1 1-Ethoxy-3-[4-(ethoxycarbonyl)phenyl]-3-hydroxy-1-oxopropan-2-aminium chloride By journals.iucr.org Published On :: 2024-10-31 The title compound, C14H20NO5+·Cl−, was prepared as a racemate of R,R- and S,S-enantiomers by reduction of the corresponding hydroxyiminoketone. In the crystal, layers are formed via hydrogen bridges of four ammonium groups to chloride ions; these lamellae are connected via interdigitated benzoic ester groups. Full Article text
1 2-Amino-5-oxo-4-(thiophen-2-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile By journals.iucr.org Published On :: 2024-11-08 The crystal structure of the title compound, C14H12N2O2S, reveals two symmetrically independent molecules within the asymmetric unit. Each molecule contains a chromenone core attached to a 2-thiophene ring, cyano, and amino groups. The 2-thiophene ring of one of the two molecules in the asymmetric unit was found to be disordered over two positions, with the major component having a site occupancy factor of 0.837 (2). The 2-thiophene ring is nearly orthogonal to the fused 4H-pyran ring, with dihedral angles between the two sets of planes being 89.5 (5) and 89.63 (8)°. Intermolecular hydrogen bonding, involving N—H⋯N and N—H⋯O interactions, creates two distinct motifs leading to the formation of a two-dimensional supramolecular network along the crystallographic ac plane. Full Article text
1 Tris(4-chlorophenyl) phosphate By journals.iucr.org Published On :: 2024-11-08 The title compound, C18H12Cl3O4P, is the symmetric phosphate derived from para-chlorophenol and phosphoric acid. Two of the three aromatic moieties adopt syn-orientation towards the P=O bond while the last chlorophenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual molecules into sheets lying perpendicular to the crystallographic b axis. Full Article text
1 Structural insights into 1,4-bis(neopentyloxy)pillar[5]arene and the pyridine host–guest system By journals.iucr.org Published On :: 2024-11-08 The crystal structure of 1,4-bis(neopentyloxy)pillar[5]arene, C95H140N2O10 (TbuP), featuring two encapsulated pyridine molecules, reveals significant host–guest interactions. Interestingly, the pyridine guests are positioned near the neopentyloxy substituents instead of the electron-rich aromatic core of the pillar[5]arene. This spatial arrangement suggests a preference for the pyridine molecules to engage with the aliphatic regions of the host. Detailed analysis of the structural characteristics of this host–guest system (TbuP·2Py), as well as its packing pattern within the crystal network, is presented and discussed. Full Article text
1 α-d-2'-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-01-22 α-d-2'-Deoxyribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-deoxyadenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydrogen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydrogen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydrogen bonds formed by the conformers. The formation of the supramolecular assembly of α-dA is controlled by hydrogen bonding and stacking interactions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydrogen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydrogen bonds involving the sugar moieties to form a sheet. A comparison of the solid-state structures of the anomeric 2'-deoxyadenosines revealed significant differences of their conformational parameters. Full Article text
1 Crystal structure and analytical profile of 1,2-diphenyl-2-pyrrolidin-1-ylethanone hydrochloride or `α-D2PV': a synthetic cathinone seized by law enforcement, along with its diluent sugar, myo-inositol By journals.iucr.org Published On :: 2024-01-22 A confiscated package of street drugs was characterized by the usual mass spectral (MS) and FT–IR analyses. The confiscated powder material was highly crystalline and was found to consist of two very different species, accidentally of sizes convenient for X-ray diffraction. Thus, one each was selected and redundant complete sets of data were collected at 100 K using Cu Kα radiation. The selected crystals contained: (a) 1,2-diphenyl-2-(pyrrolidin-1-yl)ethanone hydrochloride hemihydrate or 1-(2-oxo-1,2-diphenylethyl)pyrrolidin-1-ium chloride hemihydrate, C18H20NO+·Cl−·0.5H2O, (I), a synthetic cathinone called `α-D2PV', and (b) the sugar myo-inositol, C6H12O6, (II), probably the only instance in which the drug and its diluent have been fully characterized from a single confiscated sample. Moreover, the structural details of both are rather attractive showing: (i) interesting hydrogen bonding observed in pairwise interactions by the drug molecules, mediated by the chloride counter-anions and the waters of crystallization, and (ii) π–π interactions in the case of the phenyl rings of the drug which are of two different types, namely, π–π stacking and edge-to-π. Finally, the inositol crystallizes with Z' = 2 and the resulting diastereoisomers were examined by overlay techniques. Full Article text
1 Synthesis, crystal structure and in-silico evaluation of arylsulfonamide Schiff bases for potential activity against colon cancer By journals.iucr.org Published On :: 2024-03-28 This report presents a comprehensive investigation into the synthesis and characterization of Schiff base compounds derived from benzenesulfonamide. The synthesis process, involved the reaction between N-cycloamino-2-sulfanilamide and various substituted o-salicylaldehydes, resulted in a set of compounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT–IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized compounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substantiated by molecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The exploration of frontier molecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyrrolidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 20, emerged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piperidine-1-sulfonyl)phenyl]carboximidoyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed remarkeable inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluorouracil. The exploration of molecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of molecules. Full Article text
1 Borotropic shifting of the hydrotris[3-(2-furyl)pyrazol-1-yl]borate ligand in high-coordinate lanthanide complexes By journals.iucr.org Published On :: 2024-04-16 The coordination of hydrotris[3-(2-furyl)pyrazol-1-yl]borate (Tp2-Fu, C21H16BN6O3) to lanthanide(III) ions is achieved for the first time with the complex [Ln(Tp2-Fu)2](BPh4)·xCH2Cl2 (1-Ln has Ln = Ce and x = 2; 1-Dy has Ln = Dy and x = 1). This was accomplished via both hydrous (Ln = Ce) and anhydrous methods (Ln = Dy). When isolating the dysprosium analogue, the filtrate produced a second crop of crystals which were revealed to be the 1,2-borotropic-shifted product [Dy(κ4-Tp2-Fu)(κ5-Tp2-Fu*)](BPh4) (2) {Tp2-Fu* = hydrobis[3-(2-furyl)pyrazol-1-yl][5-(2-furyl)pyrazol-1-yl]borate}. We conclude that the presence of a strong Lewis acid and a sterically crowded coordination environment are contributing factors for the 1,2-borotropic shifting of scorpionate ligands in conjunction with the size of the conical angle with the scorpionate ligand. Full Article text
1 Relationship between synthesis method–crystal structure–melting properties in cocrystals: the case of caffeine–citric acid By journals.iucr.org Published On :: 2024-05-07 The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid cocrystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to compare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical interest, compared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one molecule of caffeine and one molecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations compared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the cocrystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known cocrystals. Full Article text
1 Molecular structure and selective theophylline complexation by conformational change of diethyl N,N'-(1,3-phenylene)dicarbamate By journals.iucr.org Published On :: 2024-05-07 The receptor ability of diethyl N,N'-(1,3-phenylene)dicarbamate (1) to form host–guest complexes with theophylline (TEO) and caffeine (CAF) by mechanochemistry was evaluated. The formation of the 1–TEO complex (C12H16N2O4·C7H8N4O2) was preferred and involves the conformational change of one of the ethyl carbamate groups of 1 from the endo conformation to the exo conformation to allow the formation of intermolecular interactions. The formation of an N—H⋯O=C hydrogen bond between 1 and TEO triggers the conformational change of 1. CAF molecules are unable to form an N—H⋯O=C hydrogen bond with 1, making the conformational change and, therefore, the formation of the complex impossible. Conformational change and selective binding were monitored by IR spectroscopy, solid-state 13C nuclear magnetic resonance and single-crystal X-ray diffraction. The 1–TEO complex was characterized by IR spectroscopy, solid-state 13C nuclear magnetic resonance, powder X-ray diffraction and single-crystal X-ray diffraction. Full Article text
1 Synthesis, characterization and structural analysis of complexes from 2,2':6',2''-terpyridine derivatives with transition metals By journals.iucr.org Published On :: 2024-05-16 The synthesis and structural characterization of three families of coordination complexes synthesized from 4'-phenyl-2,2':6',2''-terpyridine (8, Ph-TPY), 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine (9, ClPh-TPY) and 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The compounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of complexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supramolecular features were determinated by single-crystal X-ray diffraction for bis(4'-phenyl-2,2':6',2''-terpyridine)nickel(II) bis(perchlorate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis[4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine]manganese(II) bis(perchlorate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis(4'-phenyl-2,2':6',2''-terpyridine)manganese(II) bis(perchlorate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the complexes present distorted octahedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π interactions. All the compounds (except for the Ni derivatives, for which FT–IR, UV–Vis and thermal analysis are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods. Full Article text
1 Supramolecular hydrogen-bonded networks formed from copper(II) carboxylate dimers By journals.iucr.org Published On :: 2024-05-22 The well-known copper carboxylate dimer, with four carboxylate ligands extending outwards towards the corners of a square, has been employed to generate a series of crystalline compounds. In particular, this work centres on the use of the 4-hydroxybenzoate anion (Hhba−) and its deprotonated phenolate form 4-oxidobenzoate (hba2−) to obtain complexes with the general formula [Cu2(Hhba)4–x(hba)xL2–y]x−, where L is an axial coligand (including solvent molecules), x = 0, 1 or 2, and y = 0 or 1. In some cases, short hydrogen bonds result in complexes which may be represented as [Cu2(Hhba)2(H0.5hba)2L2]−. The main focus of the investigation is on the formation of a variety of extended networks through hydrogen bonding and, in some crystals, coordinate bonds when bridging coligands (L) are employed. Crystals of [Cu2(Hhba)4(dioxane)2]·4(dioxane) consist of the expected Cu dimer with the Hhba− anions forming hydrogen bonds to 1,4-dioxane molecules which block network formation. In the case of crystals of composition [Et4N][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(dioxane), Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(dioxane)·4H2O and [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH (DABCO is 1,4-diazabicyclo[2.2.2]octane), square-grid hydrogen-bonded networks are generated in which the complex serves as one type of 4-connecting node, whilst a second 4-connecting node is a hydrogen-bonding motif assembled from four phenol/phenolate groups. Another two-dimensional (2D) network based upon a related square-grid structure is formed in the case of [Et4N]2[Cu2(Hhba)2(hba)2(dioxane)2][Cu2(Hhba)4(dioxane)(H2O)]·CH3OH. In [Cu2(Hhba)4(H2O)2]·2(Et4NNO3), a square-grid structure is again apparent, but, in this case, a pair of nitrate anions, along with four phenolic groups and a pair of water molecules, combine to form a second type of 4-connecting node. When 1,8-bis(dimethylamino)naphthalene (bdn, `proton sponge') is used as a base, another square-grid network is generated, i.e. [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(dioxane)·H2O, but with only the copper dimer complex serving as a 4-connecting node. Complex three-dimensional networks are formed in [Cu2(Hhba)4(O-bipy)]·H2O and [Cu2(Hhba)4(O-bipy)2]·2(dioxane), where the potentially bridging 4,4'-bipyridine N,N'-dioxide (O-bipy) ligand is employed. Rare cases of mixed carboxylate copper dimer complexes were obtained in the cases of [Cu2(Hhba)3(OAc)(dioxane)]·3.5(dioxane) and [Cu2(Hhba)2(OAc)2(DABCO)2]·10(dioxane), with each structure possessing a 2D network structure. The final compound reported is a simple hydrogen-bonded chain of composition (H0.5DABCO)(H1.5hba), formed from the reaction of H2hba and DABCO. Full Article text
1 Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
1 Crystal structure elucidation of a geminal and vicinal bis(trifluoromethanesulfonate) ester By journals.iucr.org Published On :: 2024-06-14 Geminal and vicinal bis(trifluoromethanesulfonate) esters are highly reactive alkylene synthons used as potent electrophiles in the macrocyclization of imidazoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methylene (C3H2F6O6S2) and ethylene bis(trifluoromethanesulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis(trifluoromethanesulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis(trifluoromethanesulfonate)s are air- and moisture-sensitive oils and were crystallized at 277 K to afford two-component non-merohedrally twinned crystals. The dominant interactions present in both compounds are non-classical C—H⋯O hydrogen bonds and intermolecular C—F⋯F—C interactions between trifluoromethyl groups. Molecular electrostatic potential (MEP) calculations by DFT-D3 helped to quantify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis(trifluoromethanesulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure. Full Article text
1 TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules By journals.iucr.org Published On :: 2024-06-27 3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering. Full Article text
1 The crystal structure of the ammonium salt of 2-aminomalonic acid By journals.iucr.org Published On :: 2024-06-19 The salt ammonium 2-aminomalonate (systematic name: ammonium 2-azaniumylpropanedioate), NH4+·C3H4NO4−, was synthesized in diethyl ether from the starting materials malonic acid, ammonia and bromine. The salt was recrystallized from water as colourless blocks. In the solid state, intramolecular medium–strong N—H⋯O, weak C—H⋯O and weak C—H⋯N hydrogen bonds build a three-dimensional network. Full Article text
1 Crystal structure and cryomagnetic study of a mononuclear erbium(III) oxamate inclusion complex By journals.iucr.org Published On :: 2024-07-10 The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)–dimethyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K. Full Article text
1 Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thioethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2] By journals.iucr.org Published On :: 2024-07-05 Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thioethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for compound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diisopropylamide (LDA) or lithium tetramethylpiperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth complex to be reported containing a perthiolated cyclopentadienyl ring. The molecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br interactions. It turned out that although some interactions of this type occurred, they were of minor importance for the arrangement of the molecules in the crystal. Full Article text
1 3-[(Benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione: polymorphism and twinning of a precursor to an antimycobacterial squaramide By journals.iucr.org Published On :: 2024-07-05 The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an antimycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique molecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique molecules in each polymorph. Density functional theory (DFT) calculations on the free molecule of 3 indicate that a nearly planar conformation is preferred. Full Article text
1 Na[GeF5]·2HF: the first quarternary phase in the H–Na–Ge–F system By journals.iucr.org Published On :: 2024-07-10 The structure of cis- or trans-bridged [GeF5]− anionic chains have been investigated [Mallouk et al. (1984). Inorg. Chem. 23, 3160–3166] showing the first crystal structures of μ-F-bridged pentafluorogermanates. Herein, we report the second crystal structure of trans-pentafluorogermanate anions present in the crystal structure of sodium trans-pentafluorogermanate(IV) bis(hydrogen fluoride), Na[GeF5]·2HF. The crystal structure [orthorhombic Pca21, a = 12.3786 (3), b = 7.2189 (2), c = 11.4969 (3) Å and Z = 8] is built up from infinite chains of trans-linked [GeF6]2− octahedra, extending along the b axis and spanning a network of pentagonal bipyramidal distorted Na-centred polyhedra. These [NaF7] polyhedra are linked in a trans-edge fashion via hydrogen fluoride molecules, in analogy to already known sodium hydrogen fluorides and potassium hydrogen fluorides. Full Article text
1 A brief review on computer simulations of chalcopyrite surfaces: structure and reactivity By journals.iucr.org Published On :: 2024-08-08 Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydrometallurgical route, considered more environmentally friendly for processing low-grade chalcopyrite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chalcopyrite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chalcopyrite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of disulfide groups (S22−) on pristine sulfur-terminated surfaces, accompanied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) molecules. Finally, the potential of computer modelling for investigating collector–chalcopyrite surface interactions in the context of selective froth flotation is discussed, highlighting the need for further research in this area. Full Article text
1 Concerning the structures of Lewis base adducts of titanium(IV) hexafluoroisopropoxide By journals.iucr.org Published On :: 2024-08-13 The reaction of titanium(IV) chloride with sodium hexafluoroisopropoxide, carried out in hexafluoroisopropanol, produces titanium(IV) hexafluoroisopropoxide, which is a liquid at room temperature. Recrystallization from coordinating solvents, such as acetonitrile or tetrahydrofuran, results in the formation of bis-solvate complexes. These compounds are of interest as possible Ziegler–Natta polymerization catalysts. The acetonitrile complex had been structurally characterized previously and adopts a distorted octahedral structure in which the nitrile ligands adopt a cis configuration, with nitrogen lone pairs coordinated to the metal. The low-melting tetrahydrofuran complex has not provided crystals suitable for single-crystal X-ray analysis. However, the structure of chloridotris(hexafluoroisopropoxido-κO)bis(tetrahydrofuran-κO)titanium(IV), [Ti(C3HF6O)3Cl(C4H8O)2], has been obtained and adopts a distorted octahedral coordination geometry, with a facial arrangement of the alkoxide ligands and adjacent tetrahydrofuran ligands, coordinated by way of metal–oxygen polar coordinate interactions. Full Article text
1 The influence of the axial group on the crystal structures of boron subphthalocyanines By journals.iucr.org Published On :: 2024-09-04 The crystal structures of 16 boron subphthalocyanines (BsubPcs) with structurally diverse axial groups were analyzed and compared to elucidate the impact of the axial group on the intermolecular π–π interactions, axial-group interactions, axial bond length and BsubPc bowl depth. π–π interactions between the isoindole units of adjacent BsubPc molecules most often involve concave–concave packing, whereas axial-group interactions with adjacent BsubPc molecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hydrogen-bonding interactions, while axial groups containing arene site(s) can participate in π–π interactions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π–π interactions and/or axial-group interactions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics. Full Article text
1 Occupational modulation in the (3+1)-dimensional incommensurate structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate By journals.iucr.org Published On :: 2024-08-08 The incommensurately modulated structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate (C11H15NO4·2H2O or I·2H2O) is described in the (3+1)-dimensional superspace group P212121(0β0)000 (β = 0.357). The loss of the three-dimensional periodicity is ascribed to the occupational modulation of one positionally disordered solvent water molecule, where the two positions are related by a small translation [ca 0.666 (9) Å] and ∼168 (5)° rotation about one of its O—H bonds, with an average 0.624 (3):0.376 (3) occupancy ratio. The occupational modulation of this molecule arises due to the competition between the different hydrogen-bonding motifs associated with each position. The structure can be very well refined in the average approximation (all satellite reflections disregarded) in the space group P212121, with the water molecule refined as disordered over two positions in a 0.625 (16):0.375 (16) ratio. The refinement in the commensurate threefold supercell approximation in the space group P1121 is also of high quality, with the six corresponding water molecules exhibiting three different occupancy ratios averaging 0.635:0.365. Full Article text
1 Formation of a diiron–(μ-η1:η1-CN) complex from acetonitrile solution By journals.iucr.org Published On :: 2024-08-08 The activation of C—C bonds by transition-metal complexes is of continuing interest and acetonitrile (MeCN) has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions. A diiron end-on μ-η1:η1-CN-bridged complex was obtained from a crystallization experiment of an open-chain iron–NHC complex, namely, μ-cyanido-κ2C:N-bis{[(acetonitrile-κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II)} tris(hexafluorophosphate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C—C bond cleavage or through carbon–hydrogen oxidation. Full Article text
1 2,4-Diarylpyrroles: synthesis, characterization and crystallographic insights By journals.iucr.org Published On :: 2024-08-08 Three 2,4-diarylpyrroles were synthesized starting from 4-nitrobutanones and the crystal structures of two derivatives were analysed. These are 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without substituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group Poverline{1} with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Interestingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with interstitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins. Full Article text
1 Crystal structures of two unexpected products of vicinal diamines left to crystallize in acetone By journals.iucr.org Published On :: 2024-08-23 Herein we report the crystal structures of two benzodiazepines obtained by reacting N,N'-(4,5-diamino-1,2-phenylene)bis(4-methylbenzenesulfonamide) (1) or 4,5-(4-methylbenzenesulfonamido)benzene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepine, C26H30N4O4S2 (2), and 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal diamines present in the molecular structures, forming a 5H-1,5-benzodiazepine ring. In the crystal structure of 2, the seven-membered ring of benzodiazepine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline compounds, the tosylamide N atoms are not in resonance with the arene ring, mainly due to hydrogen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supramolecular level, the crystal structure is maintained by a combination of hydrogen bonds and hydrophobic interactions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hydrogen bonds can be observed. In contrast, in 3, the chloride counter-ion and water molecule result in most of the hydrogen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine interacts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed. Full Article text
1 Coordination variety of phenyltetrazolato and dimethylamido ligands in dimeric Ti, Zr, and Ta complexes By journals.iucr.org Published On :: 2024-08-23 Three structurally diverse 5-phenyltetrazolato (Tz) Ti, Zr, and Ta complexes, namely, (C2H8N)[Ti2(C7H5N4)5(C2H6N)4]·1.45C6H6 or (Me2NH2)[Ti2(NMe2)4(2,3-μ-Tz)3(2-η1-Tz)2]·1.45C6H6, (1·1.45C6H6), [Zr2(C7H5N4)6(C2H6N)2(C2H7N)2]·1.12C6H6·0.382CH2Cl2 or [Zr2(Me2NH)2(NMe2)2(2,3-μ-Tz)3(2-η1-Tz)2(1,2-η2-Tz)]·1.12C6H6·0.38CH2Cl2 (2·1.12C6H6·0.38CH2Cl2), and (C2H8N)2[Ta2(C7H5N4)8(C2H6N)2O]·0.25C7H8 or (Me2NH2)2[Ta2(NMe2)2(2,3-μ-Tz)2(2-η1-Tz)6O]·0.25C7H8 (3·0.25C7H8), where TzH is 5-phenyl-1H-tetrazole, have been synthesized and structurally characterized. All three complexes are dinuclear; the Ti center in 1 is six-coordinate, whereas the Zr and Ta atoms in 2 and 3 are seven-coordinate. The coordination environments of the Ti centers in 1 are similar, and so are the ligations of the Ta centers in 3. In contrast, the two Zr centers in 2 bear a different number of ligands, one of which is a bidentate η2-5-phenyltetrazolato ligand that has not been observed previously for d-block elements. The dimethylamido ligand, present in the starting materials, remained unchanged, or was converted to dimethylamine and dimethylammonium during the synthesis. Dimethylamine coordinates as a neutral ligand, whereas dimethylammonium is retained as a hydrogen-bonded entity bridging Tz ligands. Full Article text
1 Methods in molecular photocrystallography By journals.iucr.org Published On :: 2024-09-04 Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light–matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully. Full Article text
1 Coordination structure and intermolecular interactions in copper(II) acetate complexes with 1,10-phenanthroline and 2,2'-bipyridine By journals.iucr.org Published On :: 2024-08-23 The crystal structures of two coordination compounds, (acetato-κO)(2,2'-bipyridine-κ2N,N')(1,10-phenanthroline-κ2N,N')copper(II) acetate hexahydrate, [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O or [Cu(bipy)(phen)Ac]Ac·6H2O, and (acetato-κO)bis(2,2'-bipyridine-κ2N,N')copper(II) acetate–acetic acid–water (1/1/3), [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O or [Cu(bipy)2Ac]Ac·HAc·3H2O, are reported and compared with the previously published structure of [Cu(phen)2Ac]Ac·7H2O (phen is 1,10-phenanthroline, bipy for 2,2'-bipyridine, ac is acetate and Hac is acetic acid). The geometry around the metal centre is pentacoordinated, but highly distorted in all three cases. The coordination number and the geometric distortion are both discussed in detail, and all complexes belong to the space group Poverline{1}. The analysis of the geometric parameters and the Hirshfeld surface properties dnorm and curvedness provide information about the metal–ligand interactions in these complexes and allow comparison with similar systems. Full Article text
1 Multivalent hydrogen-bonded architectures directed by self-complementarity between [Cu(2,2'-biimidazole)] and malonate building blocks By journals.iucr.org Published On :: 2024-08-19 The synthesis and structural characterization of four novel supramolecular hydrogen-bonded arrangements based on self-assembly from molecular `[Cu(2,2'-biimidazole)]' modules and malonate anions are presented, namely, tetrakis(2,2'-biimidazole)di-μ-chlorido-dimalonatotricopper(II) pentahydrate, [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O or [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, aqua(2,2'-biimidazole)malonatocopper(II) dihydrate, [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O or [Cu(H2biim)(mal)(H2O)]·2H2O, bis[aquabis(2,2'-biimidazole)copper(II)] dimalonatodiperchloratocopper(II) 2.2-hydrate, [Cu(C6H6N4)2(H2O)]2[Cu(C3H2O4)(ClO4)2]·2.2H2O or [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, and bis(2,2'-biimidazole)copper(II) bis[bis(2,2'-biimidazole)(2-carboxyacetato)malonatocopper(II)] tridecahydrate, [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O or [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O. These assemblies are characterized by self-complementary donor–acceptor molecular interactions, demonstrating a recurrent and distinctive pattern of hydrogen-bonding preferences among the carboxylate, carboxylic acid and N—H groups of the coordinated 2,2'-biimidazole and malonate ligands. Additionally, coordination of the carboxylate group with the metallic centre helps sustain remarkable supramolecular assemblies, such as layers, helices, double helix columns or 3D channeled architectures, including mixed-metal complexes, into a single structure. Full Article text
1 3D electron diffraction studies of synthetic rhabdophane (DyPO4·nH2O) By journals.iucr.org Published On :: 2024-09-04 In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2–3 nm correlation along the c axis and ∼5 nm along the a/b axis. Full Article text
1 Revisiting a natural wine salt: calcium (2R,3R)-tartrate tetrahydrate By journals.iucr.org Published On :: 2024-09-04 The crystal structure of the salt calcium (2R,3R)-tartrate tetrahydrate {systematic name: poly[[diaqua[μ4-(2R,3R)-2,3-dihydroxybutanedioato]calcium(II)] dihydrate]}, {[Ca(C4H8O8)(H2O)2]·2H2O}n, is reported. The absolute configuration of the crystal was established unambiguously using anomalous dispersion effects in the diffraction patterns. High-quality data also allowed the location and free refinement of all the H atoms, and therefore to a careful analysis of the hydrogen-bond interactions. Full Article text
1 Molecular and crystal structures of six poly(arylsulfinyl)- and poly(arylsulfanyl)ferrocenes By journals.iucr.org Published On :: 2024-10-04 Starting from (p-tolylsulfinyl)ferrocene (1), a mixture of the complete series [CpFe{C5H5–n(SOTol-p)n}] (n = 2–4) (2–4) in all regioisomers was obtained. After chromatographic separation, crystals of 1,2-bis[(4-methylbenzene)sulfinyl]ferrocene, 2a, and 1,3-bis[(4-methylbenzene)sulfinyl]ferrocene, 2b, both [Fe(C5H5)(C19H17O2S2)], as well as of 1,2,3-tris[(4-methylbenzene)sulfinyl]ferrocene, [Fe(C5H5)(C26H23O3S3)], 3a, and 1,2,3,4-tetrakis[(4-methylbenzene)sulfinyl]ferrocene ethyl acetate 0.75-solvate, [Fe(C5H5)(C33H29O4S4)]·0.75C4H8O2, 4, could be isolated. Their molecular and crystal structures are compared with each other and also with the so far unreported structures of related 1,2-bis(phenylsulfanyl)ferrocene, [Fe(C5H5)(C17H13S2)], 5, and 1,2,3,4-tetrakis(phenylsulfanyl)ferrocene, [Fe(C5H5)(C29H21S4)], 6. In all the sulfinyl structures, the O atoms of the S=O groups are in equatorial positions, except for that in tetrasubstituted 4. All the arene rings of these compounds (except for one ring in 4) are in axial positions directed away from the Fe atom, mostly in a near perpendicular orientation with respect to the plane of the cyclopentadienyl ring. The main intermolecular interactions in the crystals are C—H⋯H—C, C—H⋯π and C—H⋯O, while C—H⋯S interactions are much less important, except for tetrasulfanyl compound 6. π–π interactions (intramolecular) are only important in compound 3a. Hirshfeld analysis shows that dispersion terms are dominant for the interaction energies of all six compounds. In general, the calculated total interaction energies increase with increasing number of substituents and are higher for the sulfinyl than for the sulfanyl groups. Full Article text
1 A structural role for tryptophan in proteins, and the ubiquitous Trp Cδ1—H⋯O=C (backbone) hydrogen bond By journals.iucr.org Published On :: 2024-06-28 Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the Nɛ—H group, which is a potent donor in canonical hydrogen bonds, and a polarized Cδ1—H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C—H⋯O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C—H group. Consequently, Cα—H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the Cɛ1—H and Cδ2—H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel β-sheets. However, the nature and the functional role of interactions involving the Cδ1—H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the Cδ1—H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5–3.0 kcal mol−1, depending on the specific stereochemistry. Full Article text
1 The curious case of proton migration under pressure in the malonic acid and 4,4'-bipyridine cocrystal By journals.iucr.org Published On :: 2024-01-13 In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA−) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2−. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation. Full Article text
1 Evolution of structure and spectroscopic properties of a new 1,3-diacetylpyrene polymorph with temperature and pressure By journals.iucr.org Published On :: 2024-05-10 A new polymorph of 1,3-diacetylpyrene has been obtained from its melt and thoroughly characterized using single-crystal X-ray diffraction, steady-state UV–Vis spectroscopy and periodic density functional theory calculations. Experimental studies covered the temperature range from 90 to 390 K and the pressure range from atmospheric to 4.08 GPa. Optimal sample placement in a diamond anvil cell according to our previously presented methodology ensured over 80% data coverage up to 0.8 Å for a monoclinic sample. Unrestrained Hirshfeld atom refinement of the high-pressure crystal structures was successful and anharmonic behavior of carbonyl oxygen atoms was observed. Unlike the previously characterized polymorph, the structure of 2°AP-β is based on infinite π-stacks of antiparallel 2°AP molecules. 2°AP-β displays piezochromism and piezofluorochromism which are directly related to the variation in interplanar distances within the π-stacking. The importance of weak intermolecular interactions is reflected in the substantial negative thermal expansion coefficient of −55.8 (57) MK−1 in the direction of C—H⋯O interactions. Full Article text
1 Photoinduced bidirectional mesophase transition in vesicles containing azobenzene amphiphiles By journals.iucr.org Published On :: 2024-05-28 The functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospholipids and azobenzene amphiphiles. We observed reversible and reproducible transitions between the lamellar and Pn3m cubic phase after illuminating the sample for 5 min with light of 365 and 455 nm wavelengths, respectively, to switch between the cis and trans states of the azobenzene N=N double bond. These light-controlled mesophase transitions were found for mixed complexes with up to 20% content of the photosensitive molecule and at temperatures below the gel-to-liquid crystalline phase transition temperature of 33°C. Our results demonstrate the potential to design bespoke model systems to study the response of membrane lipids and proteins upon changes in mesophase without altering the environment and thus provide a possible basis for drug delivery systems. Full Article text
1 Many locks to one key: N-acetylneuraminic acid binding to proteins By journals.iucr.org Published On :: 2024-07-04 Sialic acids play crucial roles in cell surface glycans of both eukaryotic and prokaryotic organisms, mediating various biological processes, including cell–cell interactions, development, immune response, oncogenesis and host–pathogen interactions. This review focuses on the β-anomeric form of N-acetylneuraminic acid (Neu5Ac), particularly its binding affinity towards various proteins, as elucidated by solved protein structures. Specifically, we delve into the binding mechanisms of Neu5Ac to proteins involved in sequestering and transporting Neu5Ac in Gram-negative bacteria, with implications for drug design targeting these proteins as antimicrobial agents. Unlike the initial assumptions, structural analyses revealed significant variability in the Neu5Ac binding pockets among proteins, indicating diverse evolutionary origins and binding modes. By comparing these findings with existing structures from other systems, we can effectively highlight the intricate relationship between protein structure and Neu5Ac recognition, emphasizing the need for tailored drug design strategies to inhibit Neu5Ac-binding proteins across bacterial species. Full Article text
1 Structure of Aquifex aeolicus lumazine synthase by cryo-electron microscopy to 1.42 Å resolution By journals.iucr.org Published On :: 2024-07-04 Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field. Full Article text
1 Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography By journals.iucr.org Published On :: 2024-07-22 Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intracellular signals responsible for various cell behaviors (e.g. phototropism and chloroplast relocation). This ability relies on the light-induced formation of a covalent thioether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thioether adduct and the C-terminal region implicated in the signal transduction process. Full Article text
1 Binding structures of SERF1a with NT17-polyQ peptides of huntingtin exon 1 revealed by SEC-SWAXS, NMR and molecular simulation By journals.iucr.org Published On :: 2024-08-08 The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington's disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using Rosetta, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a's facilitation of Httext1 fibrillization. Full Article text
1 Tuning structural modulation and magnetic properties in metal–organic coordination polymers [CH3NH3]CoxNi1−x(HCOO)3 By journals.iucr.org Published On :: 2024-09-24 Three solid solutions of [CH3NH3]CoxNi1−x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896–17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105–115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios. Full Article text
1 Order–disorder (OD) polytypism of K3FeTe2O8(OH)2(H2O)1+x By journals.iucr.org Published On :: 2023-11-07 K3FeTe2O8(OH)2(H2O)2 was synthesized under hydrothermal conditions from Te(OH)6, FeSO4·7H2O and 85 wt% KOH in a 1:2:6 molar ratio. The crystal structure is built of a triperiodic network. One disordered water molecule per formula unit is located in a channel and can be partially removed by heating. Systematic one-dimensional diffuse scattering indicates a polytypic character, which is best described by application of the order–disorder theory. The major polytype is monoclinic with pseudo-orthorhombic metrics. It is interrupted by fragments of an orthorhombic polytype. The diffraction intensities are analyzed using structure factor calculations. Full Article text
1 High-throughput nanoscale crystallization of dihydropyridine active pharmaceutical ingredients By journals.iucr.org Published On :: 2023-12-21 Single-crystal X-ray diffraction analysis of small molecule active pharmaceutical ingredients is a key technique in the confirmation of molecular connectivity, including absolute stereochemistry, as well as the solid-state form. However, accessing single crystals suitable for X-ray diffraction analysis of an active pharmaceutical ingredient can be experimentally laborious, especially considering the potential for multiple solid-state forms (solvates, hydrates and polymorphs). In recent years, methods for the exploration of experimental crystallization space of small molecules have undergone a `step-change', resulting in new high-throughput techniques becoming available. Here, the application of high-throughput encapsulated nanodroplet crystallization to a series of six dihydropyridines, calcium channel blockers used in the treatment of hypertension related diseases, is described. This approach allowed 288 individual crystallization experiments to be performed in parallel on each molecule, resulting in rapid access to crystals and subsequent crystal structures for all six dihydropyridines, as well as revealing a new solvate polymorph of nifedipine (1,4-dioxane solvate) and the first known solvate of nimodipine (DMSO solvate). This work further demonstrates the power of modern high-throughput crystallization methods in the exploration of the solid-state landscape of active pharmaceutical ingredients to facilitate crystal form discovery and structural analysis by single-crystal X-ray diffraction. Full Article text
1 Attractive and repulsive forces in a crystal of [Rb(18-crown-6)][SbCl6] under high pressure By journals.iucr.org Published On :: 2024-03-20 The compression behavior of [Rb(18-crown-6)][SbCl6] crystal under pressure up to 2.16 (3) GPa was investigated in a diamond anvil cell (DAC) using a mixture of pentane–isopentane (1:4) as the pressure-transmitting fluid. The compound crystallizes in trigonal space group R3 and no phase transition was observed in the indicated pressure range. The low value of pressure bulk modulus [9.1 (5) GPa] found in this crystal is a characteristic of soft materials with predominant dispersive and electrostatic interaction forces. The nonlinear relationship between unit-cell parameters under high pressure is attributed to the influence of reduced intermolecular H⋯Cl contacts under pressure over 0.73 GPa. It also explains the high compression efficiency of [Rb(18-crown-6)][SbCl6] crystals at relatively low pressures, resulting in a significant shift of the Rb atom to the center of the crown ether cavity. At pressures above 0.9 GPa, steric repulsion forces begin to play a remarkable role, since an increasing number of interatomic H⋯Cl and H⋯H contacts become shorter than the sum of their van der Waals (vdW) radii. Below 0.9 GPa, both unit-cell parameter dependences (P–a and P–c) exhibit hysteresis upon pressure release, demonstrating their influence on the disordered model of Rb atoms. The void reduction under pressure also demonstrates two linear sections with the inflection point at 0.9 GPa. Compression of the crystal is accompanied by a significant decrease in the volume of the voids, leading to the rapid approach of Rb atoms to the center of the crown ether cavity. For the Rb atom to penetrate into the center of the crown ether cavity in [Rb(18-crown-6)][SbCl6], it is necessary to apply a pressure of about 2.5 GPa to disrupt the balance of atomic forces in the crystal. This sample serves as a compression model demonstrating the influence of both attractive and repulsive forces on the change in unit-cell parameters under pressure. Full Article text
1 Supramolecular architectures in multicomponent crystals of imidazole-based drugs and trithiocyanuric acid By journals.iucr.org Published On :: 2024-07-01 The structures of three multicomponent crystals formed with imidazole-based drugs, namely metronidazole, ketoconazole and miconazole, in conjunction with trithiocyanuric acid are characterized. Each of the obtained adducts represents a different category of crystalline molecular forms: a cocrystal, a salt and a cocrystal of salt. The structural analysis revealed that in all cases, the N—H⋯N hydrogen bond is responsible for the formation of acid–base pairs, regardless of whether proton transfer occurs or not, and these molecular pairs are combined to form unique supramolecular motifs by centrosymmetric N—H⋯S interactions between acid molecules. The complex intermolecular forces acting in characteristic patterns are discussed from the geometric and energetic perspectives, involving Hirshfeld surface analysis, pairwise energy estimation, and natural bond orbital calculations. Full Article text
1 Solvatomorphism in a series of copper(II) complexes with the 5-phenylimidazole/perchlorate system as ligands By journals.iucr.org Published On :: 2024-07-30 In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenylimidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenylimidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(dimethylformamide) (7), 2(acetone) (8), 2(tetrahydrofurane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(diethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole–H⋯Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the diethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2–6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7–11), linking the complexes and contributing to the stability of the crystalline compounds. Full Article text
1 Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet By journals.iucr.org Published On :: 2024-08-30 Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12. Full Article text
1 K0.72Na1.71Ca5.79Si6O19 – the first oligosilicate based on [Si6O19]-hexamers and its stability compared to cyclosilicates By journals.iucr.org Published On :: 2024-08-30 Synthesis experiments were conducted in the quaternary system K2O–Na2O–CaO–SiO2, resulting in the formation of a previously unknown compound with the composition K0.72Na1.71Ca5.79Si6O19. Single crystals of sufficient size and quality were recovered from a starting mixture with a K2O:Na2O:CaO:SiO2 molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min−1 to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4122 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å3, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si6O19] and point group symmetry 2 (C2). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclosilicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclosilicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units. Full Article text