c

Method and an apparatus for processing a lenticular printing substrate

A method for preparing a lenticular guide roll for use in a lenticular printing run. The method comprises providing a printing roll of a printing press and a first piece of lenticular media. The first piece of lenticular printing substrate has a pitch which is substantially identical to a second lenticular printing substrate to be used in the lenticular printing run. The, method further comprises attaching the first piece of lenticular printing substrate to the printing roll to allow the maneuvering of the second lenticular printing substrate by the printing roll in the printing press.




c

Environmental control subsystem for a variable data lithographic apparatus

Methods and structures are disclosed to minimize the presence of vapor clouding in the path between an energy (e.g., radiation) source and the dampening fluid layer in a variable data lithography system. Also disclosed are conditions for optimizing vaporization of regions of the dampening fluid layer for a given laser source power. Conditions are also disclosed for minimizing re-condensation of vaporized dampening fluid onto the patterned dampening fluid layer. Accordingly, a reduction in the power required for, and an increase in the reproducibility of, patterning of a dampening fluid layer over a reimageable surface in a variable data lithography system are disclosed.




c

Dampening fluid recovery in a variable data lithography system

In a variable data lithography system that employs a patterned dampening fluid layer for image formation, dampening fluid may be removed prior to image transfer to a substrate. Removed dampening fluid may be recovered and recycled to reduce operating expenses and environmental waste. A replacement fluid may be applied after inking and after removal of the dampening fluid. The replacement fluid preferentially occupies the regions previously occupied by dampening fluid, and may lubricate the transfer nip. Any replacement fluid and ink not transferred to the substrate upon printing may then be cleaned from the print image carrier prior to forming a new dampening fluid layer and subsequent pattern formation.




c

Printer cylinder assembly for a printing machine

A printing cylinder assembly for a printing machine having a sleeve cylinder which can be simply coupled to and decoupled from a rotating shaft and which can be exchanged easily. The sleeve cylinder is mounted to fit on the rotating shaft so that it can be fitted on, and be extracted from, the rotating shaft, constituting a printing cylinder. The rotating shaft is provided with a cam shaft and a coupling member that constitutes a coupling mechanism. In a coupling and a decoupling state which the coupling mechanism comes into, rotations of the cam shaft cause the coupling member to couple and decouple the sleeve cylinder to and from the rotating shaft when the coupling member is diametrically urged against, and parted from, the inner diametric surface of the sleeve cylinder, respectively.




c

Forming an image on a flexographic media

A method for forming an image on a flexographic media includes providing a screened image; locating transition points from data regions to non-data regions in said screened image; determining a distance between pixels in adjacent data regions for each transition point; if the distance is greater than a predetermined distance, modify said screened image to remove a shoulder of pixels in contact with the transition point; and forming the modified screened image on the flexographic media.




c

Laser-assisted alignment of multi-station flexographic printing system

A multi-station flexographic printing system includes a plurality of flexographic printing stations. Each flexographic printing station includes a flexo master. Each flexo master comprises a Fresnel zone pattern in a unique position. A method of aligning a plurality of flexographic printing stations includes printing a Fresnel zone pattern on a substrate in a unique position for each flexographic printing station. Light is directed through the Fresnel zone patterns on the substrate. The light focused by the Fresnel zone patterns is captured with a sensor device.




c

Security device and its production method

A security device comprises two or more regions (1, 2). Each region (1, 2) contains a material or combination of materials wherein the two or more regions exhibit substantially the same visible appearance under first viewing conditions and different visible appearances under second viewing conditions, the second viewing conditions. The second viewing conditions comprise a combination of a) visible light and b) substantially any UV wavelength.




c

Hot stamping printing device

A printing device 300 for printing elements in the form of sheets 10, includes a platen press 310 which hot stamps to affix to each sheet 10 with a colored or metallized film from at least one stamping strip 320. A transport device 340 introduces each sheet 10 one after the other into the platen press 310 by pulling the sheet 10 by its front edge. The printing device 300 further includes a device 360 able to partially restrain each sheet 10 by its rear portion during the phase of introducing the sheet 10 into the platen press 310.




c

Marking device for golf balls

A marking device for golf balls comprises a seat, an arch-shaped retainer, and a bottom plate. The seat defines a central recess and defines a bottom opening that communicates with the central recess. The seat is provided with an anti-slip pad within the central recess. Also, the seat is provided with upper positioning means and lower positioning means. The arch-shaped retainer is provided with retainer positioning means corresponding to the upper positioning means of the seat. The bottom plate is provided with plate positioning means corresponding to the lower positioning means of the seat. Therefore, the arch-shaped retainer and the bottom plate can be properly positioned on the seat. Furthermore, the arch-shaped retainer defines a central slit and the bottom plate defines a plurality of hollowed-out symbols. As such, the marking device can mark a line or symbol on a golf ball conveniently.




c

Method for changing edition on a rotary press

A method for successive printing of a first print job and a second print job on the same web using at least one printing group of the rotary press to print the first print job and the second print job is provided. The printing group includes at least a plate cylinder, a plate, a blanket cylinder and a blanket. Between the first print job and the second print job, a plate-changing stage occurs in which the blanket is held away from the web and the plates of the plate cylinder are changed. According to one aspect of the invention, between the first print job and the second print job, the web is kept traveling through the rotary press.




c

Laser-engraveable flexographic printing precursors and methods of imaging

A laser-engraveable flexographic printing precursor or patternable element comprises a laser-engraveable layer having two orthogonal dimensions. This laser-engraveable layer comprises one or more elastomeric resins and non-metallic fibers that are oriented in the laser-engraveable layer predominantly in one of its two orthogonal dimensions. The non-metallic fibers have an average length of at least 0.1 mm and an average diameter of at least 1 μm. The oriented non-metallic fibers reduce curl and shrinkage in the precursor and improve print quality and press life.




c

Wrinkle detection in continuous feed printers

A web printing system automatically detects the location of a wrinkle in a moving web. The web has a plurality of marked reference positions including an inboard position, a center position, and an outboard position. A plurality of contact image sensors detect the reference positions after the web passes through a spreader and an inboard distance and an outboard distance are respectively measured from the center position. If the inboard distance is less than a nominal inboard distance, the wrinkle is identified as inboard of the center position. If the outboard distance is less than a nominal outboard distance, the wrinkle is identified as outboard of the center position. The machine operator is notified of the fault condition and takes action to remedy the situation.




c

Screen printing device and an image recognizing method in the screen printing device

An imaging part in a screen printing device which images a board and a screen mask includes a single camera which is disposed with a posture of horizontally facing towards an incidence optical axis, a half mirror which makes an imaging light, which is incident through a lower imaging optical axis, to be incident on a camera, and a mirror which makes an imaging light, which is incident through an upper imaging optical axis, to pass through the half mirror and to be incident on the camera, and further has an upper illuminating part and a lower illuminating part which individually illuminate respective imaging objects. Imaging light is taken in the camera in a state that the upper illuminating part and the lower illuminating part are individually operated in a mask imaging step and a board imaging step, respectively.




c

Method and apparatus for orienting magnetic flakes

The invention relates to a method of aligning magnetic flakes, which includes: coating a substrate with a carrier having the flakes dispersed therein, moving the substrate in a magnetic field so as to align the flakes along force lines of the magnetic field in the absence of an effect from a solidifying means, and at least partially solidifying the carrier using a solidifying means while further moving the substrate in the magnetic field so as to secure the magnetic flakes in the carrier while the magnetic field maintains alignment of the magnetic flakes. An apparatus is provided, which has a belt for moving a substrate along a magnet assembly for aligning magnetic flakes. The apparatus also includes a solidifying means, such as a UV- or e-beam source, and a cover above a portion of the magnet assembly for protecting the flakes from the effect of the solidifying means.




c

Ink solutions for microcontact printing

An ink solution comprises (a) a solvent having (i) a boiling point between about 50° C. and about 100° C., (ii) a relative polarity of less than about 0.4, and (iii) a poly(dimethylsiloxane) swelling ratio of less than about 1.25; and (b) one or more dissolved organosulfur compounds, wherein each organosulfur compound has 10 or more carbon atoms. The one or more organosulfur compounds are present in a total concentration of at least about 3 mM, and the ink solution contains essentially no solid particles of the organosulfur compounds or solid particles derived from the organosulfur compounds.




c

Lithographic printing plate precursor

A positive-working lithographic printing plate precursor which comprises on a support having a hydrophilic surface or which is provided with a hydrophilic layer, a heat and/or light-sensitive coating comprising an infrared adsorbing agent and a binder including a monomeric unit including a salicylic acid group and a monomeric unit including a sulfonamide group.




c

Rotary system and method for printing containers

A system for digitally printing directly on a plurality of containers is provided. In an embodiment, the system includes a device configured to determine an initial position or orientation of an individual container; a plurality of print heads configured to print directly on said containers; and a plurality of container holders configured hold or retain an individual container, to rotate the individual container, and to maintain a rotational position of the individual container relative to at least one print head while printing occurs; and one or more curing devices. The system may be configured such that the plurality of container holders are configured to move along a linear or curved path, and the plurality of container holders may be configured to controllably rotate about a container axis.




c

Silk screen printing device with one main actuator

A device (1) for printing an impression by silk screen printing on at least one object (3), comprising of: a chassis (27); an object holder module (5) being movable relative to the chassis along a direction of pressing (Oz); a print head (7) including a screen holder module (29) and a squeegee holder module (31), the print head being movable relative to the chassis between an operating position close to the object holder module, and a maintenance position away from the object holder module, and an actuator (8) having a first part (125) and a second part (127) that is movable relative to the first part (125), the actuator (8) being adapted, in a first mode of operation, to be supported on the chassis by the first part and capable of moving the print head from the operating position to the maintenance position by a movement of the second part. The actuator is adapted, in a second mode of operation, to be supported on the chassis by the second part and is capable of moving the object holder module along the direction of pressing relative to the chassis by a movement of the first part.




c

Dampening fluid deposition by condensation in a digital lithographic system

A system and corresponding methods are disclosed for depositing of a layer of dampening fluid to a reimageable surface of an imaging member in a variable data lithography system by way of condensation. Dampening fluid in an airborne state is introduced proximate the reimageable surface in a condensation region. Conditions in the condensation region are such that the airborne dampening fluid preferentially condenses on the reimageable surface in a precisely controlled quantity, to thereby form a precisely controlled layer of dampening fluid of desired thickness over the reimageable surface. Among other advantages, improved print quality is obtained.




c

Apparatus for applying indicia on web substrates

A contact printing system is disclosed. A gravure cylinder having a plurality of discrete cells having an aspect ratio of at least about 25:1 disposed upon an outer surface thereof. A first portion of a first fluid and a second portion of a second fluid are disposed from a respective channel disposed internal to the gravure cylinder.




c

Lithographic printing plate precursor, lithographic printing plate platemaking method, and polymerizable monomer

There is provided a lithographic printing plate precursor that enables image recording using a laser and that provides an excellent scumming resistance and an excellent developability while maintaining a satisfactory printing durability. Also provided are a platemaking method, and a novel polymerizable monomer. A lithographic printing plate precursor has a support, and an image recording layer disposed thereon and containing a radical polymerization initiator and a polymerizable monomer that has a sulfonamide group and at least two ethylenically unsaturated groups; a lithographic printing plate platemaking method uses this lithographic printing plate precursor; and a polymerizable monomer has a sulfonamide group and at least two ethylenically unsaturated groups.




c

Method and an apparatus having a compressible collar for thermally treating a photosensitive precursor

The invention pertains to a method and apparatus for preparing a printing form from a precursor, particularly a method and apparatus for preparing the printing form by thermally treating a photosensitive precursor having a photopolymerizable layer. The method and apparatus includes heating the photosensitive precursor to a temperature sufficient to cause a portion of the layer to liquefy, contacting the precursor with a development medium to remove the liquefied material, and supporting a development medium with a core member adjacent an exterior surface of the photosensitive precursor, wherein a compressible collar of a closed-cell foam having a Poisson's ratio of less than 0.4 is disposed between the core member and the development medium.




c

Inductively heatable cylinder

A device for heating at least one tool that is disposed on the circumference of a rotating cylinder, for example on the circumference of an embossing cylinder. The embossing tool is produced from a magnetizable material and it is fixed to a carrier sleeve that is produced from a non-magnetizable material.




c

Printer and method for transferring wiring patterns to objects

A printer according to the present invention includes a transfer roll and a plurality of the printing rolls. At least one printing roll of the plurality of the printing rolls transfers ink containing a conductive material to the transfer roll. Preferably, the at least one printing roll includes a printing roll configured to transfer ink containing a conductive material to the transfer roll and a printing roll configured to transfer ink containing a conductive material to the transfer roll.




c

Silicone rubber material for soft lithography

The present invention relates to a silicone rubber like material and a printing device including a stamp layer (100;201) comprising such a material. The material is suitable for use in soft lithography as it enables stable features having dimensions in the nanometer range to be obtained on a substrate, and also allows for the accommodation onto rough and non-flat substrate surfaces. The invention also relates to methods for manufacturing the silicone rubber like material and stamp layer (100;201) and use thereof in lithographic processes.




c

Method and system for applying customer-specific labels to unprinted side of printed products

Systems and methods for applying customer-specific labels to an unprinted or non-displayed side of printed products.




c

Printing plate and method for manufacturing same

The present invention relates to a cliché and a method for manufacturing the same, and the cliché according to the present invention comprises a cliché comprising: a groove pattern, wherein the groove pattern comprises a region composed of linear patterns which do not intersect with each other and the region composed of linear patterns is a square region comprising two or more lines of a linear pattern in the region and comprises a region in which the line width (W) and the depth (D) of the linear pattern and the ratio (R) of a region which does not comprise the linear pattern in the square region and the aperture line width (W0) of a mask pattern for forming a pattern, which corresponds to the linear pattern, satisfy specific relationship equation(s). The cliché according to the present invention may prevent the bottom touch phenomenon of ink transferred onto the cliché.




c

Image forming material, planographic printing plate precursor, and method for manufacturing a planographic printing plate

The invention provides an infrared-sensitive positive-working image forming material which provides excellent development latitude, image formability and image region strength, and in which decrease in development property is prevented even when a certain time has passed after pattern exposure until development treatment; an infrared-sensitive positive-working planographic printing plate precursor which is formed from the image forming material and has excellent image formability and image region printing durability; and a method for manufacturing a planographic printing plate using the planographic printing plate precursor. The image forming material includes; on a support, a lower layer containing a polymer having carboxylic acid groups at side chains thereof, at least a part of the carboxylic acid groups forming a salt structure with a monovalent basic compound, and an infrared absorbing agent; and an upper layer whose solubility to aqueous alkaline solution is increased by heat, in this order.




c

LOW POWER MODE WITH LEGACY COMPATIBILITY

During the development of Low Power Mode (LPM) (also known as L2 Mode) for DSL (Digital Subscriber Line) systems, it has become apparent that one of the most important issues is the impact on deployed legacy DSL systems. Legacy DSL systems are not capable of operating in the presence of large changes in crosstalk noise from neighbouring lines entering and exiting LPMs. For example, prior LPM methods at least do not assure that legacy lines will be protected to guarantee that no retrains will occur. These and other issues are addressed herein.




c

EQUALIZER CIRCUIT AND RECEIVING APPARATUS USING THE SAME

An equalizer circuit includes an phase-to-phase connectors including an phase-to-phase capacitor and four phase-to-phase switches, four output buffers, and control signal generation circuitry. One terminal of each phase-to-phase switches is connected to one of four connection paths on which four conversion signals being different in phase by 90° are input. The other one terminal of each phase-to-phase switches is connected to the phase-to-phase capacitor. Each output buffer is connected to one of the four connection paths and outputs an output signal. The control signal generation circuitry outputs control signals to control turning-on/off of the respective four phase-to-phase switches. A closing of the first, second, third, and fourth phase-to-phase switches are started from any one of phase-to-phase switches in one of a first ascending circulation and a first descending circulation based on the 4-phase control signals.




c

PHASE NOISE IMPROVEMENT TECHNIQUES FOR WIDEBAND FRACTIONAL-N SYNTHESIZERS

The disclosure provides a frequency synthesizer. It includes a PFD that generates an up signal and a down signal in response to a reference signal and a feedback signal. A charge pump generates a control voltage in response to the up signal and the down signal. A low pass filter generates a filtered voltage in response to the control voltage. An oscillator circuit generates an output signal in response to the filtered voltage. A feedback divider is coupled between the oscillator circuit and the PFD, and divides the output signal by a first integer divider to generate the feedback signal. A sigma delta modulator (SDM) generates a second integer divider in response to the feedback signal, the reference signal, the output signal and the first integer divider. A digital filter is coupled between the SDM and the feedback divider, and filters quantization noise associated with the SDM.




c

HALF-RATE CLOCK DATA RECOVERY CIRCUIT

A half-rate clock data recovery circuit includes: a voltage-controlled oscillator (VCO) for generating a data sampling clock and an edge sampling clock according to a control voltage; an adjusting circuit for dynamically controlling the VCO to adjust the phase difference between the data sampling clock and the edge sampling clock to be different from 90 degrees in multiple test periods; and a control circuit for instructing the adjusting circuit to respectively utilize different control value combinations to control the VCO in the multiple test periods, and for recording multiple recovered-signal quality indicators respectively corresponding to the multiple test periods. Afterwards, the control circuit instructs the adjusting circuit to utilize a control value combination corresponding to the best quality indicator among the multiple recovered-signal quality indicators to control the VCO.




c

SEMICONDUCTOR APPARATUS

A semiconductor apparatus includes a pattern conversion circuit configured to generate conversion data in response to a monitoring enable signal, pattern select signals and parallel input data; a transmission circuit configured to output the conversion data as serial data in response to a plurality of clocks; a reception circuit configured to output the serial data as parallel output data in synchronization with the plurality of clocks; and a monitoring circuit configured to generate a result signal in response to the plurality of clocks, clock select signals and the serial data.




c

OFFSET VALUE CORRECTION DEVICE AND OFFSET VALUE CORRECTION METHOD FOR CORRECTING OFFSET VALUE IN RECEIVED SIGNAL

A baseband filter unit inputs a received signal including a sine wave at least in a portion of the received signal. A differentiator differentiates the received signal. A first correlator correlates the received signal differentiated and a cosine waveform. An acquisition unit acquires a value of the received signal as an offset value, at a time estimated based on a result of correlation in the first correlator and at a time when the received signal includes a sine waveform. A correction unit corrects the received signal in accordance with the offset value acquired in the acquisition unit.




c

PEAK CANCELLATION-CREST FACTOR REDUCTION DEVICE, PEAK-TO-AVERAGE POWER RATIO REDUCTION METHOD, AND PEAK VALUE DETERMINATION DEVICE

A peak cancellation-crest factor reduction (PC-CFR) device includes a clipping unit configured to output a clipping error signal by clipping amplitude values of a first baseband complex signal based on a predetermined threshold value; a peak value determination unit configured to receive the clipping error signal, and determine a first amplitude value as a peak value when the first amplitude value is greater than a second amplitude value input before the first amplitude value and a third amplitude value input after the first amplitude value among amplitude values of the clipping error signal; a cancellation pulse generator (CPG) allocation unit configured to allocate the peak value to a CPG; and a subtractor configured to subtract a cancellation pulse generated from the CPG from the first baseband complex signal and output a second baseband complex signal with a reduced peak-to-average power ratio (PAPR).




c

TIMING-CONTROLLER-CONTROLLED POWER MODES IN TOUCH-ENABLED SOURCE DRIVERS

This disclosure generally provides a processing system that includes a first controller coupled with a second controller via a first communication link. The first controller is configured to transmit display data and configuration data to the second controller via the first communication link. The second controller is configured to drive, using the display data, one or more coupled display electrodes for performing display updating. The second controller is further configured to operate one or more coupled sensor electrodes using the configuration data to acquire capacitive sensing data, and to transmit the capacitive sensing data to the first controller via the first communication link.




c

RECEIVER AND CONTROL METHOD FOR RECEIVER

A receiver includes: a frequency-characteristic-changing-circuit to change a frequency characteristic of an input signal in which N-level data value is pulse-amplitude-modulated, to generate a frequency-characteristic-changed-signal; a controller to control the frequency-characteristic-changing-circuit to obtain a desired ratio between a amplitude component of a target data value corresponding to the frequency-characteristic-changed-signal at a first timing and a second amplitude component thereof at a second timing which is later than the first timing; and a decision-feedback-equalization-circuit to which the frequency-characteristic-changed-signal is input, wherein the decision-feedback-equalization-circuit includes: a comparison-circuit to include comparators each to output a comparison result obtained from comparing the target data value and a threshold value, and N−1 selection circuits each to select one of comparison results output from the comparators at the second timing, based on the comparison results, and wherein at least one of the comparators outputs the comparison results to two of the N−1 selection circuits.




c

Communication device and method for signal determination in radio communication

A mobile communication device is provided that includes a receiver configured to receive a signal. The communication device further includes a calculation circuit configured to determine a cumulant value of an order higher than two of the received signal, to determine a function value of the determined cumulant value and to compare the determined function value with a predefined value. The communication device further includes a decoder configured to decode the received signal. The communication device further includes a target signal detector configured to activate the decoder based on the comparison of the function value with the predefined value.




c

PULSE AMPLITUDE MODULATION (PAM) DATA COMMUNICATION WITH FORWARD ERROR CORRECTION

The present invention is directed to data communication system and methods. More specifically, embodiments of the present invention provide an apparatus that receives data from multiple lanes, which are then synchronized for transcoding and encoding. A pseudo random bit sequence checker may be coupled to each of the plurality of lanes, which is configured to a first clock signal A. Additionally, an apparatus may include a plurality of skew compensator modules. Each of the skew compensator modules may be coupled to at least one of the plurality of lanes. The skew-compensator modules are configured to synchronize data from the plurality of lanes. The apparatus additionally includes a plurality of de-skew FIFO modules. Each of the de-skew compensator modules may be coupled to at least one of the plurality of skew compensator modules.




c

SENSOR ARRANGEMENT WITH VARIABLE CARRIER FREQUENCY AND GOERTZEL FILTERING

A method for processing a signal modulated with a variable carrier frequency includes calculating a coefficient for demodulation of the signal. The method also includes demodulating the signal by calculating discrete intermediate values utilizing the coefficient for a predefined maximum number of steps and calculating the signal with the aid of the intermediate values of the coefficient. The value of the coefficient is respectively calculated on the basis of carrier frequencies for each step.




c

PREAMBLE SYMBOL GENERATION AND RECEIVING METHOD, AND FREQUENCY-DOMAIN SYMBOL GENERATION METHOD AND DEVICE

Provided are a preamble symbol generation method and receiving method, and a relevant frequency-domain symbol generation method and a relevant device, characterized in that the method comprises: generating a prefix according to a partial time-domain main body signal truncated from a time-domain main body signal; generating the hyper prefix according to the entirety or a portion of the partial time-domain main body signal; and generating time-domain symbol based on at least one of the cyclic prefix, the time-domain main body signal and the hyper prefix, the preamble symbol containing at least one of the time-domain symbols. Therefore, using the entirety or a portion of a certain length of a time-domain main body signal as a prefix, it is possible to implement coherent detection, which solves the issues of performance degradation with non-coherent detection and differential decoding failure under complex frequency selective fading channels; and generating a hyper prefix based on the entirety or a portion of the above truncated time-domain main body signal enables the generated preamble symbol to have sound fractional frequency offset estimation performance and timing synchronization performance.




c

MULTI-BEAM CREST FACTOR REDUCTION

A system for use with beam signals, the system including: a crest factor reduction (CFR) module having inputs and corresponding outputs, wherein each of the inputs is for receiving a corresponding different beam signal of the beam signals and wherein each output corresponds to a different input of the plurality of inputs and is for outputting a different CFR-adjusted signal of a plurality of CFR-adjusted signals, each CFR-adjusted signal of the plurality of CFR-adjusted signals corresponding to a different beam signal of the plurality of beam signals; and a transmitter connected to the outputs of the CFR module, wherein the CFR module is configured to perform crest factor reduction on the beam signals to generate the plurality of CFR-adjusted signals, and wherein the crest factor reduction performed on the beam signals is based on a weighted sum of the magnitudes of multiple beams signals among the beam signals.




c

Bluetooth low energy frequency offset and modulation index estimation

A Bluetooth Low Energy (BLE) device, having a demodulator configured to translate in-phase and quadrature components of a received BLE signal into a differential phase signal; an estimator configured to estimate a frequency offset of the differential phase signal; and a detector configured to detect information in the differential phase signal corrected by the estimated frequency offset.




c

DELAY SPAN CLASSIFICATION FOR OFDM SYSTEMS USING SELECTIVE FILTERING IN THE FREQUENCY DOMAIN

It is proposed a method for delay spread classification of an orthogonal frequency-division multiplexing signal (multiplexing signal), and a receiving device and a telecommunication device connected thereto, the multiplexing signal comprising at least a first multiplexing symbol comprising at least two first reference symbols in the frequency domain, the method comprising: receiving at least the first multiplexing symbol; demodulating at least the first reference symbols of the first multiplexing symbol; determining at least a first autocorrelation value by autocorrelating the demodulated first reference symbols in the frequency domain; computing the filtered output energy of the autocorrelation and classifying the delay spread by mapping the ratio of the output energy for the filters.




c

DATA STRUCTURE FOR PHYSICAL LAYER ENCAPSULATION

Provided are a data structure including a header area, and a payload area comprising data, a method of generating the data structure, and extracting information from the data structure. At least one of the header area and the payload area includes at least one sub-area in which one or more signal fields are included. At least one signal field among the signal fields includes information for signalling presence or absence of one or more information fields located at least partly in the data structure, the one or more information fields corresponding to the one or more signal fields.




c

METHOD AND DEVICE FOR FREQUENCY SCANNING

A device set in a multimedia cable network includes a first modem including a first module to receive a beacon. The first modem has a first frequency and the beacon has a second frequency. When the first frequency of the first modem is not available, the first modem checks whether the second frequency is available in the multimedia cable network.




c

ADAPTIVE PARTITION SUBSET SELECTION MODULE AND METHOD FOR USE THEREWITH

A partition subset selection module selects a subset of available partitions for a macroblock pair of the plurality of macroblock pairs, based on motion search motion vectors generated by a motion search section, and further based on a macroblock adaptive frame and field indicator. A motion refinement module generates refined motion vectors for the macroblock pair, based on the subset of available partitions for a macroblock pair.




c

TEMPORAL MOTION DATA CANDIDATE DERIVATION IN VIDEO CODING

A method for derivation of a temporal motion data (TMD) candidate for a prediction unit (PU) in video encoding or video decoding is provided. The derived TMD candidate is for inclusion in an inter-prediction candidate list for the PU. The method includes determining a primary TMD position relative to a co-located PU in a co-located largest coding unit (LCU), wherein the co-located PU is a block in a reference picture having a same size, shape, and coordinates as the PU, and selecting at least some motion data of a secondary TMD position as the TMD candidate when the primary TMD position is in a bottom neighboring LCU or in a bottom right neighboring LCU of the co-located LCU, wherein the secondary TMD position is determined relative to the co-located PU.




c

Method and Apparatus for Entropy Coding in Image Compression

A method and apparatus of image coding including adaptive entropy coding are disclosed. According to this method, input pixels associated with a group of symbols generated from image or video data are received. Maximum bit-depth of the group of symbols is then determined. If the maximum bit-depth of the group of symbols is smaller than a first bit-depth threshold, the group of symbols is encoded or decoded using Golomb-Rice coding. If the maximum bit-depth of the group of symbols is greater than or equal to the first bit-depth threshold, the group of symbols is encoded or decoded using second entropy coding, where the second entropy coding is different from the Golomb-Rice coding. Outputs corresponding to encoded or decoded output associated with the group of symbols are provided. The maximum bit-depth of the group of symbols is signaled at the encoder or recovered at the decoder by parsing the bitstream.




c

Histogram Segmentation Based Local Adaptive Filter for Video Encoding and Decoding

Reconstructed picture quality for a video codec system may be improved by categorizing reconstructed pixels into different histogram bins with histogram segmentation and then applying different filters on different bins. Histogram segmentation may be performed by averagely dividing the histogram into M bins or adaptively dividing the histogram into N bins based on the histogram characteristics. Here M and N may be a predefined, fixed, non-negative integer value or an adaptively generated value at encoder side and may be sent to decoder through the coded bitstream.