ga

How pottering about in the garden creates a time warp

By Harriet Gross Courtesy of Aeon What’s not to like about gardening? It’s a great way to get outdoors, away from everyday routines, and to exercise your creativity. It’s good for your health, whatever your age, and gardeners tend to be … Continue reading




ga

5 Critical Lessons Learned Organizing WordCamp Ann Arbor for the Third Time

In early 2014 I had just gotten married and recently moved into a new home. With two major life events out of the way, I decided I was ready to lead a WordCamp. I originally planned to organize WordCamp Detroit. I was an organizer twice before and the event had missed a year and I […]

The post 5 Critical Lessons Learned Organizing WordCamp Ann Arbor for the Third Time appeared first on Psychology of Web Design | 3.7 Blog.




ga

Hooked: How to engage your website audience in one second or less

You have less than one second to make the right impression. Almost immediately after landing on your website users will make an uninformed, mostly subconscious judgment about what type of organization they’re interacting with. This initial judgment will largely be influenced by layout, design, and visual tone. It will not only influence the rest of […]

The post Hooked: How to engage your website audience in one second or less appeared first on Psychology of Web Design | 3.7 Blog.




ga

History of Design in Michigan

While most known for automotive, Michigan has a rich history in design. As a designer myself, I wanted to learn more about Michigan’s design roots. Not knowing what to expect, I found Michigan is home to many historic designers, several innovative design-forward companies, and top design schools. Automotive is a source of Michigan pride, but […]

The post History of Design in Michigan appeared first on Psychology of Web Design | 3.7 Blog.




ga

It’s A Living Mural for X-Games China & Innersect

It’s A Living Mural for X-Games China & Innersect

AoiroStudioMay 05, 2020

I think Fabio and I are on a challenge to keep the ABDZ homepage in color tones of 'pastel visuals'. It's perfect because I stumbled across the new project from It's A Living aka Ricardo Gonzalez for X-Games China & Innersect 2019 in Shanghai, China. I don't know if you are familiar or not by Ricardo's distinct lettering style but it's just plain beautiful and vibrant. INNERSECT is the biggest street culture convention in China, a street fashion project founded by celebrity icon Edison Chen in 2017. Feast your eyes!

About It’s A Living

AKA Ricardo Gonzalez is an incredible artist who has worked through many collaborations and his lettering style is so unique. Make sure to check out his links.




ga

WordPress Card Game

You know you've made it BIGTIME when you're a face card in a WordPress card game! @angrycreative @Kickstarter https://t.co/tFbB4ROhKS #WordPress #WooCommerce pic.twitter.com/WMPf5sffkM — Magnus Jepson (@mjepson) December 13, 2017




ga

7 Simple Ways to Get Even More Engaged Instagram Followers

Instagram is one of the most efficient and fastest growing social networks. Brands and businesses love it and leverage it to promote and market their products and services to billions of users worldwide. More and more brands are competing for declining customer attention whose span is now no more than a Goldfish’s at 8s. Hence, […]

Original post: 7 Simple Ways to Get Even More Engaged Instagram Followers

The post 7 Simple Ways to Get Even More Engaged Instagram Followers appeared first on Daily Blog Tips.




ga

How pottering about in the garden creates a time warp

By Harriet Gross Courtesy of Aeon What’s not to like about gardening? It’s a great way to get outdoors, away from everyday routines, and to exercise your creativity. It’s good for your health, whatever your age, and gardeners tend to be … Continue reading




ga

School District Switches to Local and Organic Meals, Cuts Carbon Footprint—and Saves Money

By Melissa Hellmann Yes! Magazine A new report revealed surprising results when Oakland overhauled its lunch menu at 100-plus schools by serving less meat and more fruits and vegetables. When her eldest son was in elementary school in the Oakland … Continue reading




ga

Judge Could Hold Up Trump Administration's Bid to Clear Flynn, Legal Experts say

The notoriously independent-minded federal judge who once said he was disgusted by the conduct of Michael Flynn could block the administration's bid to drop criminal charges against the former adviser to President Donald Trump, legal experts said.




ga

How to Foster Real-Time Client Engagement During Moderated Research

When we conduct moderated research, like user interviews or usability tests, for our clients, we encourage them to observe as many sessions as possible. We find when clients see us interview their users, and get real-time responses, they’re able to learn about the needs of their users in real-time and be more active participants in the process. One way we help clients feel engaged with the process during remote sessions is to establish a real-time communication backchannel that empowers clients to flag responses they’d like to dig into further and to share their ideas for follow-up questions.

There are several benefits to establishing a communication backchannel for moderated sessions:

  • Everyone on the team, including both internal and client team members, can be actively involved throughout the data collection process rather than waiting to passively consume findings.
  • Team members can identify follow-up questions in real-time which allows the moderator to incorporate those questions during the current session, rather than just considering them for future sessions.
  • Subject matter experts can identify more detailed and specific follow-up questions that the moderator may not think to ask.
  • Even though the whole team is engaged, a single moderator still maintains control over the conversation which creates a consistent experience for the participant.

If you’re interested in creating your own backchannel, here are some tips to make the process work smoothly:

  • Use the chat tool that is already being used on the project. In most cases, we use a joint Slack workspace for the session backchannel but we’ve also used Microsoft Teams.
  • Create a dedicated channel like #moderated-sessions. Conversation in this channel should be limited to backchannel discussions during sessions. This keeps the communication consolidated and makes it easier for the moderator to stay focused during the session.
  • Keep communication limited. Channel participants should ask basic questions that are easy to consume quickly. Supplemental commentary and analysis should not take place in the dedicated channel.
  • Use emoji responses. The moderator can add a quick thumbs up to indicate that they’ve seen a question.

Introducing backchannels for communication during remote moderated sessions has been a beneficial change to our research process. It not only provides an easy way for clients to stay engaged during the data collection process but also increases the moderator’s ability to focus on the most important topics and to ask the most useful follow-up questions.





ga

Winterlichter Palmengarten Dec. 2019




ga

Stationary Gaussian Free Fields Coupled with Stochastic Log-Gases via Multiple SLEs. (arXiv:2001.03079v3 [math.PR] UPDATED)

Miller and Sheffield introduced a notion of an imaginary surface as an equivalence class of pairs of simply connected proper subdomains of $mathbb{C}$ and Gaussian free fields (GFFs) on them under conformal equivalence. They considered the situation in which the conformal transformations are given by a chordal Schramm--Loewner evolution (SLE). In the present paper, we construct processes of GFF on $mathbb{H}$ (the upper half-plane) and $mathbb{O}$ (the first orthant of $mathbb{C}$) by coupling zero-boundary GFFs on these domains with stochastic log-gases defined on parts of boundaries of the domains, $mathbb{R}$ and $mathbb{R}_+$, called the Dyson model and the Bru--Wishart process, respectively, using multiple SLEs evolving in time. We prove that the obtained processes of GFF are stationary. The stationarity defines an equivalence relation between GFFs, and the pairs of time-evolutionary domains and stationary processes of GFF will be regarded as generalizations of the imaginary surfaces studied by Miller and Sheffield.




ga

Gabriel-Roiter measure, representation dimension and rejective chains. (arXiv:1903.05555v2 [math.RT] UPDATED)

The Gabriel-Roiter measure is used to give an alternative proof of the finiteness of the representation dimension for Artin algebras, a result established by Iyama in 2002. The concept of Gabriel-Roiter measure can be extended to abelian length categories and every such category has multiple Gabriel-Roiter measures. Using this notion, we prove the following broader statement: given any object $X$ and any Gabriel-Roiter measure $mu$ in an abelian length category $mathcal{A}$, there exists an object $X'$ which depends on $X$ and $mu$, such that $Gamma = operatorname{End}_{mathcal{A}}(X oplus X')$ has finite global dimension. Analogously to Iyama's original results, our construction yields quasihereditary rings and fits into the theory of rejective chains.




ga

A Model for Optimal Human Navigation with Stochastic Effects. (arXiv:2005.03615v1 [math.OC])

We present a method for optimal path planning of human walking paths in mountainous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient elevation data and human walking velocity as a function of local slope of the terrain. Our model includes a stochastic component which can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal paths suggested by the model at different levels of uncertainty, and observe that as the size of the uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends toward the deterministic optimal path.




ga

Positive Geometries and Differential Forms with Non-Logarithmic Singularities I. (arXiv:2005.03612v1 [hep-th])

Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes.




ga

Gaussian invariant measures and stationary solutions of 2D Primitive Equations. (arXiv:2005.03339v1 [math.PR])

We introduce a Gaussian measure formally preserved by the 2-dimensional Primitive Equations driven by additive Gaussian noise. Under such measure the stochastic equations under consideration are singular: we propose a solution theory based on the techniques developed by Gubinelli and Jara in cite{GuJa13} for a hyperviscous version of the equations.




ga

Quasi-Sure Stochastic Analysis through Aggregation and SLE$_kappa$ Theory. (arXiv:2005.03152v1 [math.PR])

We study SLE$_{kappa}$ theory with elements of Quasi-Sure Stochastic Analysis through Aggregation. Specifically, we show how the latter can be used to construct the SLE$_{kappa}$ traces quasi-surely (i.e. simultaneously for a family of probability measures with certain properties) for $kappa in mathcal{K}cap mathbb{R}_+ setminus ([0, epsilon) cup {8})$, for any $epsilon>0$ with $mathcal{K} subset mathbb{R}_{+}$ a nontrivial compact interval, i.e. for all $kappa$ that are not in a neighborhood of zero and are different from $8$. As a by-product of the analysis, we show in this language a version of the continuity in $kappa$ of the SLE$_{kappa}$ traces for all $kappa$ in compact intervals as above.




ga

Exponential decay for negative feedback loop with distributed delay. (arXiv:2005.03136v1 [math.DS])

We derive sufficient conditions for exponential decay of solutions of the delay negative feedback equation with distributed delay. The conditions are written in terms of exponential moments of the distribution. Our method only uses elementary tools of calculus and is robust towards possible extensions to more complex settings, in particular, systems of delay differential equations. We illustrate the applicability of the method to particular distributions - Dirac delta, Gamma distribution, uniform and truncated normal distributions.




ga

Games Where You Can Play Optimally with Arena-Independent Finite Memory. (arXiv:2001.03894v2 [cs.GT] UPDATED)

For decades, two-player (antagonistic) games on graphs have been a framework of choice for many important problems in theoretical computer science. A notorious one is controller synthesis, which can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the system in a game against its antagonistic environment. Depending on the specification, optimal strategies might be simple or quite complex, for example having to use (possibly infinite) memory. Hence, research strives to understand which settings allow for simple strategies.

In 2005, Gimbert and Zielonka provided a complete characterization of preference relations (a formal framework to model specifications and game objectives) that admit memoryless optimal strategies for both players. In the last fifteen years however, practical applications have driven the community toward games with complex or multiple objectives, where memory -- finite or infinite -- is almost always required. Despite much effort, the exact frontiers of the class of preference relations that admit finite-memory optimal strategies still elude us.

In this work, we establish a complete characterization of preference relations that admit optimal strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical interest: if both players have optimal (arena-independent-)finite-memory strategies in all one-player games, then it is also the case in all two-player games. Finally, we pinpoint the boundaries of our results with regard to the literature: our work completely covers the case of arena-independent memory (e.g., multiple parity objectives, lower- and upper-bounded energy objectives), and paves the way to the arena-dependent case (e.g., multiple lower-bounded energy objectives).




ga

Robustly Clustering a Mixture of Gaussians. (arXiv:1911.11838v5 [cs.DS] UPDATED)

We give an efficient algorithm for robustly clustering of a mixture of two arbitrary Gaussians, a central open problem in the theory of computationally efficient robust estimation, assuming only that the the means of the component Gaussians are well-separated or their covariances are well-separated. Our algorithm and analysis extend naturally to robustly clustering mixtures of well-separated strongly logconcave distributions. The mean separation required is close to the smallest possible to guarantee that most of the measure of each component can be separated by some hyperplane (for covariances, it is the same condition in the second degree polynomial kernel). We also show that for Gaussian mixtures, separation in total variation distance suffices to achieve robust clustering. Our main tools are a new identifiability criterion based on isotropic position and the Fisher discriminant, and a corresponding Sum-of-Squares convex programming relaxation, of fixed degree.




ga

Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR])

In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy.




ga

Seismic Shot Gather Noise Localization Using a Multi-Scale Feature-Fusion-Based Neural Network. (arXiv:2005.03626v1 [cs.CV])

Deep learning-based models, such as convolutional neural networks, have advanced various segments of computer vision. However, this technology is rarely applied to seismic shot gather noise localization problem. This letter presents an investigation on the effectiveness of a multi-scale feature-fusion-based network for seismic shot-gather noise localization. Herein, we describe the following: (1) the construction of a real-world dataset of seismic noise localization based on 6,500 seismograms; (2) a multi-scale feature-fusion-based detector that uses the MobileNet combined with the Feature Pyramid Net as the backbone; and (3) the Single Shot multi-box detector for box classification/regression. Additionally, we propose the use of the Focal Loss function that improves the detector's prediction accuracy. The proposed detector achieves an AP@0.5 of 78.67\% in our empirical evaluation.




ga

Credulous Users and Fake News: a Real Case Study on the Propagation in Twitter. (arXiv:2005.03550v1 [cs.SI])

Recent studies have confirmed a growing trend, especially among youngsters, of using Online Social Media as favourite information platform at the expense of traditional mass media. Indeed, they can easily reach a wide audience at a high speed; but exactly because of this they are the preferred medium for influencing public opinion via so-called fake news. Moreover, there is a general agreement that the main vehicle of fakes news are malicious software robots (bots) that automatically interact with human users. In previous work we have considered the problem of tagging human users in Online Social Networks as credulous users. Specifically, we have considered credulous those users with relatively high number of bot friends when compared to total number of their social friends. We consider this group of users worth of attention because they might have a higher exposure to malicious activities and they may contribute to the spreading of fake information by sharing dubious content. In this work, starting from a dataset of fake news, we investigate the behaviour and the degree of involvement of credulous users in fake news diffusion. The study aims to: (i) fight fake news by considering the content diffused by credulous users; (ii) highlight the relationship between credulous users and fake news spreading; (iii) target fake news detection by focusing on the analysis of specific accounts more exposed to malicious activities of bots. Our first results demonstrate a strong involvement of credulous users in fake news diffusion. This findings are calling for tools that, by performing data streaming on credulous' users actions, enables us to perform targeted fact-checking.




ga

The Danish Gigaword Project. (arXiv:2005.03521v1 [cs.CL])

Danish is a North Germanic/Scandinavian language spoken primarily in Denmark, a country with a tradition of technological and scientific innovation. However, from a technological perspective, the Danish language has received relatively little attention and, as a result, Danish language technology is hard to develop, in part due to a lack of large or broad-coverage Danish corpora. This paper describes the Danish Gigaword project, which aims to construct a freely-available one billion word corpus of Danish text that represents the breadth of the written language.




ga

An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games. (arXiv:2005.03507v1 [cs.GT])

In this paper, we present three distributed algorithms to solve a class of generalized Nash equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove converge to a variational GNE of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to the only other in the literature (ADAGNES), and observe that AD-GENO outperforms the alternative.




ga

An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration. (arXiv:2005.03451v1 [cs.LG])

We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.




ga

Dirichlet spectral-Galerkin approximation method for the simply supported vibrating plate eigenvalues. (arXiv:2005.03433v1 [math.NA])

In this paper, we analyze and implement the Dirichlet spectral-Galerkin method for approximating simply supported vibrating plate eigenvalues with variable coefficients. This is a Galerkin approximation that uses the approximation space that is the span of finitely many Dirichlet eigenfunctions for the Laplacian. Convergence and error analysis for this method is presented for two and three dimensions. Here we will assume that the domain has either a smooth or Lipschitz boundary with no reentrant corners. An important component of the error analysis is Weyl's law for the Dirichlet eigenvalues. Numerical examples for computing the simply supported vibrating plate eigenvalues for the unit disk and square are presented. In order to test the accuracy of the approximation, we compare the spectral-Galerkin method to the separation of variables for the unit disk. Whereas for the unit square we will numerically test the convergence rate for a variable coefficient problem.




ga

WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II. (arXiv:2005.03382v1 [cs.CR])

Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy.




ga

Soft Interference Cancellation for Random Coding in Massive Gaussian Multiple-Access. (arXiv:2005.03364v1 [cs.IT])

We utilize recent results on the exact block error probability of Gaussian random codes in additive white Gaussian noise to analyze Gaussian random coding for massive multiple-access at finite message length. Soft iterative interference cancellation is found to closely approach the performance bounds recently found in [1]. The existence of two fundamentally different regimes in the trade-off between power and bandwidth efficiency reported in [2] is related to much older results in [3] on power optimization by linear programming. Furthermore, we tighten the achievability bounds of [1] in the low power regime and show that orthogonal constellations are very close to the theoretical limits for message lengths around 100 and above.




ga

Crop Aggregating for short utterances speaker verification using raw waveforms. (arXiv:2005.03329v1 [eess.AS])

Most studies on speaker verification systems focus on long-duration utterances, which are composed of sufficient phonetic information. However, the performances of these systems are known to degrade when short-duration utterances are inputted due to the lack of phonetic information as compared to the long utterances. In this paper, we propose a method that compensates for the performance degradation of speaker verification for short utterances, referred to as "crop aggregating". The proposed method adopts an ensemble-based design to improve the stability and accuracy of speaker verification systems. The proposed method segments an input utterance into several short utterances and then aggregates the segment embeddings extracted from the segmented inputs to compose a speaker embedding. Then, this method simultaneously trains the segment embeddings and the aggregated speaker embedding. In addition, we also modified the teacher-student learning method for the proposed method. Experimental results on different input duration using the VoxCeleb1 test set demonstrate that the proposed technique improves speaker verification performance by about 45.37% relatively compared to the baseline system with 1-second test utterance condition.




ga

Interval type-2 fuzzy logic system based similarity evaluation for image steganography. (arXiv:2005.03310v1 [cs.MM])

Similarity measure, also called information measure, is a concept used to distinguish different objects. It has been studied from different contexts by employing mathematical, psychological, and fuzzy approaches. Image steganography is the art of hiding secret data into an image in such a way that it cannot be detected by an intruder. In image steganography, hiding secret data in the plain or non-edge regions of the image is significant due to the high similarity and redundancy of the pixels in their neighborhood. However, the similarity measure of the neighboring pixels, i.e., their proximity in color space, is perceptual rather than mathematical. This paper proposes an interval type 2 fuzzy logic system (IT2 FLS) to determine the similarity between the neighboring pixels by involving an instinctive human perception through a rule-based approach. The pixels of the image having high similarity values, calculated using the proposed IT2 FLS similarity measure, are selected for embedding via the least significant bit (LSB) method. We term the proposed procedure of steganography as IT2 FLS LSB method. Moreover, we have developed two more methods, namely, type 1 fuzzy logic system based least significant bits (T1FLS LSB) and Euclidean distance based similarity measures for least significant bit (SM LSB) steganographic methods. Experimental simulations were conducted for a collection of images and quality index metrics, such as PSNR, UQI, and SSIM are used. All the three steganographic methods are applied on datasets and the quality metrics are calculated. The obtained stego images and results are shown and thoroughly compared to determine the efficacy of the IT2 FLS LSB method. Finally, we have done a comparative analysis of the proposed approach with the existing well-known steganographic methods to show the effectiveness of our proposed steganographic method.




ga

Mortar-based entropy-stable discontinuous Galerkin methods on non-conforming quadrilateral and hexahedral meshes. (arXiv:2005.03237v1 [math.NA])

High-order entropy-stable discontinuous Galerkin (DG) methods for nonlinear conservation laws reproduce a discrete entropy inequality by combining entropy conservative finite volume fluxes with summation-by-parts (SBP) discretization matrices. In the DG context, on tensor product (quadrilateral and hexahedral) elements, SBP matrices are typically constructed by collocating at Lobatto quadrature points. Recent work has extended the construction of entropy-stable DG schemes to collocation at more accurate Gauss quadrature points.

In this work, we extend entropy-stable Gauss collocation schemes to non-conforming meshes. Entropy-stable DG schemes require computing entropy conservative numerical fluxes between volume and surface quadrature nodes. On conforming tensor product meshes where volume and surface nodes are aligned, flux evaluations are required only between "lines" of nodes. However, on non-conforming meshes, volume and surface nodes are no longer aligned, resulting in a larger number of flux evaluations. We reduce this expense by introducing an entropy-stable mortar-based treatment of non-conforming interfaces via a face-local correction term, and provide necessary conditions for high-order accuracy. Numerical experiments in both two and three dimensions confirm the stability and accuracy of this approach.




ga

Multi-Target Deep Learning for Algal Detection and Classification. (arXiv:2005.03232v1 [cs.CV])

Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.




ga

Trains, Games, and Complexity: 0/1/2-Player Motion Planning through Input/Output Gadgets. (arXiv:2005.03192v1 [cs.CC])

We analyze the computational complexity of motion planning through local "input/output" gadgets with separate entrances and exits, and a subset of allowed traversals from entrances to exits, each of which changes the state of the gadget and thereby the allowed traversals. We study such gadgets in the 0-, 1-, and 2-player settings, in particular extending past motion-planning-through-gadgets work to 0-player games for the first time, by considering "branchless" connections between gadgets that route every gadget's exit to a unique gadget's entrance. Our complexity results include containment in L, NL, P, NP, and PSPACE; as well as hardness for NL, P, NP, and PSPACE. We apply these results to show PSPACE-completeness for certain mechanics in Factorio, [the Sequence], and a restricted version of Trainyard, improving prior results. This work strengthens prior results on switching graphs and reachability switching games.




ga

Nonlinear model reduction: a comparison between POD-Galerkin and POD-DEIM methods. (arXiv:2005.03173v1 [physics.comp-ph])

Several nonlinear model reduction techniques are compared for the three cases of the non-parallel version of the Kuramoto-Sivashinsky equation, the transient regime of flow past a cylinder at $Re=100$ and fully developed flow past a cylinder at the same Reynolds number. The linear terms of the governing equations are reduced by Galerkin projection onto a POD basis of the flow state, while the reduced nonlinear convection terms are obtained either by a Galerkin projection onto the same state basis, by a Galerkin projection onto a POD basis representing the nonlinearities or by applying the Discrete Empirical Interpolation Method (DEIM) to a POD basis of the nonlinearities. The quality of the reduced order models is assessed as to their stability, accuracy and robustness, and appropriate quantitative measures are introduced and compared. In particular, the properties of the reduced linear terms are compared to those of the full-scale terms, and the structure of the nonlinear quadratic terms is analyzed as to the conservation of kinetic energy. It is shown that all three reduction techniques provide excellent and similar results for the cases of the Kuramoto-Sivashinsky equation and the limit-cycle cylinder flow. For the case of the transient regime of flow past a cylinder, only the pure Galerkin techniques are successful, while the DEIM technique produces reduced-order models that diverge in finite time.




ga

Avoiding 5/4-powers on the alphabet of nonnegative integers. (arXiv:2005.03158v1 [math.CO])

We identify the structure of the lexicographically least word avoiding 5/4-powers on the alphabet of nonnegative integers. Specifically, we show that this word has the form $p au(varphi(z) varphi^2(z) cdots)$ where $p, z$ are finite words, $varphi$ is a 6-uniform morphism, and $ au$ is a coding. This description yields a recurrence for the $i$th letter, which we use to prove that the sequence of letters is 6-regular with rank 188. More generally, we prove $k$-regularity for a sequence satisfying a recurrence of the same type.




ga

Heterogeneous Facility Location Games. (arXiv:2005.03095v1 [cs.GT])

We study heterogeneous $k$-facility location games. In this model there are $k$ facilities where each facility serves a different purpose. Thus, the preferences of the agents over the facilities can vary arbitrarily. Our goal is to design strategy proof mechanisms that place the facilities in a way to maximize the minimum utility among the agents. For $k=1$, if the agents' locations are known, we prove that the mechanism that places the facility on an optimal location is strategy proof. For $k geq 2$, we prove that there is no optimal strategy proof mechanism, deterministic or randomized, even when $k=2$ there are only two agents with known locations, and the facilities have to be placed on a line segment. We derive inapproximability bounds for deterministic and randomized strategy proof mechanisms. Finally, we focus on the line segment and provide strategy proof mechanisms that achieve constant approximation. All of our mechanisms are simple and communication efficient. As a byproduct we show that some of our mechanisms can be used to achieve constant factor approximations for other objectives as the social welfare and the happiness.




ga

Diagnosing the Environment Bias in Vision-and-Language Navigation. (arXiv:2005.03086v1 [cs.CL])

Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions, explore the given environments, and reach the desired target locations. These step-by-step navigational instructions are crucial when the agent is navigating new environments about which it has no prior knowledge. Most recent works that study VLN observe a significant performance drop when tested on unseen environments (i.e., environments not used in training), indicating that the neural agent models are highly biased towards training environments. Although this issue is considered as one of the major challenges in VLN research, it is still under-studied and needs a clearer explanation. In this work, we design novel diagnosis experiments via environment re-splitting and feature replacement, looking into possible reasons for this environment bias. We observe that neither the language nor the underlying navigational graph, but the low-level visual appearance conveyed by ResNet features directly affects the agent model and contributes to this environment bias in results. According to this observation, we explore several kinds of semantic representations that contain less low-level visual information, hence the agent learned with these features could be better generalized to unseen testing environments. Without modifying the baseline agent model and its training method, our explored semantic features significantly decrease the performance gaps between seen and unseen on multiple datasets (i.e. R2R, R4R, and CVDN) and achieve competitive unseen results to previous state-of-the-art models. Our code and features are available at: https://github.com/zhangybzbo/EnvBiasVLN




ga

Football High: Garrett Harper's Story, Part II

The decisions coaches make on the sidelines about returning a concussed player to the game or not can be a "game changer" for that athlete's life.




ga

Football High: Garrett Harper's Story, Part I

For many competitive high school football players like Garrett Harper, the intensity of this contact sport has its price.




ga

The Desire to Stay in the Game

Retired soccer star Briana Scurry talks about how frustrating and complicated it is trying to explain what it feels like to have symptoms from a concussion and why bouncing back is not always an option.




ga

Retired Soccer Star Briana Scurry on "Being Me Again"

"The Briana Scurry who could tune out 90,000 people during the World Cup and focus on a single ball and know I could keep it out of the goal ... that is who I want to be again."




ga

Teen athletes sandbag concussion tests to stay in the game

What happens when the drive to play outweighs the potential risk of injury? Some high school athletes are finding ways around the precautions coaching and medical staff take to ensure their safety.




ga

5 Best Practices for Breadcrumb Navigation 

Breadcrumbs are a subtle element of a website that helps improve usability and navigation. They’re a utility that often receives little acknowledgment; however, breadcrumbs can have a large impact and provide a plethora of benefits, such as lowering bounce rate, increasing conversions, and improving user satisfaction.   Imagine you’re in a regular grocery store, except […]

The post 5 Best Practices for Breadcrumb Navigation  appeared first on WebFX Blog.




ga

Writing again

The mid-year slump hit hard this year. I’m rarely a prolific writer or blogger during the summer. Perhaps it’s the heat down here in south Alabama. It makes you want to sit under the shade of an old…




ga

Writing a WordPress book. Again.

TL;DR: Brad Williams, John James Jacoby, and I will be publishing the 2nd edition of Professional WordPress Plugin Development this year. It is hard to believe, but it has been nine years since I was approached by Brad Williams…