bi

Di-μ-acetato-bis­{[3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazol-2-ylidene]silver(I)}

The title compound, [Ag2(C2H3O2)2(C19H20N2)2] (2), was readily synthesized by treatment of 3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazolium chloride with silver acetate. The solution structure of the complex was analyzed by NMR spectroscopy, while the solid-state structure was confirmed by single-crystal X-ray diffraction studies. Compound 2 crystallizes in the triclinic space group Poverline{1}, with a silver-to-carbene bond length (Ag—CNHC) of 2.084 (3) Å. The mol­ecule resides on an inversion center, so that only half of the mol­ecule is crystallographically unique. The planes defined by the two imidazole rings are parallel to each other, but not coplanar [inter­planar distance is 0.662 (19) Å]. The dihedral angles between the imidazole ring and the benzyl and mesityl rings are 77.87 (12) and 72.86 (11)°, respectively. The crystal structure features π–π stacking inter­actions between the benzylic groups of inversion-related (−x + 1, −y + 1, −z + 1) mol­ecules and C—H⋯π inter­actions.




bi

trans-Bis(dimethyl sulfoxide-κO)bis­(3-nitro­benzo­hydroxamato-κ2O,O')zinc(II)

Single crystals of the title complex, [Zn(C7H5N2O4)2(C2H6OS)2] or [Zn(NBZH)2(DMSO)2], were isolated from a dimethyl sulfoxide (DMSO) solution containing [Zn(NBZH)2]·2H2O (NBZH = 3-nitro­benzo­hydroxamate anion). The asymmetric unit comprises of one O,O'-chelating NBZH anion, one O-bound DMSO ligand and one zinc(II) cation localized on an inversion centre. The three-dimensional crystal packing includes N—H⋯O and C—H⋯O hydrogen bonding, as well as O⋯H and H⋯H contacts identified by Hirshfeld isosurface analysis.




bi

(2,2-Bi­pyridine-κ2N,N')chlorido­[η6-1-methyl-4-(propan-2-yl)benzene]­ruthenium(II) tetra­phenyl­borate

The title complex, [RuCl(C10H14)(C10H8N2)](C24H20B), has monoclinic (P21) symmetry at 100 K. It was prepared by the reaction of the di­chlor­ido[1-methyl-4-(propan-2-yl)benzene]­ruthenium(II) dimer with 2,2'-bi­pyridine, followed by the addition of ammonium tetra­phenyl­borate. The 1-methyl-4-(propan-2-yl)benzene group, the 2,2'-bi­pyridine unit and a chloride ion coordinate the ruthenium(II) atom, with the 1-methyl-4-(propan-2-yl)benzene ring and bi­pyridine moieties trans to each other. In the crystal, the complex cations are linked by C—H⋯Cl hydrogen bonds, forming chains parallel to [010]. These chains are linked by a number of C—H⋯π inter­actions, involving the phenyl rings of the tetra­phenyl­borate anion and a pyridine ring of the bpy ligand, resulting in the formation of layers parallel to (10overline{1}).




bi

(1Z,2Z)-1,2-Bis{2-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]hydrazinyl­idene}-1,2-bis­(4-meth­oxy­phen­yl)ethane including an unknown solvate

The complete mol­ecule of the title compound, C32H22F12N4O2, is generated by a crystallographic twofold axis aligned parallel to [010]. The F atoms of one of the CF3 groups are disordered over three orientations in a 0.6: 0.2: 0.2 ratio. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. In addition, weak C—H⋯O and C—H⋯F bonds are observed. The contribution of the disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] of PLATON. The solvent contribution is not included in the reported mol­ecular weight and density.




bi

8,13-Diisopropyl-10,11-dimethyl-bis([1,3]dioxolo[4',5':6,7]naphtho)­[1,2-d;2,1-f][1,3]dioxepine

The title compound, C31H30O6, was obtained by protecting the six hy­droxy groups of apogossypol by acetalization with di­chloro­methane. The mol­ecule has a bridging dioxepine unit which hinders the rotation around the 2,2'-inter­naphthyl bond. The dihedral angle between the naphthyl units is 55.73 (3)°. In the crystal, very weak C—H⋯O inter­actions may help to consolidate the packing.




bi

Bis(μ2-4-nitro­phenolato)bis­(4-nitro­phenolato)di-μ3-oxido-octaphenyltetra­tin chloro­form sesquisolvate [+ solvate]: a tetra­nuclear stannoxane

The title tetra­nuclear stannoxane, [Sn4(C6H5)8(C6H4NO3)4O2]·1.5CHCl3·solvent, crystallized with two independent complex mol­ecules, A and B, in the asymmetric unit together with 1.5 mol­ecules of chloro­form. There is also a region of disordered electron density, which was corrected for using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18]. The oxo-tin core of each complex is in a planar `ladder' arrangement and each Sn atom is fivefold SnO3C2 coordinated, with one tin centre having an almost perfect square-pyramidal coordination geometry, while the other three Sn centres have distorted shapes. In the crystal, the complex mol­ecules are arranged in layers, composed of A or B complexes, lying parallel to the bc plane. The complex mol­ecules are linked by a number of C—H⋯O hydrogen bonds within the layers and between the layers, forming a supra­molecular three-dimensional structure.




bi

Bis(μ2-benzoato-κ2O,O')bis­(benzoato-κO)bis(ethanol-κO)bis­(μ3-hydroxido)hexa­kis­(μ-pyrazol­ato-κ2N,N')hexa­copper(II) ethanol disolvate

Trinuclear copper–pyrazolate entities are present in various Cu-based enzymes and nanojar supra­molecular arrangements. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) assisted by microwave radiation afforded a neutral centrosymmetric hexa­nuclear copper(II) complex, [Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H5OH)2]·2C2H5OH. Half a mol­ecule is present in the asymmetric unit that comprises a [Cu3(μ3-OH)(pz)3]2+ core with the copper(II) atoms arranged in an irregular triangle. The three copper(II) atoms are bridged by an O atom of the central hydroxyl group and by three bridging pyrazolate ligands on each of the sides. The carboxyl­ate groups show a chelating mode to one and a bridging syn,syn mode to the other two CuII atoms. The coordination environment of one CuII atom is square-planar while it is distorted square-pyramidal for the other two. Two ethanol mol­ecules are present in the asymmetric unit, one binding to one of the CuII atoms, one as a solvent mol­ecule. In the crystal, stabilization arises from inter­molecular O—H⋯O hydrogen-bonding inter­actions.




bi

3,4',5,5'-Tetra­meth­oxy-2'-methyl­biphen­yl-4-ol

The asymmetric unit of the title compound, C17H20O5, contains two independent mol­ecules, A and B, with similar geometries [dihedral angles between the phenyl rings = 56.19 (8) and 54.98 (7)°, respectively]. Intra­molecular O—H⋯O hydrogen bonds occur in both mol­ecules. In the crystal, the A mol­ecules form [1overline{1}0] chains linked by O—H⋯O hydrogen bonds from the hydroxyl group to one of the meth­oxy O atoms. The B mol­ecules form O—H⋯O hydrogen bonds to the hydroxyl O atoms of the A mol­ecules and thus act as fixed spacers between the chains of mol­ecule A. Some weak C—H⋯O contacts are also present.




bi

Bis(quinolinium) tetra­bromido­manganate(II)

The title compound, (C9H8N)2[MnBr4], consists of two quinolinium cations and a [MnBr4]2− anion. The manganese(II) atom, which lies on a twofold rotation axis, is coordinated by four bromide ligands and exhibits a tetra­hedral coordination geometry. The [MnBr4]2− anion and the quinolinium cations are linked by N—H⋯Br hydrogen bonds. π–π stacking inter­actions are observed between the quinolinium cations.




bi

1,1',3,3'-Tetra­mesitylquinobis(imidazole)-2,2'-di­thione

The solid-state structural analysis of the title compound [systematic name: 5,11-disulfanylidene-4,6,10,12-tetrakis(2,4,6-trimethylphenyl)-4,6,10,12-tetraazatricyclo[7.3.0.03,7]dodeca-1(9),3(7)-diene-2,8-dione], C44H44N4O2S2 [+solvent], reveals that the mol­ecule crystallizes in a highly symmetric cubic space group so that one quarter of the mol­ecule is crystallographically unique, the mol­ecule lying on special positions (two mirror planes, two twofold axes and a center of inversion). The crystal structure exhibits large cavities of 193 Å3 accounting for 7.3% of the total unit-cell volume. These cavities contain residual density peaks but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent mol­ecules to the scattering was removed using a solvent mask and is not included in the reported mol­ecular weight. No classical hydrogen bonds are observed between the main mol­ecules.




bi

3,3'-[(1E,1'E)-Hydrazine-1,2-diylidenebis(ethan-1-yl-1-yl­idene)]bis­(4-hy­droxy-6-methyl-2H-pyran-2-one)

The title compound, C16H16N2O6, lies about an inversion centre at the mid-point of the N—N bond. The mol­ecule features two intra­molecular O—H⋯N and two C—H⋯O hydrogen bonds, each of which forms an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into infinite zigzag chains propagating along the c-axis direction. π–π stacking inter­actions between the pyrone rings [centroid–centroid distances = 3.975 (2) Å] stack the mol­ecules along b.




bi

5,13-Bis(4-meth­oxy­phen­yl)di­naphtho­[2,3-b:2',3'-d]thio­phene S,S-dioxide di­chloro­methane hemisolvate

The title com­pound, C34H24O4S·0.5CH2Cl2, crystallizes with two independent mol­ecules and one di­chloro­methane solvent mol­ecule in the asymmetric unit. The crystal packing is consolidated by C—H⋯O hydrogen bonds.




bi

Bis[2-(di­methyl­amino-κN)-α,α-di­phenyl­benzene­methano­lato-κO](tetra­hydro­furan-κO)magnesium(II)

The title magnesium complex, [Mg(C21H20NO2)2(C4H8O)]n, exhibits two N,O-bidentate 2-(di­methyl­amino)-α,α-di­phenyl­benzene­methano­late ligands, form­ing two six-membered chelate rings. The distorted square-pyramidal coordination sphere of the MgII atom is completed by the O atom of a tetra­hydro­furan ligand, with its O atom in the apical position. The O and N atoms are in a mutual trans arrangement. Except for two C—H⋯π inter­actions, no significant inter­molecular inter­actions are observed in the crystal.




bi

1,4-Bis(2-nitro­benz­yl)piperazine

The title compound, C18H20N4O4, was synthesized via the base-assisted reaction of piperazine and 2-nitro­benyl bromide in toluene: the complete mol­ecule is generated by a crystallographic inversion centre in the solid state.




bi

Bis(4-hy­droxy-N,N-di-n-propyl­tryptammonium) fumarate tetra­hydrate

The title compound (systematic name: bis­{[2-(4-hy­droxy-1H-indol-3-yl)eth­yl]bis­(propan-2-yl)aza­nium} but-2-enedioate tetra­hydrate), 2C16H25N2O+·C4H2O42−·4H2O, has a singly protonated DPT cation, one half of a fumarate dianion (completed by a crystallographic centre of symmetry) and two water mol­ecules of crystallization in the asymmetric unit. A series of N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network in the solid state.




bi

Sodium [N,N'-ethyl­enebis(d-penicillaminato)]indate(III) tetra­hydrate

The asymmetric unit of the title compound {systematic name: sodium [2-({2-[(1-carboxyl­ato-2-methyl-2-sulfanidylprop­yl)amino]­eth­yl}amino)-3-methyl-3-sulf­an­idyl­butano­ato-κ4S,N,N',S']indate(III) tetra­hydrate}, Na[In(C12H20N2O4S2)]·4H2O, contains four indate(III) complex anions {[In(d-ebp)]−; d-H4ebp = N,N'-ethyelenebis(d-penicillamine)], four sodium(I) cations and sixteen water mol­ecules. The indate(III) anions and sodium cations are alternately connected through coordination bonds between Na+ ions and the carboxyl­ate groups of the complex anions, forming an infinite sixfold right-handed helix along the c-axis direction. In the crystal, the helices are linked by O—H⋯O hydrogen bonds between water mol­ecules bound to Na+ ions and carboxyl­ate groups. The crystal studied was twinned via a twofold axis about [001].




bi

[Oxybis(ethane-1,2-di­yl)]bis­(di­methyl­ammonium) octa­molybdate dihydrate

The title compound, (C8H22N2O)2[Mo8O26]·H2O, (cis-H2L)2[β-Mo8O26]·H2O, where L = (bis­[2-N,N-di­methyl­amino)­eth­yl] ether), was synthesized from bis­[2-(di­methyl­amino)­eth­yl] ether and MoO3 under solvothermal conditions and characterized by multinuclear NMR and single-crystal X-ray diffraction techniques. The structure displays two [oxybis(ethane-1,2-di­yl)]bis­(di­methyl­ammonium), or [cis-H2L]2+, cations, a central [β-Mo8O26]4− anionic cluster consisting of eight distorted MoO6 octa­hedra, and two water mol­ecules in their deuterated form. The central anion lies across an inversion center. The [cis-H2L]2+ cations are hydrogen bonded to the central [β-Mo8O26]4− cluster via bridging water mol­ecules. In the crystal, O—H⋯O hydrogen bonds link the components into chains along [010]. Weak C—H⋯O hydrogen bonds link these chains into a three-dimensional network.




bi

μ2-Methanol-κ2O:O-bis­[(1,10-phenanthroline-κ2N,N')bis­(2,3,4,5-tetra­fluoro­benzoato)-κO;κ2O,O'-copper(II)]

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the mol­ecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octa­hedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetra­fluoro­benzoate ligands and one O atom from a methanol mol­ecule. The distortion from an octa­hedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluoro­benzoate ligand [54.50 (11)°]. The methanol mol­ecule bridges two symmetry-related CuII atoms to form the complete mol­ecule. In the bidentate fluoro­benzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak inter­molecular inter­actions are observed.




bi

Rubidium tetra­fluorido­bromate(III): redetermination of the crystal structure from single-crystal X-ray diffraction data

Single crystals of rubidium tetra­fluorido­bromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-anti­prismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].




bi

(2,2'-Bi­pyridine-κ2N,N')(pyridine-2,6-di­carboxyl­ato-κ2N,O)palladium(II) monohydrate

In the title compound, [Pd(C7H3NO4)(C10H8N2)]·H2O, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the two N atoms of the 2,2'-bi­pyridine ligand, one O atom and one N atom from the pyridine-2,6-di­carboxyl­ate anion. The complex and solvent water mol­ecule are linked by inter­molecular hydrogen bonds. In the crystal, the complex mol­ecules are stacked in columns along the a axis.




bi

6,6'-[(3,3'-Di-tert-butyl-5,5'-dimeth­oxy-1,1'-biphenyl-2,2'-di­yl)bis(oxy)]bis­(dibenzo[d,f][1,3,2]dioxaphosphepine) benzene monosolvate

The crystal structure of the benzene monosolvate of the well known organic diphosphite ligand BIPHEPHOS, C46H44O8P2·C6H6, is reported for the first time. Single crystals of BIPHEPHOS were obtained from a benzene solution after layering with n-heptane at room temperature. One specific property of this type of diphosphite structure is the twisting of the biphenyl units. In the crystal, C—H⋯π contacts and π–π stacking inter­actions [centroid-to-centroid distance = 3.8941 (15) Å] are observed.




bi

5,5'-(1-Phenyl­ethane-1,1-di­yl)bis­(1H-pyrrole-2-carboxaldehyde)

In the title compound, C18H16N2O2, the dihedral angle between the pyrrole rings is 79.47 (9)°, with the N—H groups approximately orthogonal (H—N⋯N—H pseudo torsion angle = −106°). In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into [11overline{1}] chains. A C—H⋯O inter­action is also observed.




bi

2-[4,5-Bis(4-bromo­phen­yl)-1-(4-tert-but­ylphen­yl)-1H-imidazol-2-yl]-4,6-di­chloro­phenol

In the title compound, C31H24Br2Cl2N2O, the dihedral angles subtended by the tert-butyl-phenyl, 4,6-di­chloro­phenol and 4-bromo­phenyl (×2) rings are 70.7 (3), 8.1 (3), 28.1 (3) and 84.2 (3)°, respectively. The orientations of the pendant rings may be related to intra­molecular O—H⋯N and C—H⋯π inter­actions. One of the tert-butyl methyl groups is disordered over two sets of sites in a 0.54 (3):0.46 (3) ratio. In the crystal, a weak C—H⋯π inter­action generates inversion dimers.




bi

Bis{2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine}­nickel(II) dinitrate dihydrate

In the title hydrated salt, [Ni(C21H17F2N3)2](NO3)2·2H2O, the central NiII ion is coordinated by six N atoms from two tridentate chelating 2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine ligands. While the central NiII ion is six-coordinate, its environment is distorted from an octa­hedral structure because of the unequal Ni—N distances. The Ni—N bond lengths vary from 1.8642 (14) to 2.2131 (15) Å, while the N—Ni—N angles range from 79.98 (6) to 104.44 (6)°. Three coordinating sites of each chelating agent are almost coplanar with respect to the pyridine ring, and two pyridine moieties are perpendicular to each other. Two non-coordinating nitrate anions within the asymmetric unit balance the charges of the central metal ion, and are linked with two crystal water mol­ecules, forming a water–nitrate cyclic tetra­meric unit [O⋯O = 2.813 (2) to 3.062 (2) Å]. In an isolated mol­ecule, the fluoro­phenyl rings of one ligand are stacked with the central ring of the other ligand via π–π inter­actions, with the closest centroid-to-plane distances being 3.359 (6), 3.408 (5), 3.757 (6) and 3.659 (5) Å.




bi

Bis(1-dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane)tetra­iso­thio­cyanato­cobalt(II)

The title compound, [Co(C18H37N2)2(NCS)4], consists of a cobalt(II) ion positioned on the origin of the triclinic unit cell. It is coordinated by the N atoms of two trans-oriented 1-dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane (DABCO+) cations, which carry n-dodecyl chains at the non-coordinating N atoms. The distorted octa­hedral coordination environment of the CoII ion is completed through four N atoms of iso­thio­cyanate ions, which are arranged within the equatorial plane. Non-classical hydrogen bonding of the types C—H⋯N and C—H⋯S between the filamentous mol­ecules lead to the formation of layers parallel to (001).




bi

Di­chlorido­bis­[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate

In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octa­hedral environment defined by four N donors of two N,N'-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water mol­ecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions, links the complex mol­ecules and the water mol­ecules to form a supra­molecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107].




bi

Bis(4-phenyl-2-sulfanyl­idene-2,3-di­hydro-1,3-thia­zol-3-ido-κ2S2,N)(4-phenyl-1,3-thia­zole-2-thiol­ato-κS2)bis­muth

The title compound, [Bi(C9H6NS2)3], was prepared by reacting BiCl3 and 2-mercapto-4-phenyl­thia­zole (LH) at room temperature in a stoichiometric ratio of 1:4. The mol­ecular structure reveals a slightly distorted square-pyramidal environment around the BiIII atom. Two of the three monoanionic ligands L− coordinate in an N,S-bidentate mode, while one shows a monodentate mode through an S atom. There are no significant inter­molecular inter­actions present in the crystal.




bi

Benzene-1,2-diaminium bis­(4-methyl­benzene-1-sulfonate)

The structure of the title salt, C6H10N22+·2C7H7O3S−, consists of a unique benzene-1,2-diaminium dication charge balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions. The cations and anions are inter­linked by several N—H⋯O hydrogen bonds.




bi

Hydro­nium bis­(tri­fluoro­methane­sulfon­yl)amide–18-crown-6 (1/1)

The structure of the title compound, H3O+·C2F6NO4S2−·C12H24O6 or [H3O+·C12H24O6][N(SO2CF3)2−], which is an ionic liquid with a melting point of 341–343 K, has been determined at 113 K. The asymmetric unit consists of two crystallographically independent 18-crown-6 mol­ecules, two hydro­nium ions and two bis­(tri­fluoro­methane­sulfon­yl)amide anions; each 18-crown-6 mol­ecule complexes with a hydro­nium ion. In one 18-crown-6 mol­ecule, a part of the ring exhibits conformational disorder over two sets of sites with an occupancy ratio of 0.533 (13):0.467 (13). One hydro­nium ion is complexed with the ordered 18-crown-6 mol­ecule via O—H⋯O hydrogen bonds with H2OH⋯OC distances of 1.90 (6)–2.19 (7) Å, and the other hydro­nium ion with the disordered crown mol­ecule with distances of 1.85 (6)–2.36 (6) Å. The hydro­nium ions are also linked to the anions via O—H⋯F hydrogen bonds. The crystal studied was found to be a racemic twin with a component ratio of 0.55 (13):0.45 (13).




bi

2,2'-[Methyl­enebis(sulfanedi­yl)]bis­(pyridine 1-oxide)

The title compound, C11H10N2O2S2, crystallizes with one complete mol­ecule in the asymmetric unit. In the crystal, weak hydrogen bonding is observed between the N-oxide moieties and several C—H units.




bi

5-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. The dihedral angles between the mean plane of the quinoxaline unit and the thienyl rings are 35.16 (5)° and 24.94 (3)°.




bi

6-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. One thienyl ring is nearly coplanar with the quinoxaline unit [dihedral angle = 3.29 (9)°], the other makes an angle of 83.96 (4)°.




bi

1,4-Bis­(4-meth­oxy­phen­yl)naphthalene

The title naphthalene derivative, C24H20O2, features 4-methy­oxy-substituted benzene rings in the 1 and 4 positions of the naphthalene ring system. There are two crystallographically independent mol­ecules (A and B) in asymmetric unit. The independent mol­ecules have very similar conformations in which the naphthalene ring systems are only slightly bent, exhibiting dihedral angles between the constituent benzene rings of 3.76 (15) and 3.39 (15)° for A and B, respectively. The pendent 4-methyoxybenzene rings are splayed out of the plane through the naphthalene ring system to which they are connected [range of dihedral angles = 59.63 (13) to 67.09 (13)°]. In the crystal, the mol­ecular packing is consolidated by inter­molecular C—H⋯π inter­actions, leading to supra­molecular chains along the b axis. The chains assemble without directional inter­actions between them.




bi

1,3-Bis(2-oxoprop­yl)thymine

In the title compound [systematic name: 5-methyl-1,3-bis­(2-oxoprop­yl)pyrimidine-2,4(1H,3H)-dione], C11H14N2O4, the two 2-oxopropyl groups are nearly perpendicular to the planar thymine unit. One methyl group of oxopropyl substituent is disordered. In the crystal, C—H⋯O inter­actions help to connect the mol­ecules into (001) layers.




bi

Bis(N-adamantyl-N'-ethyl­imidazolium) tetra­bromido­manganate(II)

The title compound, (C15H23N2)2[MnBr4], comprises two N-adamantyl-N'-ethyl­imidazolium cations and one tetra­hedral [MnBr4]2− anion. Next to Coulombic inter­actions, weak hydrogen bonds of the type C—H⋯Br consolidate the crystal packing, building up a three-dimensional network.




bi

Bis(3-methyl-1-propyl-1H-imidazol-3-ium) bis­(4,6-disulfanidyl-4,6-disulfanyl­idene-1,2,3,5,4,6-tetra­thia­diphosphinane-κ3S2,S4,S6)nickel

The title salt, (PMIM)2[Ni(P2S8)2] (PMIM = 3-methyl-1-propyl-1H-imidazol-3-ium, C7H13N2+), consists of a nickel–thio­phosphate anion charge-balanced by a pair of crystallographically independent PMIM cations. It crystallizes in the monoclinic space group P21/n. The structure exhibits the known [Ni(P2S8)2]2− anion with two unique imidazolium cations in the asymmetric unit. Whereas one PMIM cation is well ordered, the other is disordered over two orientations with refined occupancies of 0.798 (2) and 0.202 (2). The salt was prepared directly from the elements in the ionic liquid [PMIM]CF3SO3. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.




bi

2,5-Bis[(E)-2-phenyl­ethen­yl]-3,6-bis­(pyridin-2-yl)pyrazine

The mol­ecule of the title compound, C30H22N4, exhibits inversion symmetry adopting the shape of a St Andrew's Cross. It shows dihedral angles between adjacent aryl units of around 50° whereas torsion angles of ca 10° are found along the aryl­ene vinyl­ene path.




bi

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




bi

Poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer

The reaction of ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination poly­mer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supra­molecular framework.




bi

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




bi

Crystal structures and Hirshfeld surface analyses of 4,4'-{[1,3-phenyl­enebis(methyl­ene)]bis­(­oxy)}bis­(3-meth­oxy­benzaldehyde) and 4,4'-{[(1,4-phenyl­ene­bis(methyl­ene)]bis­(­oxy)}bis­(

The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a mol­ecule in the asymmetric unit. The whole mol­ecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bis­ecting the central benzene ring. The whole mol­ecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons propagating along the [10overline{1}] direction. In the crystal of (II), mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts.




bi

Crystal structure of di-μ-chlorido-bis­[di­chlorido(l-histidinium-κO)cadmium(II)]

In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the l-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information.




bi

Crystal structure and Hirshfeld surface analysis of tris­(2,2'-bi­pyridine)­nickel(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.




bi

Bis[μ-bis­(2,6-diiso­propyl­phen­yl) phosphato-κ2O:O']bis­[(2,2'-bi­pyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide

The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bi­pyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex mol­ecule and one mol­ecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bi­pyridine ligand is chelating to the Li+ cation, generating a distorted tetra­hedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π inter­actions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide.




bi

Crystal structure of butane-1,4-diyl bis­(furan-2-carboxyl­ate)

The asymmetric unit of the title compound, C14H14O6, a monomeric compound of poly(butyl­ene 2,5-furandi­carboxyl­ate), consists of one half-mol­ecule, the whole all-trans mol­ecule being generated by an inversion centre. In the crystal, the mol­ecules are inter­connected via C—H⋯O inter­actions, forming a mol­ecular sheet parallel to (10overline{2}). The mol­ecular sheets are further linked by C—H⋯π inter­actions.




bi

Crystal structure of bis(μ-{2-[(5-bromo-2-oxido­benzyl­idene)amino]­eth­yl}sulfanido-κ3N,O,S){2,2'-[(3,4-di­thia­hexane-1,6-di­yl)bis­(nitrilo­methanylyl­idene)]bis­(4-bromo­phenolato)-κ4O,N,N',O

The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cyste­amine (2-amino­ethane­thiol) and 5-bromo­salicyl­aldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') mol­ecule and one DMF solvent mol­ecule. Each CoIII ion has a slightly distorted octa­hedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin.




bi

Bis(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug

The title compound (systematic name: bis­{2-[4-(acet­yloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111].




bi

Zn and Ni complexes of pyridine-2,6-di­carboxyl­ates: crystal field stabilization matters!

Six reaction products of ZnII and NiII with pyridine-2,6-di­carb­oxy­lic acid (H2Lig1), 4-chloro­pyridine-2,6-di­carb­oxy­lic acid (H2Lig2) and 4-hy­droxy­pyridine-2,6-di­carb­oxy­lic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octa­hedral ZnII coordination sphere in bis­(6-carb­oxy­picolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis­(6-carb­oxy­picolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloro­pyridine-2,6-di­carboxyl­ato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-di­carboxyl­ate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely tri­aqua­(4-chloro­pyridine-2,6-di­carboxyl­ato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and tri­aqua­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octa­hedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.




bi

Crystal structure of 210,220-bis­(2,6-di­chloro­phen­yl)-4,7,12,15-tetra­oxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cyclo­hepta­deca­phane-9-yne di­chloro­methane monosolvate

The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitro­gen atoms of a porphyrin mol­ecule within a square-planar coordination environment. Weak intra­molecular C—H⋯Cl and C—H⋯O inter­actions stabilize the mol­ecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding inter­actions. In addition, the two unique di­chloro­methane solvate mol­ecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chloro­phenyl groups of the porphyrin mol­ecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-ortho­rhom­bic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry.




bi

Crystal structure of a polymorph of μ-oxido-bis­[(5,10,15,20-tetra­phenyl­porphyrinato)iron(III)]

The title compound, [Fe2(C44H28N4O)2O], was obtained as a by-product during the synthesis of FeIII tetra­phenyl­porphyrin perchlorate. It crystallizes as a new polymorphic modification in addition to the ortho­rhom­bic form previously reported [Hoffman et al. (1972). J. Am. Chem. Soc. 94, 3620–3626; Swepston & Ibers (1985) Acta Cryst. C41, 671–673; Kooijmann et al. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England]. In its crystal structure, the two crystallographically independent FeIII cations are coordinated in a square-planar environment by the four N atoms of a tetra­phenyl­porphyrin ligand. The FeIII-tetra­phenyl­porphyrine units are linked by a μ2-oxido ligand into a dimer with an Fe—O—Fe angle close to linearity. The final coordination sphere for each FeIII atom is square-pyramidal with the μ2-oxido ligand in the apical position. The crystal under investigation consisted of two domains in a ratio of 0.691 (3): 0.309 (3).