robotics ]

A robot pangolin designed to plant trees is the winner of the 2023 Natural Robotics Contest, which rewards robot designs inspired by nature. As the winning entry, the pangolin—dubbed “Plantolin”—has been brought to life by engineers at the University of Surrey in the United Kingdom. Out of 184 entries, the winning design came from Dorothy, a high school student from California.

Dr. Rob Siddall, a roboticist at the University of Surrey who built Plantolin, said, “In the wild, large animals will cut paths through the overgrowth and move seeds. This doesn’t happen nearly as much in urban areas like the South East of England—so there’s definitely room for a robot to help fill that gap. Dorothy’s brilliant design reminds us how we can solve some of our biggest challenges by looking to nature for inspiration.”

[ Plantolin ]

Our novel targeted throwing end-effector is designed to seamlessly integrate with drones and mobile manipulators. It utilizes elastic energy for efficient picking, placing, and throwing of objects, offering a versatile solution for industrial and warehouse applications. By combining a physics-based model with residual learning, it achieves increased accuracy in targeted throwing, even with previously unseen objects.

[ Throwing Manipulation, multimedia extension for IEEE Robotics and Automation Letters ]

Thanks, Nagamanikandan!

Control of off-road vehicles is challenging due to the complex dynamic interactions with the terrain. Accurate modeling of these interactions is important to optimize driving performance, but the relevant physical phenomena are too complex to model from first principles. Therefore, we present an offline meta-learning algorithm to construct a rapidly-tunable model of residual dynamics and disturbances. We evaluate our method outdoors on different slopes with varying slippage and actuator degradation disturbances, and compare against an adaptive controller that does not use the VFM terrain features.

[ Paper ]

Thanks, Sorina!

Corvus Robotics, a provider of autonomous inventory management systems, announced an updated version of its Corvus One system that brings, for the first time, the ability to fly its drone-powered system in a lights-out distribution center without any added infrastructure like reflectors, stickers, or beacons.

With obstacle detection at its core, the light-weight drone safely flies at walking speed without disrupting workflow or blocking aisles and can preventatively ascend to avoid collisions with people, forklifts, or robots, if necessary. Its advanced barcode scanning can read any barcode symbology in any orientation placed anywhere on the front of cartons or pallets.

[ Corvus Robotics ]

Thanks, Jackie!

The first public walking demo of a new humanoid from Under Control Robotics.

[ Under Control Robotics ]

The ability to accurately and rapidly identify key physiological signatures of injury – such as hemorrhage and airway injuries – proved key to success in the DARPA Triage Challenge Event 1. DART took the top spot in the Systems competition, while Coordinated Robotics topped the leaderboard in the Virtual competition and pulled off the win in the Data competition. All qualified teams are eligible for prizes in the Final Event. These self-funded teams won between $60,000 - $120,000 each for their first-place finishes.

[ DARPA ]

The body structure of an anatomically correct tendon-driven musculoskeletal humanoid is complex. We focused on reciprocal innervation in the human nervous system, and then implemented antagonist inhibition control (AIC) based on the reflex. To verify its effectiveness, we applied AIC to the upper limb of the tendon-driven musculoskeletal humanoid, Kengoro, and succeeded in dangling for 14 minutes and doing pull-ups.

That is also how I do pull-ups.

[ Jouhou System Kougaku Laboratory, University of Tokyo ]

Thanks, Kento!

On June 5, 2024 Digit completed it’s first day of work for GXO Logistics, Inc. as part of regular operations. This is the result of a multi-year agreement between GXO and Agility Robotics to begin deploying Digit in GXO’s logistics operations. This agreement, which follows a proof-of-concept pilot in late 2023, is both the industry’s first formal commercial deployment of humanoid robots and first Robots-as-a-Service (RaaS) deployment of humanoid robots.

[ Agility Robotics ]

Although there is a growing demand for cooking behaviours as one of the expected tasks for robots, a series of cooking behaviours based on new recipe descriptions by robots in the real world has not yet been realised. In this study, we propose a robot system that integrates real-world executable robot cooking behaviour planning using the Large Language Model (LLM) and classical planning of PDDL descriptions, and food ingredient state recognition learning from a small number of data using the Vision-Language model (VLM).

[ JSK Robotics Laboratory, University of Tokyo GitHub ]

Thanks, Naoaki!

This paper introduces a novel approach to interactive robots by leveraging the form-factor of cards to create thin robots equipped with vibrational capabilities for locomotion and haptic feedback. The system is composed of flat-shaped robots with on-device sensing and wireless control, which offer lightweight portability and scalability. Applications include augmented card playing, educational tools, and assistive technology, which showcase CARDinality’s versatility in tangible interaction.

[ AxLab Actuated Experience Lab, University of Chicago ]

Azi reacts in full AI to the scripted skit it did with Ameca.

Azi uses 32 actuators, with 27 to control its silicone face, and 5 for the neck. It uses GPT-4o with a customisable personality.

[ Engineered Arts ]

We are testing a system that includes robots, structural building blocks, and smart algorithms to build large-scale structures for future deep space exploration. In this video, autonomous robots worked as a team to transport material in a mock rail system and simulate a build of a tower at our Roverscape.

[ NASA Ames Research Center ]

In the summer of 2024 HEBI’s intern Aditya Nair worked to add new use-case demos, and improve quality and consistency of the existing demos for our robotic arms! In this video you can see teach and report, augmented reality, gravity compensation, and impedance control gimbal for our robotic arms.

[ HEBI Robotics ]

This video showcases cutting-edge innovations and robotic demonstrations from the Reconfigurable Robotics Lab (RRL) at EPFL. As we are closing the semester, this event brings together the exciting progress and breakthroughs made by our researchers and students over the past months. In this video, you’ll experience a collection of exciting demonstrations, featuring the latest in reconfigurable, soft, and modular robotics, aimed at tackling real-world challenges.

[ EPFL Reconfigurable Robotics Lab ]

Humanoid robot companies are promising that humanoids will fast become our friends, colleagues, employees, and the backbone of our workforce. But how close are we to this reality? What are the key costs associated with operating a humanoid? Can companies deploy them profitably? Will humanoids take our jobs, and if so, what should we be doing to prepare?

[ Human Robot Interaction Podcast ]

According to Web of Science, there have been 1,147,069 publications from 2003 to 2023 that fell under their category of “Computer Science, Artificial Intelligence.” During the same time period, 217,507 publications fell under their “Robotics” category, about 1/5th of the volume. On top of that, Canada’s published Science, Technology, and Innovation Priorities has AI at the top of the “Technology Advanced Canada” list, but robotics is not even listed. AI has also engaged the public’s imagination more so than robotics with “AI” dominating Google Search trends compared to “robotics.” This has us questioning: “Is AI Skyrocketing while Robotics Inches Forward?”

[ Ingenuity Labs RAIS2024 Robotics Debate ]




id

Video Friday: Mobile Robot Upgrades



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ROSCon 2024: 21–23 October 2024, ODENSE, DENMARK
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH
Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

One of the most venerable (and recognizable) mobile robots ever made, the Husky, has just gotten a major upgrade.

Shipping early next year.

[ Clearpath Robotics ]

MAB Robotics is developing legged robots for the inspection and maintenance of industrial infrastructure. One of the initial areas for deploying this technology is underground infrastructure, such as water and sewer canals. In these environments, resistance to factors like high humidity and working underwater is essential. To address these challenges, the MAB team has built a walking robot capable of operating fully submerged, based on exceptional self-developed robotics actuators. This innovation overcomes the limitations of current technologies, offering MAB’s first clients a unique service for trenchless inspection and maintenance tasks.

[ MAB Robotics ]

Thanks, Jakub!

The G1 robot can perform a standing long jump of up to 1.4 meters, possibly the longest jump ever achieved by a humanoid robot of its size in the world, standing only 1.32 meters tall.

[ Unitree Robotics ]

Apparently, you can print out a functional four-fingered hand on an inkjet.

[ UC Berkeley ]

We present SDS (``See it. Do it. Sorted’), a novel pipeline for intuitive quadrupedal skill learning from a single demonstration video leveraging the visual capabilities of GPT-4o. We validate our method on the Unitree Go1 robot, demonstrating its ability to execute variable skills such as trotting, bounding, pacing, and hopping, achieving high imitation fidelity and locomotion stability.

[ Robot Perception Lab, University College London ]

You had me at “3D desk octopus.”

[ UIST 2024 ACM Symposium on User Interface Software and Technology ]

Top-notch swag from Dusty Robotics

[ Dusty Robotics ]

I’m not sure how serious this shoes-versus-no-shoes test is, but it’s an interesting result nonetheless.

[ Robot Era ]

Thanks, Ni Tao!

Introducing TRON 1, the first multimodal biped robot! With its innovative “Three-in-One” modular design, TRON 1 can easily switch among Point-Foot, Sole, and Wheeled foot ends.

[ LimX Dynamics ]

Recent works in the robot-learning community have successfully introduced generalist models capable of controlling various robot embodiments across a wide range of tasks, such as navigation and locomotion. However, achieving agile control, which pushes the limits of robotic performance, still relies on specialist models that require extensive parameter tuning. To leverage generalist-model adaptability and flexibility while achieving specialist-level agility, we propose AnyCar, a transformer-based generalist dynamics model designed for agile control of various wheeled robots.

[ AnyCar ]

Discover the future of aerial manipulation with our untethered soft robotic platform with onboard perception stack! Presented at the 2024 Conference on Robot Learning, in Munich, this platform introduces autonomous aerial manipulation that works in both indoor and outdoor environments—without relying on costly off-board tracking systems.

[ Paper ] via [ ETH Zurich Soft Robotics Laboratory ]

Deploying perception modules for human-robot handovers is challenging because they require a high degree of reactivity, generalizability, and robustness to work reliably for diverse cases. Here, we show hardware handover experiments using our efficient and object-agnostic real-time tracking framework, specifically designed for human-to-robot handover tasks with legged manipulators.

[ Paper ] via [ ETH Zurich Robotic Systems Lab ]

Azi and Ameca are killing time, but Azi struggles being the new kid around. Engineered Arts desktop robots feature 32 actuators, 27 for facial control alone, and 5 for the neck. They include AI conversational ability including GPT-4o support, which makes them great robotic companions, even to each other. The robots are following a script for this video, using one of their many voices.

[ Engineered Arts ]

Plato automates carrying and transporting, giving your staff more time to focus on what really matters, improving their quality of life. With a straightforward setup that requires no markers or additional hardware, Plato is incredibly intuitive to use—no programming skills needed.

[ Aldebaran ]

This UPenn GRASP Lab seminar is from Antonio Loquercio, on “Simulation: What made us intelligent will make our robots intelligent.”

Simulation-to-reality transfer is an emerging approach that enables robots to develop skills in simulated environments before applying them in the real world. This method has catalyzed numerous advancements in robotic learning, from locomotion to agile flight. In this talk, I will explore simulation-to-reality transfer through the lens of evolutionary biology, drawing intriguing parallels with the function of the mammalian neocortex. By reframing this technique in the context of biological evolution, we can uncover novel research questions and explore how simulation-to-reality transfer can evolve from an empirically driven process to a scientific discipline.

[ University of Pennsylvania ]




id

Video Friday: Swiss-Mile Robot vs. Humans



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

Swiss-Mile’s robot (which is really any robot that meets the hardware requirement to run their software) is faster than “most humans.” So what does that mean, exactly?

The winner here is Riccardo Rancan, who doesn’t look like he was trying especially hard—he’s the world champion in high-speed urban orienteering, which is a sport that I did not know existed but sounds pretty awesome.

[ Swiss-Mile ]

Thanks, Marko!

Oh good, we’re building giant fruit fly robots now.

But seriously, this is useful and important research because understanding the relationship between a nervous system and a bunch of legs can only be helpful as we ask more and more of legged robotic platforms.

[ Paper ]

Thanks, Clarus!

Watching humanoids get up off the ground will never not be fascinating.

[ Fourier ]

The Kepler Forerunner K2 represents the Gen 5.0 robot model, showcasing a seamless integration of the humanoid robot’s cerebral, cerebellar, and high-load body functions.

[ Kepler ]

Diffusion Forcing combines the strength of full-sequence diffusion models (like SORA) and next-token models (like LLMs), acting as either or a mix at sampling time for different applications without retraining.

[ MIT ]

Testing robot arms for space is no joke.

[ GITAI ]

Welcome to the Modular Robotics Lab (ModLab), a subgroup of the GRASP Lab and the Mechanical Engineering and Applied Mechanics Department at the University of Pennsylvania under the supervision of Prof. Mark Yim.

[ ModLab ]

This is much more amusing than it has any right to be.

[ Westwood Robotics ]

Let’s go for a walk with Adam at IROS’24!

[ PNDbotics ]

From Reachy 1 in 2023 to our newly launched Reachy 2, our grippers have been designed to enhance precision and dexterity in object manipulation. Some of the models featured in the video are prototypes used for various tests, showing the innovation behind the scenes.

[ Pollen ]

I’m not sure how else you’d efficiently spray the tops of trees? Drones seem like a no-brainer here.

[ SUIND ]

Presented at ICRA40 in Rotterdam, we show the challenges faced by mobile manipulation platforms in the field. We at CSIRO Robotics are working steadily towards a collaborative approach to tackle such challenging technical problems.

[ CSIRO ]

ABB is best known for arms, but it looks like they’re exploring AMRs (autonomous mobile robots) for warehouse operations now.

[ ABB ]

Howie Choset, Lu Li, and Victoria Webster-Wood of the Manufacturing Futures Institute explain their work to create specialized sensors that allow robots to “feel” the world around them.

[ CMU ]

Columbia Engineering Lecture Series in AI: “How Could Machines Reach Human-Level Intelligence?” by Yann LeCun.

Animals and humans understand the physical world, have common sense, possess a persistent memory, can reason, and can plan complex sequences of subgoals and actions. These essential characteristics of intelligent behavior are still beyond the capabilities of today’s most powerful AI architectures, such as Auto-Regressive LLMs.
I will present a cognitive architecture that may constitute a path towards human-level AI. The centerpiece of the architecture is a predictive world model that allows the system to predict the consequences of its actions. and to plan sequences of actions that that fulfill a set of objectives. The objectives may include guardrails that guarantee the system’s controllability and safety. The world model employs a Joint Embedding Predictive Architecture (JEPA) trained with self-supervised learning, largely by observation.

[ Columbia ]




id

Trump Will Reverse Biden's Israel Delusions

Donald Trump will embrace the truth Joe Biden has refused to countenance: Israel's enemies are America's enemies. And when Israel defeats its enemies, America wins.




id

What Should Biden Do? Get a Peace Deal in Ukraine

The end to this bloody stalemate must come with negotiation, and Putin should not wait until Trump is in the White House, says Guardian columnist Simon Jenkins




id

'It's the Economy, Stupid.' Dems Chose Just To Be Stupid

The election is over and the economy had a huge impact. An AP analysis said 96% of those surveyed admitted that prices of gas and groceries had an influence on their vote.




id

How E. coli infections wreak havoc on the body, causing dangerous disease — particularly in kids

Certain strains of E. coli are capable of causing severe disease, by rapidly spreading through the human digestive system, wreaking havoc throughout the bloodstream, and eventually damaging the delicate kidneys. That's the situation right now during a large outbreak in Alberta, with hundreds of children now affected.




id

After dismal start, UN hosts 'halftime summit' in bid to save development plan

After a dismal start, the UN is hosting a "halftime summit" about its 15-year plan to meet a series of human-development targets by 2030. Delegates will try to focus on problems like extreme poverty and gender equality while watching for sparks between the representatives of Ukraine and Russia.




id

Nova Scotia biologist adapting COVID-19 technology to detect oyster disease

A biologist at Cape Breton University is hoping a piece of technology used to keep people safe in the pandemic can help protect Nova Scotia's oysters against the effects of warming waters.



  • News/Canada/Nova Scotia

id

Fired FEMA supervisor cites 'political hostility' as reason for avoiding homes with Trump lawn signs

The Federal Emergency Management Agency supervisor who was fired after she told her staff to skip hurricane-damaged homes with Trump signs in their yards says it wasn't an isolated incident and is a "colossal event."




id

'Free, fair and fast': Officials quietly begin certifying presidential election results

Local officials are beginning to certify the results of this year's presidential election in a process that, so far, has been playing out quietly, in stark contrast to the tumultuous certification period four years ago that followed then-President Donald Trump's loss.




id

House Republicans demand Biden Cabinet members preserve all documents, communications

House Republicans on Tuesday demanded that each member of President Biden's cabinet preserve all relevant documents and communications, a move that signals future investigations into the Biden administration.




id

Inside the report that reveals the extent of DEI spending in HHS

A new report by OpenTheBooks reveals that the Health and Human Services Department (HHS) employs 294 people in diversity-focused positions, with 182 of them earning six-figure salaries.




id

Steven Witkoff chosen by Trump as special envoy to the Middle East

President-elect Donald Trump has tapped Steven Witkoff to be special envoy to the Middle East, marking another key position for his incoming administration.




id

Speaker Johnson could face challenger amid simmering GOP discontent

House Speaker Mike Johnson is seeking a smooth re-election to another term wielding the gavel, but a small group of discontent conservatives are again vying to shake things up at the top.




id

Republican Rep. David Valadao wins reelection in heavily Democratic California district

Republican Rep. David Valadao has won reelection in California's 22nd Congressional District, defeating Democrat Rudy Salas for the second time.




id

Inside Apple Mac week: New power, smarter AI, bold innovations

Apple recently announced its new lineup of Macs and rolled out Apple Intelligence, its latest artificial intelligence-powered feature for its products.



  • ab0857c1-644d-5ddf-8512-2c0d8ef807ba
  • fnc
  • Fox News
  • fox-news/tech
  • fox-news/tech/artificial-intelligence
  • fox-news/tech/topics/computers
  • fox-news/tech/topics/innovation
  • fox-news/tech/companies/apple
  • fox-news/tech
  • article

id

Updated Android malware can hijack calls you make to your bank

An updated Android trojan called FakeCall hijacks bank calls. Tech expert Kurt “CyberGuy" Knutsson says Android phone manufacturers and Google need to step up their game on security.



  • f9ffd891-0642-565b-baed-935600789400
  • fnc
  • Fox News
  • fox-news/tech
  • fox-news/tech/companies/google
  • fox-news/tech/technologies/android
  • fox-news/tech/topics/security
  • fox-news/tech/topics/privacy
  • fox-news/tech/topics/cybercrime
  • fox-news/tech
  • article

id

Score big on Amazon Black Friday 2024 with my insider tips

Amazon's Black Friday sales event starts Friday, Nov. 22. Kurt the CyberGuy offers some tips on how to get the best deals on merchandise.



  • 2e5e282c-e75c-5f08-b690-6dda2038f64e
  • fnc
  • Fox News
  • fox-news/tech
  • fox-news/tech/companies/amazon
  • fox-business/fox-business-industries/fox-business-retail
  • fox-news/tech
  • article

id

How VPNs shield your identity and secure your financial transactions from theft

A virtual private network is a service that encrypts your internet connection, ensuring your online activity remains private and secure.



  • 84af7ed4-6441-5599-8486-c667456675f6
  • fnc
  • Fox News
  • fox-news/tech
  • fox-news/tech/topics/security
  • fox-news/us/personal-freedoms/privacy
  • fox-news/tech/topics/cybercrime
  • fox-news/tech/topics/hackers
  • fox-news/us
  • fox-news/tech
  • article

id

Top scams targeting our military heroes and how to avoid them

Shameless scammers trick veterans into giving personal info or cash. Tech expert Kurt “CyberGuy" Knutsson explores five common scams.



  • b0a0f34a-2596-5feb-9750-e591135bb927
  • fnc
  • Fox News
  • fox-news/tech
  • fox-news/tech/topics/security
  • fox-news/tech/topics/privacy
  • fox-news/tech/topics/cybercrime
  • fox-news/us
  • fox-news/us/crime
  • fox-news/us/military
  • fox-news/us/military/veterans
  • fox-news/tech
  • article

id

Avoiding Siri slipups and apologies for butt dials

Voice assistants may cause confusion across devices. Tech expert Kurt “CyberGuy" Knutsson offers some solutions to fix it.



  • c8104049-e59e-51a5-9c0e-8f052f50e610
  • fnc
  • Fox News
  • fox-news/tech
  • fox-news/tech/companies/apple
  • fox-news/tech/technologies/iphone
  • fox-news/tech/technologies/apps
  • fox-news/tech
  • article

id

Spain’s Nadal Trains for 1st Time inside Davis Cup Venue

… Trains for 1st Time inside Davis Cup Venue VALENCIA, Spain – World No … the Spanish national team’s Davis Cup quarterfinals against Germany. Nadal, who ….




id

Great British summer of sport - your guide to how each event is ready for return of crowds