k

Unionized Seoul Subway Workers to Vote Friday Whether to Launch Strike

[Economy] :
Unionized Seoul subway workers will vote on Friday to decide whether they should launch a general strike as labor and management of Seoul's city-run subway operator are facing difficulty in negotiating wages and new hires. According to Seoul Metro, which operates subway Lines One through Eight and ...

[more...]




k

Won Weakens, Trading at more than 1,400 per Dollar

[Economy] :
The South Korean won weakened past the psychological threshold of 14-hundred won against the U.S. dollar on Tuesday, after Donald Trump’s victory in the U.S. presidential election last week.  The South Korean currency traded at 14-hundred-point-seven won per dollar as of 9:05 a.m. Tuesday, six won more ...

[more...]




k

KDI Revises Down Growth Outlook for This Year to 2.2%

[Economy] :
A state-run institute has revised down this year’s growth outlook by zero-point-three percentage point to two-point-two percent. In August, the Korea Development Institute(KDI) said it expected the economy to expand two-point-five percent in 2024. The institute said the economic recovery has weakened as ...

[more...]




k

S. Koreans View Marriage, Childrearing More Favorably than 2 Years Ago

[Economy] :
South Koreans appear to hold more favorable views of marriage and childrearing than they did two years ago. According to Statistics Korea on Tuesday, 52-point-five percent of some 36-thousand people aged 13 and older polled in May said people should get married, up two-point-five percentage points from ...

[more...]




k

KOSPI Down 1.94% on Tuesday

[Economy] :
The benchmark Korea Composite Stock Price Index dipped 49-point-09 points, or one-point-94 percent, on Tuesday to close at two-thousand-482-point-57. The tech-heavy KOSDAQ slid 18-point-32 points, or two-point-51 percent, to close at 710-point-52.

[more...]




k

Won Weakens, Trading at More than 1,400 per Dollar

[Economy] :
The South Korean won weakened past the psychological threshold of 14-hundred won against the U.S. dollar on Tuesday, after Donald Trump’s victory in the U.S. presidential election last week.  The South Korean currency traded at 14-hundred-three-point-five won per dollar as of 3:30 p.m. Tuesday, ...

[more...]




k

KOSPI Slips below 2,500 Threshold for First Time since Black Monday in August

[Economy] :
South Korea’s benchmark Korea Composite Stock Price Index(KOSPI) slipped below the two-thousand-500 threshold on Tuesday for the first time since August’s “Black Monday.” The KOSPI dipped 49-point-09 points, or one-point-94 percent, on Tuesday to close at two-thousand-482-point-57. In the ...

[more...]




k

KOSDAQ Falls below 700 for First Time in 2 Months

[Economy] :
South Korea’s tech-laden KOSDAQ fell below the 700 mark during trading for the first time in two months.  As of 10:12 a.m. Wednesday, the secondary KOSDAQ market stood at 697-point-94, down 12-point-58 points or one-point-77 percent from the previous day.  It marks the first time the KOSDAQ has ...

[more...]




k

KOSPI Plunges 2.64% on Wednesday

[Economy] :
The benchmark Korea Composite Stock Price Index tumbled 65-point-49 points, or two-point-64 percent, on Wednesday to close at two-thousand-417-point-08. The tech-heavy KOSDAQ sank 20-point-87 points, or two-point-94 percent, to close at 689-point-65.

[more...]







k

Rocks and minerals - British Geological Survey

Rocks and minerals  British Geological Survey






k

Who we work with - British Geological Survey

Who we work with  British Geological Survey




k

Working at BGS - British Geological Survey

Working at BGS  British Geological Survey















k

Tracking anharmonic oscillations in the structure of β 1,3-diacetylpyrene

A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material. Its unique properties can be linked to anharmonic oscillations in the crystal structure. The onset and development of anharmonic behavior have been successfully tracked over a wide temperature range by single-crystal X-ray diffraction experiments. Sufficient diffraction data quality combined with modern quantum crystallography tools allowed a thorough analysis of the elusive anharmonic effects for a moderate-scattering purely organic compound.




k

Crystal structure of nickel orthovanadate (Ni3V2O8) at 299 (3) K and 1323 (8) K: an X-ray diffraction study

The structure of Ni3V2O8 was studied using X-ray diffraction at temperatures of 299 and 1323 K. No phase transition at high temperature is observed. The variation in V—O bond length is small as compared with the Ni—O bond due to its high rigidity.




k

The seventh blind test of crystal structure prediction: structure ranking methods

The results of the seventh blind test of crystal structure prediction are presented, focusing on structure ranking methods.




k

Symmetry, magnetic transitions and multiferroic properties of B-site-ordered A2MnB'O6 perovskites (B' = [Co, Ni])

A comparative description is presented of the symmetry and the magnetic structures found in the family of double perovskites A2MnB'O6 (mainly B' = Co and some Ni compounds for comparative purposes).




k

Review of honeycomb-based Kitaev materials with zigzag magnetic ordering




k

Coordination geometry flexibility driving supramolecular isomerism of Cu/Mo pillared-layer hybrid networks

The hydro­thermal synthesis and structural characterization of four novel 3D pillared-layer metal–organic frameworks are studied, revealing how the malleability of copper coordination geometries drives diverse supramolecular isomerism. The findings provide new insights into designing advanced hybrid materials with tailored properties, emphasizing the significant role of reaction conditions and metal ion flexibility in determining network topologies.




k

Polymorphism of Pb5(PO4)3OHδ within the LK-99 mixture

A new orthorhombic crystal Pb5(PO4)3OHδ of space-group symmetry Pnma significantly differs differing from the hexagonal apatite phases of Pb10(PO4)6O and Pb5(PO4)3OH.




k

Crystal structure of nickel orthovanadate (Ni3V2O8) at 299 (3) K and 1323 (8) K: an X-ray diffraction study

Nickel orthovanadate is a promising material with potential applications in energy storage and photocatalytic devices. The crystal structure of Ni3V2O8 at 299 (3) K and 1323 (8) K was studied using X-ray powder diffraction. The sample was a single-phase orthorhombic kagome-staircase-Ni3(VO4)2-type structure (space group Cmca) at both temperatures. The phase purity and morphology was studied using energy-dispersive X-ray spectroscopy and scanning electron microscopy. The refined unit-cell parameters at 299 (3) K are a = 5.93384 (4) Å, b = 11.38318 (7) Å and c = 8.23818 (5) Å, and at 1323 (8) K are a = 6.02077 (7) Å, b = 11.48838 (7) Å and c = 8.32611 (9) Å. The obtained results indicate thermal expansion anisotropy, with a largest expansivity along a. Variations in Ni—O and V—O bonds with temperature are observed. The variation in the Ni—O bond is about one order higher in magnitude than that of the V—O bond, signifying the high rigidity of V—O bonds. The unit-cell size variations with rising effective ionic volume of the divalent A ion in the A3B2O8 family [A = Ni, Mg, Zn, Co, Mn (experimental data) and also A = Cu, Cd (theoretical data), B = V or As] are analyzed. Based on experimental and theoretical data, trends within the family are observed and the unit-cell size for reported solid solution of nickel (87%) and copper (13%) mixture in (Ni1–xCux)3V2O8 are predicted. Predictions are also provided for some hypothetical A3B2O8 ternary compound and solid solutions.




k

Assessment of the exchange-hole dipole moment dispersion correction for the energy ranking stage of the seventh crystal structure prediction blind test

The seventh blind test of crystal structure prediction (CSP) methods substantially increased the level of complexity of the target compounds relative to the previous tests organized by the Cambridge Crystallographic Data Centre. In this work, the performance of density-functional methods is assessed using numerical atomic orbitals and the exchange-hole dipole moment dispersion correction (XDM) for the energy-ranking phase of the seventh blind test. Overall, excellent performance was seen for the two rigid molecules (XXVII, XXVIII) and for the organic salt (XXXIII). However, for the agrochemical (XXXI) and pharmaceutical (XXXII) targets, the experimental polymorphs were ranked fairly high in energy amongst the provided candidate structures and inclusion of thermal free-energy corrections from the lattice vibrations was found to be essential for compound XXXI. Based on these results, it is proposed that the importance of vibrational free-energy corrections increases with the number of rotatable bonds.




k

The seventh blind test of crystal structure prediction: structure ranking methods

A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4 kJ mol−1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases.




k

Crystal structures of three uranyl–acetate–bipyridine complexes crystallized from hydraulic fracking fluid

Hydraulic fracking exposes shale plays to acidic hydraulic fracking fluid (HFF), releasing toxic uranium (U) along with the desired oil and gas. With no existing methods to ensure U remains sequestered in the shale, this study sought to add organic ligands to HFF to explore potential U retention in shale plays. To test this possibility, incubations were set up in which uranyl acetate and one organic bipyridine ligand (either 2,2'-, 2,3'-, 2,4'-, or 4,4'-bipyridine) were added to pristine HFF as the crystallization medium. After several months and complete evaporation of all volatiles, bulk yellow crystalline material was obtained from the incubations, three of which yielded crystals suitable for single-crystal analysis, resulting in two novel structures and a high-quality structure of a previously described compound. The UO2VI acetate complexes bis(acetato-κ2O,O')(2,2'-bipyridine-κ2N,N')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,2'-bipyridine]UVIO2(CH3CO2)2, (I), and bis(acetato-κ2O,O')(2,4'-bipyridine-κN1')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,4'-bipyridine]2UVIO2(CH3CO2)2, (III), contain eight-coordinate UVI in a pseudo-hexagonal bipyramidal coordination geometry and are molecular, packing via weak C—H...O/N interactions, whereas catena-poly[bis(2,3'-bipyridinium) [di-μ-acetato-μ3-hydroxido-μ-hydroxido-di-μ3-oxido-hexaoxidotriuranium(VI)]–2,3'-bipyridine–water (1/1/1)], (C10H9N2)2[U3(C2H3O2)2O8(OH)2]·C10H8N2·H2O or {[2,3'-bipyridinium]2[2,3'-bipyridine][(UVIO2)3(O)2(OH)2(CH3CO2)2·H2O]}n, (II), forms an ionic one-dimensional polymer with seven-coordinate pentagonal bipyramidal UVI centers and hydrogen-bonding interactions within each chain. The formation of these crystals could indicate the potential for bipyridine to bind with U in shale during fracking, which will be explored in a future study via ICP-MS (inductively coupled plasma mass spectrometry) analyses of U concentration in HFF/bipyridine/shale incubations. The variation seen here between the molecular structures may indicate variance in the ability of bipyridine isomers to form complexes with U, which could impact their ability to retain U within shale in the context of fracking.




k

Universal parameters of bulk-solvent masks

The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice.




k

Superstructure reflections in tilted perovskites

The superstructure spots that appear in diffraction patterns of tilted perovskites are well documented and easily calculated using crystallographic software. Here, by considering a distortion mode as a perturbation of the prototype perovskite structure, it is shown how the structure-factor equation yields Boolean conditions for the presence of superstructure reflections. This approach may have some advantages for the analysis of electron diffraction patterns of perovskites.




k

Structure of the outer membrane porin OmpW from the pervasive pathogen Klebsiella pneumoniae

Conjugation is the process by which plasmids, including those that carry antibiotic-resistance genes, are mobilized from one bacterium (the donor) to another (the recipient). The conjugation efficiency of IncF-like plasmids relies on the formation of mating-pair stabilization via intimate interactions between outer membrane proteins on the donor (a plasmid-encoded TraN isoform) and recipient bacteria. Conjugation of the R100-1 plasmid into Escherichia coli and Klebsiella pneumoniae (KP) recipients relies on pairing between the plasmid-encoded TraNα in the donor and OmpW in the recipient. Here, the crystal structure of K. pneumoniae OmpW (OmpWKP) is reported at 3.2 Å resolution. OmpWKP forms an eight-stranded β-barrel flanked by extracellular loops. The structures of E. coli OmpW (OmpWEC) and OmpWKP show high conservation despite sequence variability in the extracellular loops.




k

Human transforming growth factor β type I receptor in complex with kinase inhibitor SB505124

The crystal structure of the intracellular domain of transforming growth factor β type I receptor (TβR1) in complex with the competitive inhibitor SB505124 is presented. The study provides insights into the structure and function of TβR1 in complex with SB505124, and as such offers molecular-level understanding of the inhibition of this critical signalling pathway. The potential of SB505124 as an avenue for therapy in cancer treatment is discussed on basis of the results.




k

Multi-species cryoEM calibration and workflow verification standard

Cryogenic electron microscopy (cryoEM) is a rapidly growing structural biology modality that has been successful in revealing molecular details of biological systems. However, unlike established biophysical and analytical techniques with calibration standards, cryoEM has lacked comprehensive biological test samples. Here, a cryoEM calibration sample consisting of a mixture of compatible macromolecules is introduced that can not only be used for resolution optimization, but also provides multiple reference points for evaluating instrument performance, data quality and image-processing workflows in a single experiment. This combined test specimen provides researchers with a reference point for validating their cryoEM pipeline, benchmarking their methodologies and testing new algorithms.




k

Laboratory X-ray powder micro-diffraction in the research of painted artworks

This review summarizes the methodological aspects of laboratory X-ray powder micro-diffraction and demonstrates the assets of the method in the research of painted artworks for evaluation of their provenance or diagnosing their degradation.




k

Understanding secondary order parameters in perovskites with tilted octahedra

A symmetry guide for the secondary structural degrees of freedom and related physical properties generated by tilts of BX6 octahedra in perovskites is proposed.




k

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

AnACor2.0 significantly accelerates the calculation of analytical absorption corrections in long-wavelength crystallography, achieving up to 175× speed improvements. This enhancement is achieved through innovative sampling techniques, bisection and gridding methods, and optimized CUDA implementations, ensuring efficient and accurate results.




k

Towards expansion of the MATTS data bank with heavier elements: the influence of the wavefunction basis set on the multipole model derived from the wavefunction

This study examines the quality of charge density obtained by fitting the multipole model to wavefunctions in different basis sets. The complex analysis reveals that changing the basis set quality from double- to triple-zeta can notably improve the charge density related properties of a multipole model.




k

Small-angle scattering and dark-field imaging for validation of a new neutron far-field interferometer

A neutron far-field interferometer is under development at NIST with the aim of enabling a multi-scale measurement combining the best of small-angle neutron scattering (SANS) and neutron imaging and tomography. We use the close relationship between SANS, ultra-SANS, spin-echo SANS and dark-field imaging and measurements of monodisperse spheres as a validation metric, highlighting the strengths and weaknesses of each of these neutron techniques.




k

PyFaults: a Python tool for stacking fault screening

Here, an open-source Python library for identifying and screening potential stacking fault models in crystalline materials with planar disorder is presented.