em

Aperiodic EEG Predicts Variability of Visual Temporal Processing

Michele Deodato
Oct 2, 2024; 44:e2308232024-e2308232024
BehavioralSystemsCognitive




em

Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions

Tessa E.S. Charlesworth
Sep 11, 2019; 39:7228-7243
Viewpoints




em

Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia

Fadel Zeidan
Nov 18, 2015; 35:15307-15325
BehavioralSystemsCognitive




em

Human REM Sleep Delta Waves and the Blurring Distinction between NREM and REM Sleep

Jesse J. Langille
Jul 3, 2019; 39:5244-5246
Journal Club




em

The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands

William W. Seeley
Dec 11, 2019; 39:9878-9882
Progressions




em

Wadgayawa Nhay Dhadjan Wari (they made them a long time ago) tour

Explore our new exhibition, featuring Aboriginal belongings removed from Country over the last 230 years that have trave




em

Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory

Randy L. Buckner
Aug 24, 2005; 25:7709-7717
Neurobiology of Disease




em

On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex

AP Georgopoulos
Nov 1, 1982; 2:1527-1537
Articles




em

A Hierarchy of Temporal Receptive Windows in Human Cortex

Uri Hasson
Mar 5, 2008; 28:2539-2550
BehavioralSystemsCognitive




em

Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story

Yulia Lerner
Feb 23, 2011; 31:2906-2915
BehavioralSystemsCognitive




em

A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3{alpha} Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses

α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin–neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses.




em

Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death

Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12–17] and in acute brain slices (P8–12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain.




em

Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy

We recently demonstrated that transient attenuation of Toll-like receptor 4 (TLR4) in dorsal root ganglion (DRG) neurons, can both prevent and reverse pain associated with chemotherapy-induced peripheral neuropathy (CIPN), a severe side effect of cancer chemotherapy, for which treatment options are limited. Given the reduced efficacy of opioid analgesics to treat neuropathic, compared with inflammatory pain, the cross talk between nociceptor TLR4 and mu-opioid receptors (MORs), and that MOR and TLR4 agonists induce hyperalgesic priming (priming), which also occurs in CIPN, we determined, using male rats, whether (1) antisense knockdown of nociceptor MOR attenuates CIPN, (2) and attenuates the priming associated with CIPN, and (3) CIPN also produces opioid-induced hyperalgesia (OIH). We found that intrathecal MOR antisense prevents and reverses hyperalgesia induced by oxaliplatin and paclitaxel, two common clinical chemotherapy agents. Oxaliplatin-induced priming was also markedly attenuated by MOR antisense. Additionally, intradermal morphine, at a dose that does not affect nociceptive threshold in controls, exacerbates mechanical hyperalgesia (OIH) in rats with CIPN, suggesting the presence of OIH. This OIH associated with CIPN is inhibited by interventions that reverse Type II priming [the combination of an inhibitor of Src and mitogen-activated protein kinase (MAPK)], an MOR antagonist, as well as a TLR4 antagonist. Our findings support a role of nociceptor MOR in oxaliplatin-induced pain and priming. We propose that priming and OIH are central to the symptom burden in CIPN, contributing to its chronicity and the limited efficacy of opioid analgesics to treat neuropathic pain.




em

Erratum: Rosenberg et al., "{beta}-Adrenergic Signaling Promotes Morphological Maturation of Astrocytes in Female Mice"




em

Atp13a5 Marker Reveals Pericyte Specification in the Mouse Central Nervous System

Perivascular mural cells including vascular smooth cells (VSMCs) and pericytes are integral components of the vascular system. In the central nervous system (CNS), pericytes are also indispensable for the blood–brain barrier (BBB), blood–spinal cord barrier, and blood–retinal barrier and play key roles in maintaining cerebrovascular and neuronal functions. However, the functional specifications of pericytes between CNS and peripheral organs have not been resolved at the genetic and molecular levels. Hence, the generation of reliable CNS pericyte-specific models and genetic tools remains very challenging. Here, we report a new CNS pericyte marker in mice. This putative cation-transporting ATPase 13A5 (Atp13a5) marker was identified through single-cell transcriptomics, based on its specificity to brain pericytes. We further generated a knock-in model with both tdTomato reporter and Cre recombinase. Using this model to trace the distribution of Atp13a5-positive pericytes in mice, we found that the tdTomato reporter reliably labels the CNS pericytes, including the ones in spinal cord and retina but not peripheral organs. Interestingly, brain pericytes are likely shaped by the developing neural environment, as Atp13a5-positive pericytes start to appear around murine embryonic day 15 (E15) and expand along the cerebrovasculature. Thus, Atp13a5 is a specific marker of CNS pericyte lineage, and this Atp13a5-based model is a reliable tool to explore the heterogeneity of pericytes and BBB functions in health and diseases.




em

Coupling of Slow Oscillations in the Prefrontal and Motor Cortex Predicts Onset of Spindle Trains and Persistent Memory Reactivations

Sleep is known to drive the consolidation of motor memories. During nonrapid eye movement (NREM) sleep, the close temporal proximity between slow oscillations (SOs) and spindles ("nesting" of SO-spindles) is known to be essential for consolidation, likely because it is closely associated with the reactivation of awake task activity. Interestingly, recent work has found that spindles can occur in temporal clusters or "trains." However, it remains unclear how spindle trains are related to the nesting phenomenon. Here, we hypothesized that spindle trains are more likely when SOs co-occur in the prefrontal and motor cortex. We conducted simultaneous neural recordings in the medial prefrontal cortex (mPFC) and primary motor cortex (M1) of male rats training on the reach-to-grasp motor task. We found that intracortically recorded M1 spindles are organized into distinct temporal clusters. Notably, the occurrence of temporally precise SOs between mPFC and M1 was a strong predictor of spindle trains. Moreover, reactivation of awake task patterns is much more persistent during spindle trains in comparison with that during isolated spindles. Together, our work suggests that the precise coupling of SOs across mPFC and M1 may be a potential driver of spindle trains and persistent reactivation of motor memory during NREM sleep.




em

Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations

Neural circuits supporting innate behaviors, such as feeding, exploration, and social interaction, intermingle in the lateral hypothalamus (LH). Although previous studies have shown that individual LH neurons change their firing relative to the baseline during one or more behaviors, the firing rate dynamics of LH populations within behavioral episodes and the coordination of behavior-related LH populations remain largely unknown. Here, using unsupervised graph-based clustering of LH neurons firing rate dynamics in freely behaving male mice, we identified distinct populations of cells whose activity corresponds to feeding, specific times during feeding bouts, or other innate behaviors—social interaction and novel object exploration. Feeding-related cells fired together with a higher probability during slow and fast gamma oscillations (30–60 and 60–90 Hz) than during nonrhythmic epochs. In contrast, the cofiring of neurons signaling other behaviors than feeding was overall similar between slow gamma and nonrhythmic epochs but increased during fast gamma oscillations. These results reveal a neural organization of ethological hierarchies in the LH and point to behavior-specific motivational systems, the dysfunction of which may contribute to mental disorders.




em

Neurophysiology of Effortful Listening: Decoupling Motivational Modulation from Task Demands

In demanding listening situations, a listener's motivational state may affect their cognitive investment. Here, we aim to delineate how domain-specific sensory processing, domain-general neural alpha power, and pupil size as a proxy for cognitive investment encode influences of motivational state under demanding listening. Participants (male and female) performed an auditory gap-detection task while the pupil size and the magnetoencephalogram were simultaneously recorded. Task demand and a listener's motivational state were orthogonally manipulated through changes in gap duration and monetary-reward prospect, respectively. Whereas task difficulty impaired performance, reward prospect enhanced it. The pupil size reliably indicated the modulatory impact of an individual's motivational state. At the neural level, the motivational state did not affect auditory sensory processing directly but impacted attentional postprocessing of an auditory event as reflected in the late evoked-response field and alpha-power change. Both pregap pupil dilation and higher parietal alpha power predicted better performance at the single-trial level. The current data support a framework wherein the motivational state acts as an attentional top–down neural means of postprocessing the auditory input in challenging listening situations.




em

Cortically Disparate Visual Features Evoke Content-Independent Load Signals during Storage in Working Memory

It is well established that holding information in working memory (WM) elicits sustained stimulus-specific patterns of neural activity. Nevertheless, here we provide evidence for a distinct class of neural activity that tracks the number of individuated items in working memory, independent of the type of visual features stored. We present two EEG studies of young adults of both sexes that provide robust evidence for a signal tracking the number of individuated representations in working memory, regardless of the specific feature values stored. In Study 1, subjects maintained either colors or orientations across separate blocks in a single session. We found near-perfect generalization of the load signal between these two conditions, despite being able to simultaneously decode which feature had been voluntarily stored. In Study 2, participants attended to two features with very distinct cortical representations: color and motion coherence. We again found evidence for a neural load signal that robustly generalized across these distinct visual features, even though cortically disparate regions process color and motion coherence. Moreover, representational similarity analysis provided converging evidence for a content-independent load signal, while simultaneously showing that unique variance in EEG activity tracked the specific features that were stored. We posit that this load signal reflects a content-independent "pointer" operation that binds objects to the current context while parallel but distinct neural signals represent the features that are stored for each item in memory.




em

Differential Encoding of Two-Tone Harmonics in the Male and Female Mouse Auditory Cortex

Harmonics are an integral part of music, speech, and vocalizations of animals. Since the rest of the auditory environment is primarily made up of nonharmonic sounds, the auditory system needs to perceptually separate the above two kinds of sounds. In mice, harmonics, generally with two-tone components (two-tone harmonic complexes, TTHCs), form an important component of vocal communication. Communication by pups during isolation from the mother and by adult males during courtship elicits typical behaviors in female mice—dams and adult courting females, respectively. Our study shows that the processing of TTHC is specialized in mice providing neural basis for perceptual differences between tones and TTHCs and also nonharmonic sounds. Investigation of responses in the primary auditory cortex (Au1) from in vivo extracellular recordings and two-photon Ca2+ imaging of excitatory and inhibitory neurons to TTHCs exhibit enhancement, suppression, or no-effect with respect to tones. Irrespective of neuron type, harmonic enhancement is maximized, and suppression is minimized when the fundamental frequencies (F0) match the neuron's best fundamental frequency (BF0). Sex-specific processing of TTHC is evident from differences in the distributions of neurons’ best frequency (BF) and best fundamental frequency (BF0) in single units, differences in harmonic suppressed cases re-BF0, independent of neuron types, and from pairwise noise correlations among excitatory and parvalbumin inhibitory interneurons. Furthermore, TTHCs elicit a higher response compared with two-tone nonharmonics in females, but not in males. Thus, our study shows specialized neural processing of TTHCs over tones and nonharmonics, highlighting local network specialization among different neuronal types.




em

Neurons Underlying Aggression-Like Actions That Are Shared by Both Males and Females in Drosophila

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in Drosophila melanogaster, a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless, a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis in a female electron microscopy dataset suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.




em

Erratum: McCosh et al., "Norepinephrine Neurons in the Nucleus of the Solitary Tract Suppress Luteinizing Hormone Secretion in Female Mice"




em

The Hippocampus Preorders Movements for Skilled Action Sequences

Plasticity in the subcortical motor basal ganglia–thalamo–cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including a brain region traditionally associated with declarative memory—the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset (N = 24; 14 females) collected after participants learnt to produce four finger press sequences entirely from memory with high movement and timing accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic, and cerebellar regions, in particular during sequence execution, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings suggest that the hippocampus preorders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements that require flexible retrieval. These findings challenge the traditional taxonomy of episodic and procedural memory and carry implications for the rehabilitation of individuals with neurodegenerative disorders.




em

Spatiotemporal Neural Network for Sublexical Information Processing: An Intracranial SEEG Study

Words offer a unique opportunity to separate the processing mechanisms of object subcomponents from those of the whole object, because the phonological or semantic information provided by the word subcomponents (i.e., sublexical information) can conflict with that provided by the whole word (i.e., lexical information). Previous studies have revealed some of the specific brain regions and temporal information involved in sublexical information processing. However, a comprehensive spatiotemporal neural network for sublexical processing remains to be fully elucidated due to the low temporal or spatial resolutions of previous neuroimaging studies. In this study, we recorded stereoelectroencephalography signals with high spatial and temporal resolutions from a large sample of 39 epilepsy patients (both sexes) during a Chinese character oral reading task. We explored the activated brain regions and their connectivity related to three sublexical effects: phonological regularity (whether the whole character's pronunciation aligns with its phonetic radical), phonological consistency (whether characters with the same phonetic radical share the same pronunciation), and semantic transparency (whether the whole character's meaning aligns with its semantic radical). The results revealed that sublexical effects existed in the inferior frontal gyrus, precentral and postcentral gyri, temporal lobe, and middle occipital gyrus. Additionally, connectivity from the middle occipital gyrus to the postcentral gyrus and from postcentral gyrus to the fusiform gyrus was associated with the sublexical effects. These findings provide valuable insights into the spatiotemporal dynamics of sublexical processing and object recognition in the brain.




em

G-Protein Signaling in Alzheimer's Disease: Spatial Expression Validation of Semi-supervised Deep Learning-Based Computational Framework

Systemic study of pathogenic pathways and interrelationships underlying genes associated with Alzheimer's disease (AD) facilitates the identification of new targets for effective treatments. Recently available large-scale multiomics datasets provide opportunities to use computational approaches for such studies. Here, we devised a novel disease gene identification (digID) computational framework that consists of a semi-supervised deep learning classifier to predict AD-associated genes and a protein–protein interaction (PPI) network-based analysis to prioritize the importance of these predicted genes in AD. digID predicted 1,529 AD-associated genes and revealed potentially new AD molecular mechanisms and therapeutic targets including GNAI1 and GNB1, two G-protein subunits that regulate cell signaling, and KNG1, an upstream modulator of CDC42 small G-protein signaling and mediator of inflammation and candidate coregulator of amyloid precursor protein (APP). Analysis of mRNA expression validated their dysregulation in AD brains but further revealed the significant spatial patterns in different brain regions as well as among different subregions of the frontal cortex and hippocampi. Super-resolution STochastic Optical Reconstruction Microscopy (STORM) further demonstrated their subcellular colocalization and molecular interactions with APP in a transgenic mouse model of both sexes with AD-like mutations. These studies support the predictions made by digID while highlighting the importance of concurrent biological validation of computationally identified gene clusters as potential new AD therapeutic targets.




em

Ants Farmed Fungi in the Wake of Dinosaurs’ Demise 66 Million Years Ago

A new study from Smithsonian scientists analyzes ant and fungus species, and uncovers the origins of their close partnership




em

Nutrition and food safety remain top priorities for FAO and WHO

FAO and the World Health Organization (WHO) will continue to work closely on nutrition, food safety and antimicrobial resistance issues, FAO Director-General José Graziano da Silva and WHO Director Margaret [...]




em

Morocco's first South-South Cooperation agreement to benefit Guinea and other countries in Africa

Building on previous efforts, the Kingdom of Morocco will offer technical assistance to the Republic of Guinea through a South-South Cooperation Tripartite Agreement signed today at FAO headquarters by FAO [...]




em

FAO and China team up in SSC tripartite agreement to boost local farmers in Namibia

FAO and China have signed a two-year tripartite cooperation agreement worth about N$10.5 million (US$1.5 million) that will boost the efforts of local farmers in Namibia. The agreement, which is [...]




em

FAO Council closure: Director-General urges Members to focus on implementation early in 2015

5 December 2014, Rome – At the closure of the FAO Council held today, the [...]




em

THE HINDU: Agriculture can't remain the same, says FAO official

With rapid soil degradation, fast depletion of groundwater, excessive use of pesticides-fertilizers and extreme weather events all collectively putting stress on farming and forestry, it is time to recognise the [...]




em

EL PAÍS, Maria Helena Semedo: “Agriculture should be integrated in climate change policies”

MANUEL PLANELLES, EL PAÍS, Paris- “Agriculture is seen as a threat in the fight against climate change,” Maria Helena Semedo warns. The Deputy Director-General of the Food and Agriculture Organization [...]




em

Statement of the FAO Secretariat under agenda item 12 “Proposal of the Republic of Korea for the establishment of an FAO World Fisheries University”

Mr Chairman,

I wish to convey, through you, to the Committee on Fisheries, the considered views of the FAO Secretariat on the item on the proposed Fisheries University.  

So far, the [...]




em

FAO and India's SEWA join efforts to empower rural women and youth

India's Self Employed Women's Association (SEWA) and FAO are strengthening their collaboration to boost rural development and reduce poverty in Asia and Africa via local initiatives focused on empowering rural [...]




em

FAO urges strong and effective implementation of global anti-rogue fishing treaty

Washington, 15 September 2016 - The recent entry into force of a ground-breaking international accord on illegal fishing is a welcome development but it now requires "strong and effective implementation", FAO [...]




em

Launch of The State of Food and Agriculture 2017 – Leveraging food systems for inclusive rural transformation

Since the 1990s, rural transformations have helped millions of people exit poverty while remaining in rural areas. This underscores an important fact: revitalising rural economies helps create jobs for rural [...]




em

Informal Seminar: Human resources policies

Informal Seminar: Human resources policies - Invitation for all Permanent Representatives

 Friday, 12 October 2018 - 15.00 to 17.30 (Green Room)





em

Two new reports demonstrate the impact of FAO's partnerships with Belgium and Sweden

Today, FAO launched two new reports in time for the 160th session of the Council:

-          FAO + Belgium: Inclusive approaches to end hunger and promote [...]




em

FAO launches new space on FAO.org to showcase Member Countries

Over the last twenty years, the FAO corporate website has expanded to meet diverse Organizational needs and promote the work of divisions and country offices across FAO. When Director [...]




em

FAO to host a Special Seminar on Food and Nutrition - 25 November

This special seminar calls us to take a new look at how to channel our knowledge, stimulate innovative thinking and guide our actions to expedite agri-food system transformation and achieve [...]




em

World Soil Day celebration, 4 December 2020 (13:00 - 14:30 CET): Keep soil alive, protect soil biodiversity

Soils are essential to life [...]




em

High-level event commemorating the Fifth Anniversary of the Paris Agreement

On the occasion of the fifth anniversary of the Paris Agreement, the event will highlight the key role of the agricultural sectors in supporting the Paris Agreement. The Paris Agreement, [...]




em

Webinar: Globally Important Agricultural Heritage Systems and Ecosystem Restoration

Rome - The experience of farmers who manage agricultural heritage can help achieve the UN Decade of Ecosystem Restoration's main goals: support and scale-up efforts [...]




em

Global consultation on the implementation of the UN Decade of Family farming (UNDFF) in 2019-2020

In December 2017, the United Nations General Assembly proclaimed the UN Decade of Family Farming 2019-2028 (UNDFF) to serve as a framework for developing public policies and investments to [...]




em

FAO - Globally Important Agricultural Heritage Systems Programme call for experts

Rome - The FAO - Globally Important Agricultural Heritage Systems Programme opens the process of establishing a new Scientific Advisory Groupfor the 2021-2022 term.  The Programme is seeking for [...]




em

Accessing FAO's knowledge resources – next session 15 September

Ahead of the Food Systems Summit, join the Publications team to find out more about where to find FAO publications, the different formats available, how you can re-use the [...]




em

The Pre-Summit of the UN Food Systems Summit, 26-28 July 2021, Rome

Delivering the latest evidence-based and scientific approaches, launching new commitments for food systems transformation.




em

AMR Multi-Stakeholder Partnership Platform - Creating a movement for change through engaging multiple actors and voices

The Tripartite organizations (FAO, OIE, WHO) invite partners to join public discussion on the establishment of the AMR Multi-Stakeholder Partnership Platform.




em

Accessing FAO's knowledge resources – Last session 22 September

Ahead of the Food Systems Summit, join the Publications team to find out more about where to find FAO publications, the different formats available, how you can re-use the [...]




em

Report on the implementation of the United Nations Decade of Family Farming (2019–2028)

In December 2017, the United Nations General Assembly proclaimed the UN Decade of Family Farming 2019-2028 (UNDFF) to serve as a framework for developing public policies and investments to [...]