k Crystal structure of S-n-octyl 3-(1-phenylethylidene)dithiocarbazate and of its bis-chelated nickel(II) complex By journals.iucr.org Published On :: 2023-11-14 The nitrogen–sulfur Schiff base proligand S-n-octyl 3-(1-phenylethylidene)dithiocarbazate, C17H26N2S2 (HL), was prepared by reaction of S-octyl dithiocarbamate with acetophenone. Treatment of HL with nickel acetate yielded the complex bis[S-n-octyl 3-(1-phenylethylidene)dithiocarbazato]nickel(II), [Ni(C17H25N2S2)2] (NiL2), which was shown to adopt a tetrahedrally distorted cis-square-planar coordination geometry, with the NiSN planes of the two ligands forming a dihedral angle of 21.66 (6)°. Changes in the geometry of the L ligand upon chelation of Ni2+ are described, involving a ca 180° rotation around the N(azomethine)—C(thiolate) bond. Full Article text
k Synthesis and crystal structures of two related Co and Mn complexes: a celebration of collaboration between the universities of Dakar and Southampton By journals.iucr.org Published On :: 2023-11-16 We report the synthesis and structures of two transition-metal complexes involving 2-(2-hydroxyphenyl)benzimidazole (2hpbi – a ligand of interest for its photoluminescent applications), with cobalt, namely, bis[μ-2-(1H-1,3-benzodiazol-2-yl)phenolato]bis[ethanol(thiocyanato)cobalt(II)], [Co2(C13H9N2O)2(NCS)2(C2H6O)2], (1), and manganese, namely, bis[μ-2-(1H-1,3-benzodiazol-2-yl)phenolato]bis{[2-(1H-1,3-benzodiazol-2-yl)phenolato](thiocyanato)manganese(III)} dihydrate, [Mn2(C13H9N2O)4(NCS)2]·2H2O, (2). These structures are two recent examples of a fruitful collaboration between researchers at the Laboratoire de Chimie de Coordination Organique/Organic Coordination Chemistry Laboratory (LCCO), University of Dakar, Senegal and the National Crystallography Service (NCS), School of Chemistry, University Southampton, UK. This productive partnership was forged through meeting at Pan-African Conferences on Crystallography and quickly grew as the plans for the AfCA (African Crystallographic Association) developed. This article therefore also showcases this productive partnership, in celebration of the IUCr's 75 year anniversary and the recent inclusion of AfCA as a Regional Associate of the IUCr. Full Article text
k Synthesis, crystal structure and properties of chloridotetrakis(pyridine-3-carbonitrile)thiocyanatoiron(II) By journals.iucr.org Published On :: 2023-11-21 Reaction of FeCl2·4H2O with KSCN and 3-cyanopyridine (pyridine-3-carbonitrile) in ethanol accidentally leads to the formation of single crystals of Fe(NCS)(Cl)(3-cyanopyridine)4 or [FeCl(NCS)(C6H4N2)4]. The asymmetric unit of this compound consists of one FeII cation, one chloride and one thiocyanate anion that are located on a fourfold rotation axis as well as of one 3-cyanopyridine coligand in a general position. The FeII cations are sixfold coordinated by one chloride anion and one terminally N-bonding thiocyanate anion in trans-positions and four 3-cyanopyridine coligands that coordinate via the pyridine N atom to the FeII cations. The complexes are arranged in columns with the chloride anions, with the thiocyanate anions always oriented in the same direction, which shows the non-centrosymmetry of this structure. No pronounced intermolecular interactions are observed between the complexes. Initially, FeCl2 and KSCN were reacted in a 1:2 ratio, which lead to a sample that contains the title compound as the major phase together with a small amount of an unknown crystalline phase, as proven by powder X-ray diffraction (PXRD). If FeCl2 and KSCN is reacted in a 1:1 ratio, the title compound is obtained as a nearly pure phase. IR investigations reveal that the CN stretching vibration for the thiocyanate anion is observed at 2074 cm−1, and that of the cyano group at 2238 cm−1, which also proves that the anionic ligands are only terminally bonded and that the cyano group is not involved in the metal coordination. Measurements with thermogravimetry and differential thermoanalysis reveal that the title compound decomposes at 169°C when heated at a rate of 4°C min−1 and that the 3-cyanopyridine ligands are emitted in two separate poorly resolved steps. After the first step, an intermediate compound with the composition Fe(NCS)(Cl)(3-cyanopyridine)2 of unknown structure is formed, for which the CN stretching vibration of the thiocyanate anion is observed at 2025 cm−1, whereas the CN stretching vibration of the cyano group remain constant. This strongly indicates that the FeII cations are linked by μ-1,3-bridging thiocyanate anions into chains or layers. Full Article text
k Crystal structure, Hirshfeld surface analysis, intermolecular interaction energies, energy frameworks and DFT calculations of 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one By journals.iucr.org Published On :: 2023-11-21 In the title molecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N—H⋯O, N—H⋯N and C—H⋯O hydrogen-bonding and slipped π–π stacking interactions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) interactions, showing that hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The molecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was also elucidated to determine the energy gap. Full Article text
k Synthesis, crystal structure and Hirshfeld surface analysis of the tetrakis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacylamidophosphate of the amide type By journals.iucr.org Published On :: 2023-11-30 The tetrakis complex of neodymium(III), tetrakis{μ-N-[bis(pyrrolidin-1-yl)phosphoryl]acetamidato}bis(propan-2-ol)neodymiumsodium propan-2-ol monosolvate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetramethylene)(trichloroacetyl)phosphoric acid triamide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetrakis(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordination compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol molecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion. Full Article text
k An octanuclear nickel(II) pyrazolate cluster with a cubic Ni8 core and its methyl- and n-octyl-functionalized derivatives By journals.iucr.org Published On :: 2023-11-30 The molecular and crystal structure of a discrete [Ni8(μ4-OH)6(μ-4-Rpz)12]2− (R = H; pz = pyrazolate anion, C3H3N2−) cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and n-octyl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu4N+), whereas the crystal of the complex with the parent pyrazole ligand has one Me4N+ and one Bu4N+ counter-ion. The methyl derivative incorporates 1,2-dichloroethane solvent molecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetrabutylazanium tetramethylazanium hexa-μ4-hydroxido-dodeca-μ2-pyrazolato-hexahedro-octanickel, (C16H36N)(C4H12N)[Ni8(C3H3N2)12(OH)6] or (Bu4N)(Me4N)[Ni8(μ4-OH)6(μ-pz)12] (1), bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-methylpyrazolato)-hexahedro-octanickel 1,2-dichloroethane 7.196-solvate, (C16H36N)2[Ni8(C4H5N2)12(OH)6]·7.196C2H4Cl2 or (Bu4N)2[Ni8(μ4-OH)6(μ-4-Mepz)12]·7.196(ClCH2CH2Cl) (2), and bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-octylpyrazolato)-hexahedro-octanickel, (C16H36N)2[Ni8(C11H19N2)12(OH)6] or (Bu4N)2[Ni8(μ4-OH)6(μ-4-nOctpz)12] (3). All counter-ions are disordered (with the exception of one Bu4N+ in 3). Some of the octyl chains of 3 (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known [Ni8(μ4-OH)6(μ-4-Rpz)12]2− complexes, including extended three-dimensional metal–organic frameworks. In all three structures, the Ni8 units are lined up in columns. Full Article text
k Dimorphism of [Bi2O2(OH)](NO3) – the ordered Pna21 structure at 100 K By journals.iucr.org Published On :: 2023-11-30 The re-investigation of [Bi2O2(OH)](NO3), dioxidodibismuth(III) hydroxide nitrate, on the basis of single-crystal X-ray diffraction data revealed an apparent structural phase transition of a crystal structure determined previously (space group Cmc21 at 173 K) to a crystal structure with lower symmetry (space group Pna21 at 100 K). The Cmc21 → Pna21 group–subgroup relationship between the two crystal structures is klassengleiche with index 2. In contrast to the crystal structure in Cmc21 with orientational disorder of the nitrate anion, disorder does not occur in the Pna21 structure. Apart from the disorder of the nitrate anion, the general structural set-up in the two crystal structures is very similar: [Bi2O2]2+ layers extend parallel to (001) and alternate with layers of (OH)− anions above and (NO3)− anions below the cationic layer. Whereas the (OH)− anion shows strong bonds to the BiIII cations, the (NO3)− anion weakly binds to the BiIII cations of the cationic layer. A rather weak O—H⋯O hydrogen-bonding interaction between the (OH)− anion and the (NO3)− anion links adjacent sheets along [001]. Full Article text
k JUAMI, the joint undertaking for an African materials institute: building materials science research collaborations and capabilities between continents By journals.iucr.org Published On :: 2024-01-26 JUAMI, the joint undertaking for an African materials institute, is a project to build collaborations and materials research capabilities between PhD researchers in Africa, the United States, and the world. Focusing on research-active universities in the East African countries of Kenya, Ethiopia, Tanzania and Uganda, the effort has run a series of schools focused on materials for sustainable energy and materials for sustainable development. These bring together early-career researchers from Africa, the US, and beyond, for two weeks in a close-knit environment. The program includes lectures on cutting-edge research from internationally renowned speakers, highly interactive tutorial lectures on the science behind the research, also from internationally known researchers, and hands-on practicals and team-building exercises that culminate in group proposals from self-formed student teams. The schools have benefited more than 300 early-career students and led to proposals that have received funding and have led to research collaborations and educational non-profits. JUAMI continues and has an ongoing community of alumni who share resources and expertise, and is open to like-minded people who want to join and develop contacts and collaborations internationally. Full Article text
k Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butylbenzoate: work carried out as part of the AFRAMED project By journals.iucr.org Published On :: 2024-01-05 In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the molecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking interactions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface. Full Article text
k Crystal structure of a layered phosphate molybdate K2Gd(PO4)(MoO4) By journals.iucr.org Published On :: 2024-01-05 The title compound dipotassium gadolinium(III) phosphate(V) molybdate(VI), K2Gd(PO4)(MoO4), was synthesized from a high-temperature melt starting from GdF3 as a source of gadolinium. Its structure is isotypic with other MI2MIII(MVIO4)(PO4) compounds, where MI = Na, K or Cs, and MIII = rare-earth cation, MVI = Mo or W. The three-dimensional framework is built up from [Gd(PO4)(MoO4)] anionic sheets, which are organized by adhesion of [GdPO4] layers and [MoO4] tetrahedra stacked above and below these layers. The interstitial space is occupied by K cations having eightfold oxygen coordination. The polyhedron of GdO8 was estimated to be a triangular dodecahedron by the continuous shape measurement method. Full Article text
k Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluorophenyl)diazan-1-ylidene]naphthalen-2(1H)-one By journals.iucr.org Published On :: 2024-01-12 The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intramolecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the molecules are linked into inversion dimers by C—H⋯O interactions. Aromatic π–π stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and quantify the intermolecular interactions. In addition, energy frameworks were used to examine the cooperative effect of these intermolecular interactions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound. Full Article text
k Synthesis and crystal structure of diisothiocyanatotetrakis(4-methylpyridine N-oxide)cobalt(II) and diisothiocyanatotris(4-methylpyridine N-oxide)cobalt(II) showing two different metal coor By journals.iucr.org Published On :: 2024-01-26 The reaction of Co(NCS)2 with 4-methylpyridine N-oxide (C6H7NO) leads to the formation of two compounds, namely, tetrakis(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)4] (1), and tris(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3] (2). The asymmetric unit of 1 consists of one CoII cation located on a centre of inversion, as well as one thiocyanate anion and two 4-methylpyridine N-oxide coligands in general positions. The CoII cations are octahedrally coordinated by two terminal N-bonding thiocyanate anions in trans positions and four 4-methylpyridine N-oxide ligands. In the extended structure, these complexes are linked by C—H⋯O and C—H⋯S interactions. In compound 2, two crystallographically independent complexes are present, which occupy general positions. In each of these complexes, the CoII cations are coordinated in a trigonal–bipyramidal manner by two terminal N-bonding thiocyanate anions in axial positions and by three 4-methylpyridine N-oxide ligands in equatorial positions. In the crystal, these complex molecules are linked by C—H⋯S interactions. For compound 2, a nonmerohedral twin refinement was performed. Powder X-ray diffraction (PXRD) reveals that 2 was nearly obtained as a pure phase, which is not possible for compound 1. Differential thermoanalysis and thermogravimetry data (DTA–TG) show that compound 2 start to decompose at about 518 K. Full Article text
k Crystal structures of the alkali aluminoboracites A4B4Al3O12Cl (A = Li, Na) By journals.iucr.org Published On :: 2024-01-26 Single crystals of alkali aluminoboracites, A4B4Al3O12Cl (A = Li, Na), were grown using the self-flux method, and their isotypic cubic crystal structures were determined by single-crystal X-ray diffraction. Na4B4Al3O12Cl is the first reported sodium boracite, and its lattice parameter [13.5904 (1) Å] is the largest among the boracites consisting of a cation–oxygen framework reported so far. For both crystals, structure models refined in the cubic space group Foverline{4}3c, which assume that all cubic octant subcells in the unit cell are equivalent, converged with R1 factors of ∼0.03. However, the presence of weak hhl reflections with odd h and l values indicates that refinements in the space group F23, which presume a checkerboard-like ordering of two types of subcells with slightly different atomic positions, are more appropriate. Full Article text
k (E)-N,N-Diethyl-4-{[(4-methoxyphenyl)imino]methyl}aniline: crystal structure, Hirshfeld surface analysis and energy framework By journals.iucr.org Published On :: 2024-01-26 In the title benzylideneaniline Schiff base, C18H22N2O, the aromatic rings are inclined to each other by 46.01 (6)°, while the Car—N= C—Car torsion angle is 176.9 (1)°. In the crystal, the only identifiable directional interaction is a weak C—H⋯π hydrogen bond, which generates inversion dimers that stack along the a-axis direction. Full Article text
k Crystal structure, Hirshfeld surface analysis, crystal voids, interaction energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hydroxy-5-methyl-1H-pyrazol-4-yl)-3-phenylpropanoate By journals.iucr.org Published On :: 2024-01-31 The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (Poverline{1}), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of molecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) interactions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
k Crystal structure, Hirshfeld surface analysis, crystal voids, interaction energy calculations and energy frameworks, and DFT calculations of 1-(4-methylbenzyl)indoline-2,3-dione By journals.iucr.org Published On :: 2024-01-31 The indoline portion of the title molecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C—H⋯O hydrogen bonds and C—H⋯π(ring), π-stacking and C=O⋯π(ring) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
k Crystal structure of the sodium salt of mesotrione: a triketone herbicide By journals.iucr.org Published On :: 2024-02-16 The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methanesulfonyl-2-nitrophenyl)carbonyl]-3-oxocyclohex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol molecule, and an O atom from the methylsulfonyl group of a neighboring molecule. Simultaneously, an O atom of the cyclohexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages. Full Article text
k Crystal structure of tetrakis(μ-2-hydroxy-3,5-diisopropylbenzoato)bis[(dimethyl sulfoxide)copper(II)] By journals.iucr.org Published On :: 2024-02-27 Metal complexes of 3,5-diisopropylsalicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diisopropylsalicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hydroxy group of the diisopropylsalicylate ligands participates in intramolecular O—H⋯O hydrogen-bonding interactions. Full Article text
k Crystal structure of tetraphenyl phosphate tetrakis[dimethyl (2,2,2-trichloroacetyl)phosphoramidato]lutetium(III), PPh4[LuL4] By journals.iucr.org Published On :: 2024-03-12 A lutetium(III) complex based on the anion of the ligand dimethyl (2,2,2-trichloroacetyl)phosphoramidate (HL) and tetraphenylphosphonium, of composition PPh4[LuL4] (L = CAPh = carbacylamidophosphate), or (C24H20)[Lu(C4H6Cl3NO4P)4], has been synthesized and structurally characterized. The X-ray diffraction study of the compound revealed that the lutetium ion is surrounded by four bis-chelating CAPh ligands, forming the complex anion [LuL4]− with a coordination number of 8[O] for LuIII, while PPh4+ serves as a counter-ion. The coordination geometry around the Lu3+ ion was determined to be a nearly perfect triangular dodecahedron. The complex crystallizes in the monoclinic crystal system, space group P21/c, with four molecules in the unit cell. Weak hydrogen bonds O⋯HC(Ph), Cl⋯HC(Ph) and N⋯HC(Ph) are formed between the cations and anions. For a comparative study, HL-based structures were retrieved from the Cambridge Structural Database (CSD) and their geometries and conformations are discussed. A Hirshfeld surface analysis was also performed. Full Article text
k Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, interaction energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)ethyl]-5,5-diphenylimidazolidine By journals.iucr.org Published On :: 2024-03-26 In the title molecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of molecules extending parallel to the c axis that are connected by C—H⋯π(ring) interactions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized molecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
k Synthesis, crystal structure and Hirshfeld surface analysis of bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide By journals.iucr.org Published On :: 2024-03-26 A novel cationic complex, bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold molecular symmetry in the tetragonal space group P4/n. The CuII atom exhibits a square-pyramidal coordination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitrogen atoms from four AAT molecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT interact with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the intermolecular interactions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts. Full Article text
k Crystal structure, Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-b By journals.iucr.org Published On :: 2024-05-14 The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
k Crystal structure and Hirshfeld surface analysis of 3,3'-[ethane-1,2-diylbis(oxy)]bis(5,5-dimethylcyclohex-2-en-1-one) including an unknown solvate By journals.iucr.org Published On :: 2024-05-17 The title molecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an envelope conformation. In the crystal, the molecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) interactions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density. Full Article text
k Trifluoromethanesulfonate salt of 5,10,15,20-tetrakis(1-benzylpyridin-1-ium-4-yl)-21H,23H-porphyrin and its CaII complex By journals.iucr.org Published On :: 2024-05-21 The synthesis, crystallization and characterization of a trifluoromethanesulfonate salt of 5,10,15,20-tetrakis(1-benzylpyridin-1-ium-4-yl)-21H,23H-porphyrin, C68H54N84+·4CF3SO3−·4H2O, 1·OTf, are reported in this work. The reaction between 5,10,15,20-tetrakis(pyridin-4-yl)-21H,23H-porphyrin and benzyl bromide in the presence of 0.1 equiv. of Ca(OH)2 in CH3CN under reflux with an N2 atmosphere and subsequent treatment with silver trifluoromethanesulfonate (AgOTf) salt produced a red–brown solution. This reaction mixture was filtered and the solvent was allowed to evaporate at room temperature for 3 d to give 1·OTf. Crystal structure determination by single-crystal X-ray diffraction (SCXD) revealed that 1·OTf crystallizes in the space group P21/c. The asymmetric unit contains half a porphyrin molecule, two trifluoromethanesulfonate anions and two water molecules of crystallization. The macrocycle of tetrapyrrole moieties is planar and unexpectedly it has coordinated CaII ions in occupational disorder. This CaII ion has only 10% occupancy (C72H61.80Ca0.10F12N8O16S4). The pyridinium rings bonded to methylene groups from porphyrin are located in two different arrangements in almost orthogonal positions between the plane formed by the porphyrin and the pyridinium rings. The crystal structure features cation⋯π interactions between the CaII atom and the π-system of the phenyl ring of neighboring molecules. Both trifluoromethanesulfonate anions are found at the periphery of 1, forming hydrogen bonds with water molecules. Full Article text
k Crystal structure of (6,9-diacetyl-5,10,15,20-tetraphenylsecochlorinato)nickel(II) By journals.iucr.org Published On :: 2024-05-24 Title compound 1Ni, [Ni(C46H32N4O2)], a secochlorin nickel complex, was prepared by diol cleavage of a precursor trans-dihydroxydimethylchlorin. Two crystallographically independent molecules in the structure are related by pseudo-A lattice centering, with molecules differing mainly by a rotation of one of the acetyls and an adjacent phenyl groups. The two molecules have virtually identical conformations characterized by noticeable in-plane deformation in the A1g mode and a prominent out-of-plane deformation in the B1u (ruffling) mode. Directional interactions between molecules are scarce, limited to just a few C—H⋯O contacts, and intermolecular interactions are mostly dispersive in nature. Full Article text
k Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) By journals.iucr.org Published On :: 2024-05-31 The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methylpyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methylpyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methylpyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thiocyanate anions and four independent 4-methylpyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thiocyanate anions and four 4-methylpyridine coligands within slightly distorted octahedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methylpyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition. Full Article text
k Crystal structure of Staudtienic acid, a diterpenoid from Staudtia kamerunensis Warb. (Myristicaceae) By journals.iucr.org Published On :: 2024-07-19 This title compound, C20H26O2, was isolated from the benzene fraction of the stem bark of Staudtia kamerunensis Warb. (Myristicaceae) using column chromatography techniques over silica gel. The compound was fully characterized by single-crystal X-ray diffraction, one and two-dimensional NMR spectroscopy, IR and MS spectrometry. The compound has two fused cyclohexane rings attached to a benzene ring, with a carboxylic acid on C-4. This cyclohexene ring has a chair conformation while the other adopts a half-chair conformation. The benzene ring is substituted with a propenyl moiety. The structure is characterized by intermolecular O—H⋯O hydrogen bonds, two C—H⋯O intramolecular hydrogen bonds and two C—H⋯π interactions. The molecular structure confirms previous studies carried out by spectroscopic techniques. Full Article text
k Syntheses and crystal structures of the five- and sixfold coordinated complexes diisoselenocyanatotris(2-methylpyridine N-oxide)cobalt(II) and diisoselenocyanatotetrakis(2-methylpyridine N- By journals.iucr.org Published On :: 2024-06-07 The reaction of CoBr2, KNCSe and 2-methylpyridine N-oxide (C6H7NO) in ethanol leads to the formation of crystals of [Co(NCSe)2(C6H7NO)3] (1) and [Co(NCSe)2(C6H7NO)4] (2) from the same reaction mixture. The asymmetric unit of 1 is built up of one CoII cation, two NCSe− isoselenocyanate anions and three 2-methylpyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four isoselenocanate anions and eight 2-methylpyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the CoII cations are fivefold coordinated to two terminally N-bonded anionic ligands and three 2-methylpyridine N-oxide coligands within a slightly distorted trigonal–bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded isoselenocyanate anions and four 2-methylpyridine N-oxide coligands within a slightly distorted cis-CoN2O4 octahedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak C—H⋯Se and C—H⋯O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase. Full Article text
k Crystal structure and Hirshfeld surface analysis of 2-bromoethylammonium bromide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-06-18 This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H interactions, which constitute 62.6% of the overall close atom contacts. Full Article text
k Synthesis, crystal structure and thermal properties of catena-poly[[bis(4-methylpyridine)nickel(II)]-di-μ-thiocyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octahedra (p = 4-me By journals.iucr.org Published On :: 2024-06-21 The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methylpyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thiocyanate anions and two independent 4-methylpyridine coligands in general positions. Each NiII cation is octahedrally coordinated by two 4-methylpyridine coligands as well as two N- and two S-bonded thiocyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thiocyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methylpyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thiocyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains. Full Article text
k Crystal structure determination and analyses of Hirshfeld surface, crystal voids, intermolecular interaction energies and energy frameworks of 1-benzyl-4-(methylsulfanyl)-3a,7a-dihydro-1H-pyrazolo[3,4-d]pyrimidine By journals.iucr.org Published On :: 2024-06-25 The pyrazolopyrimidine moiety in the title molecule, C13H12N4S, is planar with the methylsulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the molecule an approximate L shape. In the crystal, C—H⋯π(ring) interactions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π interactions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions. Full Article text
k Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexakis(nitrato-κ2O,O')thorate(IV) By journals.iucr.org Published On :: 2024-07-05 Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosahedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations interact via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important interactions are O⋯H/H⋯O hydrogen-bonding interactions, which represent a 55.2% contribution. Full Article text
k Puckering effects of 4-hydroxy-l-proline isomers on the conformation of ornithine-free Gramicidin S By journals.iucr.org Published On :: 2024-08-09 The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hydroxyprolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anticipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by interactions between the hydroxyl groups of hydroxyproline, the solvent molecules, and peptides. Full Article text
k Foreword to the AfCA collection: celebrating work published by African researchers in IUCr journals By journals.iucr.org Published On :: 2024-09-30 Full Article text
k Crystal structure, Hirshfeld surface analysis, DFT and the molecular docking studies of 3-(2-chloroacetyl)-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one By journals.iucr.org Published On :: 2024-08-30 In the title compound, C33H29ClN2O2, the two piperidine rings of the diazabicyclo moiety adopt distorted-chair conformations. Intermolecular C—H⋯π interactions are mainly responsible for the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, revealing that H⋯H interactions contribute most to the crystal packing (52.3%). The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined molecular structure in the solid state. Full Article text
k Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aquabis(μ3-carbamoylcyanonitrosomethanido)barium] monohydrate] and its thermal decomposition By journals.iucr.org Published On :: 2024-08-30 In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water molecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water molecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coordination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water molecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoylcyanonitrosomethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyanonitroso anions can be utilized as bridging ligands for the supramolecular synthesis of MOF solids. Such an outcome may be anticipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K. Full Article text
k Crystal structure, Hirshfeld surface analysis, DFT optimized molecular structure and the molecular docking studies of 1-[2-(cyanosulfanyl)acetyl]-3-methyl-2,6-bis(4-methylphenyl)piperidin-4-one By journals.iucr.org Published On :: 2024-09-12 The two molecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and intermolecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined molecular structure in the solid state. Full Article text
k Crystal structure, Hirshfeld surface analysis, and calculations of intermolecular interaction energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)-benzimidazol-2-one By journals.iucr.org Published On :: 2024-09-30 The benzimidazole moiety in the title molecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure. There are no π–π interactions present but two weak C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) interactions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound. Full Article text
k Color center creation by dipole stacking in crystals of 2-methoxy-5-nitroaniline By journals.iucr.org Published On :: 2024-09-10 This work describes the X-ray structure of orange–red crystals of 2-methoxy-5-nitroaniline, C7H8N2O3. The compound displays concentration-dependent UV-Vis spectra, which is attributed to dipole-induced aggregation, and light absorption arising from an intermolecular charge-transfer process that decreases in energy as the degree of aggregation increases. The crystals display π-stacking where the dipole moments align antiparallel. Stacked molecules interact with the next stack via hydrogen bonds, which is a state of maximum aggregation. Light absorption by charge transfer can be compared to colored inorganic semiconductors such as orange–red CdS, with a band gap of 2.0–2.5 eV. Full Article text
k Synthesis, characterization, and crystal structure of hexakis(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate By journals.iucr.org Published On :: 2024-09-24 The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methylimidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group Poverline{3}. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O interactions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy. Full Article text
k Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methylbenzimidazole-κN3)aquabis(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate By journals.iucr.org Published On :: 2024-10-22 The molecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of interest for its antimicrobial properties. The asymmetric unit comprises two independent complex molecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of intermolecular interactions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts. Full Article text
k Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-dimethylpyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-dimethylpyrazine) network By journals.iucr.org Published On :: 2024-09-24 Reaction of copper(I)chloride with 2,3-dimethylpyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-dimethylpyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-dimethylpyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-dimethylpyrazine ligands as well as one ethanol solvate molecule in general positions. The ethanol molecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-dimethylpyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetrahedrally coordinated by two N atoms of two bridging 2,3-dimethylpyrazine ligands and two μ-1,1-bridging chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-dimethylpyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent molecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-dimethylpyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase. Full Article text
k Crystal structure and Hirshfeld surface analyses, crystal voids, intermolecular interaction energies and energy frameworks of 3-benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione By journals.iucr.org Published On :: 2024-10-04 The title molecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions form helical chains of molecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) interactions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy. Full Article text
k Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetraazacyclododecane-κ4N)nickel(II) nitrate By journals.iucr.org Published On :: 2024-10-11 The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays intermolecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetraazacyclododecane (cyclen) backbone has the [4,8] configuration, with three nitrogen-bound H atoms directed above the plane of the nitrogen atoms towards the offset nickel atom with the fourth nitrogen-bound hydrogen directed below from the plane of the nitrogen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand. Full Article text
k Crystal structure, Hirshfeld surface analysis, and DFT and molecular docking studies of 6-cyanonaphthalen-2-yl 4-(benzyloxy)benzoate By journals.iucr.org Published On :: 2024-10-22 In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benzyloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanonaphthalene ring and the aromatic ring of the phenyl benzoate and the benzyloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benzyloxy fragments is 72.30 (13)°. In the crystal, the molecules are linked by weak C—H⋯O interactions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π interactions and two π–π stacking interactions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Intermolecular interactions were quantified using Hirshfeld surface analysis. The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Molecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1. Full Article text
k Crystal structures and photophysical properties of mono- and dinuclear ZnII complexes flanked by triethylammonium By journals.iucr.org Published On :: 2024-10-24 Two new zinc(II) complexes, triethylammonium dichlorido[2-(4-nitrophenyl)-4-phenylquinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis(triethylammonium) {2,2'-[1,4-phenylenebis(nitrilomethylidyne)]diphenolato}bis[dichloridozinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI–MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitrophenyl)-4-phenylquinolin-8-ol (HOQ) and N,N'-bis(2-hydroxybenzylidene)benzene-1,4-diamine (H2BS) were deprotonated by triethyl-amine, forming the counter-ion Et3NH+, which interacts via an N—H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal–pyramidal (ZnOQ) and distorted tetrahedral (ZnBS) geometries with a coordination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitrogen for the HOQ ligand, while for the H2BS ligand, it is the nitrogen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C—H⋯π interactions, while that of ZnBS by C—H⋯Cl interactions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence. Full Article text
k Crystal structure and Hirshfeld surface analysis of the salt 2-iodoethylammonium iodide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-10-31 The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodoethylammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supramolecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I interactions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001]. Full Article text
k Crystal structure of bis{5-(4-chlorophenyl)-3-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate By journals.iucr.org Published On :: 2024-10-31 The unit cell of the title compound, [Ni(C16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol molecules. In the complex, the two tridentate 2-(3-(4-chlorophenyl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudooctahedral coordination sphere. Neighbouring tapered molecules are linked through weak C—H(pz)⋯π(ph) interactions into monoperiodic chains, which are further linked through weak C—H⋯N/C interactions into diperiodic layers. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni—N bond distance is 2.095 Å. Energy framework analysis at the HF/3–21 G theory level was performed to quantify the interaction energies in the crystal structure. Full Article text
k Synthesis and structure of pentakis(2-aminopyridinium) nonavanado(V)tellurate(VI) By journals.iucr.org Published On :: 2024-12-01 In the title compound, (C5H7N2)5[TeV9O28], the tellurium and vanadium atoms are statistically disordered over two of the ten metal-atom sites in the [TeV9O28]5– heteropolyanion. The anions stack along [100] and are extended into a three-dimensional supramolecular network through N—H⋯O and weak C—H⋯O hydrogen bonds involving the self-assembled 2-aminopyridinium pentamers, which are linked by C—H⋯π and π–π stacking interactions. The most important contributions to the Hirshfeld surface arise from O⋯H/H⋯O (54.8%), H⋯H (17.8%) and C⋯H/H⋯C (13.4%) contacts. Full Article text
k Review and experimental comparison of speckle-tracking algorithms for X-ray phase contrast imaging By journals.iucr.org Published On :: This review focuses on low-dose near-field X-ray speckle phase imaging in the differential mode introducing the existing algorithms with their specifications and comparing their performances under various experimental conditions. Full Article text