nc

Clarity Encrypted Connectors!

Cadence Clarity 3D Solver supports encrypted component models! Using this functionality, vendors can supply their 3D components, such as connectors, to end customers without revealing the physical IP of these designs. The first connector vendor to take advantage of this functionality is Japan Aviation Electronics (JAE),(read more)




nc

Quickchat Video Interview: Introducing Cadence Optimality and OnCloud for Systems Analysis and Signoff

Microwaves & RF's David Maliniak interviews Sherry Hess of Cadence about recently announced products of Optimality and OnCloud.(read more)




nc

Error with launching Python Script Via AWRDE VBA Script

Hello Team,
I am currently following this AWR script posted on them, to run a python script directly from inside AWR using VBA script.

Launching Python from AWRDE VBA Script - AWR Scripts - AWR Knowledgebase

Following all the basic steps with no changes to the code. I have Vscode and python-3.12.2 installed in my system. 

This is the error I am getting while running this code. 

 

Thank you for your help 

Best Regards

SID




nc

Harmonic Balance (HB) Large-Signal S-Parameter (LSSP) simulation

Dear all,

Hi!

I'm trying to do a Harmonic Balance (HB) Large-Signal S-Parameter (LSSP) simulation to figure out the input impedance of a nonlinear circuit.

Through this simulation, what I want to know is the large-signal S11 only (not S12, S21 and S22).

So, I have simulated with only single port (PORT0) at input, but LSSP simulation is terminated and output log shows following text.

" Analysis `hb' was terminated prematurely due to an error "

The LSSP simulation does not proceed without second port.

Should I use floating second port (which is not necessary for my circuit) to succeed the LSSP simulation?

Does the LSSP simulation really need two ports?

Below figure is my HB LSSP simulation setup.

Additionally, Periodic S-Parameter (PSP) simulation using HB is succeeded with only single port.

What is the difference between PSP and LSSP simulations?




nc

Measuring DDJ (data dependent jitter). Cross function on eye-diagram

Hi,
My Virtuoso and Spectre Version: ICADVM20.1-64b.NYISR30.2
I plot an eye diagram using a built in function. I want to see the data-dependent jitter. I want to measure the eye diagram edges at zero crossing (width of that diamond part) shown in the pic by vertical and horizontal markers. I can put a marker and read the numbers there and get what I want. But now I want to run Monte Carlo and I can't do this for all samples. I wish I could write an expression for this. Unfortunately, I see that the function "cross" is not working on the eye diagram. Basically, when I send the eye diagram data to a table, I see that it actually is just the prbs data and not the eye diagram data. Is there a hack that can help me achieve my goal which is: having an expression to measure the edges of the eye diagram at zero crossing?
There is a script that Andrew wrote (https://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin%3AViewSolution%3BsolutionNumber%3D11395772). This is a good script but it puts all edges on top of each other. I want to distinguish the two edges. In the attached pic (two-period eye diagram) you can see what I mean by the two edges (diamond shapes). I want to measure each of the two and take the maximum. Having all the edges on top of each other won't give me what I want. All edges together will lso include DCD. I purely want to measure DDJ. DCD is measured separately. I have very little experience with writing scripts and could not modify Andrew's script.
Your help is much appreciated. Thank you.




nc

PSS Shooting - High Q crystal oscillator - Simulator by mistake detects a frequency divider

Hi *,

 

I am simulating a 32kHz high Q crystal oscillator with a pulse shaping circuit. I set up a PSS analysis using the Shooting Newton engine. I set a beat frequency of 32k and used the crystal output and ground as reference nodes. After the initial transient the amplitude growth was already pretty much settled such that the shooting iterations could continue the job.

 

My problem is: In 5...10% of my PVT runs the simulator detects a frequency divider in the initial transient simulation. The output log says:

 

Frequency divided by 3 at node <xxx>

The Estimated oscillating frequency from Tstab Tran is = 11.0193 kHz .

 

However, the mentioned node is only part of the control logic and is always constant (but it has some ripples and glitches which are all less than 30uV). These glitches spoil my fundamental frequency (11kHz instead of 32kHz). Sometimes the simulator detects a frequency division by 2 or 3 and the mentioned node <xxx> is different depending on PVT - but the node is always a genuine high or low signal inside my control logic.

 

How can I tell the simulator that there is no frequency divider and it should only observe the given node pair in the PSS analysis setup to estimate the fundamental frequency? I have tried the following workarounds but none of them worked reliably:

 

- extended/reduced the initial transient simulation time

- decreased accuracy

- preset override with Euler integration method for the initial transient to damp glitches

- tried different initial conditions

- specified various oscillator nodes in the analysis setup form

By the way, I am using Spectre X (version 21.1.0.389.ISR8) with CX accuracy.

 

Thanks for your support and best regards

Stephan




nc

HB: duplicated frequencies in 3-tone simulation

I get multiple results at the same frequency in a 3-tone simulation.

I try to determine the IP3 of a mixer. I have 3 large signal tones: 0.75 GHz, 1.25 GHz and 1.26 GHz.

At the IM3 frequency of 490 MHz I observe 4 results, see also the screenshot of the table output. The frequencies are exactly the same (even when I subtract 490 MHz by using xval() ).

Which of the values do I have to use to determine the correct IP3?

Is there an option to merge these results?




nc

Virtuosity: Synergize with CLE - Work Concurrently Across Geographies

Concurrent Layout Editing enables more than one designer to work in a hierarchy at the same time. Check out this blog to know more. (read more)




nc

AllegroX SPACING rule precedence

Hi

the signal SPI_SCLK belongs to TWO Spacing CLASSES: CLS_SP_SPI and CLS_SP_SPI_CLOCK

I then assign TWO different SPACING RULES to each class : CLS_SP_SPI  > 2H and CLS_SP_SPI_CLOCK > 3.5H

Which SPACING RULE will inherit the signal SPI_SCLK ??

Is it possible to manually define the PRIORITY on Design Rules ??




nc

How to resolve the impedance issue using the OrCAD X Professional

Dear Community,

I have created a PCB board and let's say I have found some parts of the PCB board where there are impedance issues, then how to resolve that impedance issue using the OrCAD X Professional.

Regards,

Rohit Rohan




nc

What is difference between the Cadence OrCAD / Allegro 24.1 with the Altium Designer 24

Hai Community,

What are the differences between the Cadence OrCAD / Allegro 24.1 with the Altium Designer 24.

Can I get the grid matrix difference between these two tools?

Regards,

Rohit Rohan




nc

Optimizing PCB design for thermal performance

Optimizing PCB thermal performance is essential in today’s high-density designs, as it ensures stability, prolongs component life, and prevents potential thermal issues. One of the first steps to achieving this is with strategic component placement. Positioning high-power components—such as regulators, power transistors, or processors—away from heat-sensitive parts can prevent thermal interference, and placing them near the edges of the PCB often helps dissipate heat more effectively. It’s also beneficial to group components by their heat generation, creating dedicated thermal zones that can manage localized heating and reduce impact on other areas of the board.

 

Using thermal vias is another effective technique. By placing thermal vias under components like BGAs or power ICs, heat can be transferred from the surface to internal layers or ground planes. Increasing the size and number of these vias, or using thicker plating, enhances heat conductivity and helps manage heat more evenly across layers in multilayer boards. Increasing copper thickness on the PCB also has a major impact. Opting for thicker copper layers (e.g., 2 oz or even 3 oz copper) significantly boosts the heat dissipation capabilities of power planes and traces, especially in high-current areas. Large copper planes, such as dedicated ground or power planes, are equally effective in spreading heat efficiently. Adding thermal pads directly beneath heat-generating components improves this heat distribution.

 

Thermal relief pads help regulate heat flow for through-hole components by controlling heat transfer, which reduces thermal stress during soldering and prevents excessive heat spread to nearby sensitive areas. Performing thermal analysis with software tools like Celsius can be invaluable, as it allows you to simulate and model heat distribution, spot potential thermal issues, and refine your design before finalizing it.

 

Using heat sinks and thermal pads provides a direct way to draw heat from high-power components. Heat sinks can be attached with thermal adhesives, screws, or clamps, while thermal interface materials (TIMs), such as thermal pads or conductive adhesives, further reduce thermal resistance, enhancing heat-transfer efficiency. Optimizing the PCB layer stackup is also a key factor. Dedicated ground and power layers improve heat conduction across the PCB, enabling heat transfer between layers, particularly in high-density and multilayer PCBs.

 

In designs with high power requirements, active cooling options like fans, blowers, or heat pipes can be essential, helping to direct airflow across the PCB and further improving heat dissipation. Adding ventilation slots around hot zones and considering passive cooling paths enhance natural airflow, making the design more thermally efficient. By combining several of these techniques, you can create a PCB that handles heat effectively, resulting in a robust, long-lasting, and reliable product.

 

Let us know if you’ve had any challenges with thermal management in your designs—I’d be glad to discuss further!




nc

Socionext Accelerates SoC Design Breakthroughs with Cadence Signoff Tools

Socionext, a leader in SoC design, recently made significant strides in enhancing its design efficiency for a complex billion-gate project. Faced with the initial challenges of lengthy eight-day iterations and a protracted two-month timing signoff process, the objective was to reduce the iteration cycle to just three days. By integrating Cadence's cutting-edge solutions—Certus Closure Solution, Tempus Timing Solution, and Quantus Extraction Solution—Socionext achieved remarkable improvements.

Notably, the Tempus DSTA tool dramatically cut timing closure time by 73%, outperforming conventional single-machine STA methods. This achievement, combined with the synergistic use of Cadence's Certus Closure and Tempus Timing solutions, allowed Socionext to meet their ambitious three-day iteration target and double productivity. Additionally, integrating these solutions significantly decreased both human and machine resource needs, slashing memory and disk costs by up to 90% and halving engineering resources during the optimization and signoff phases.

For more on this collaboration, check out the "Designed with Cadence" success story video on Cadence's website and YouTube channel.

Also, don't miss the on-demand webinar "Fast, Accurate STA for Large-Scale Design Challenges," which provides a deeper dive into Socionext's breakthroughs and the innovative solutions that powered their success.




nc

Training Bytes: Explore Cadence DFT Synthesis Flow with Bytes

Training Bytes are not just short technical videos; they are particularly designed to provide comprehensive support in understanding and learning various concepts and methodologies.

These comprehensive yet small Training Bytes can be created to show various concepts and processes in a shorter pane of five to ten minutes, for example, running DFT synthesis, scanning insertion, inserting advanced testability features, test point insertion, debugging DFT violations, etc.

In this blog, we will show you the DFT Synthesis Flow with Cadence's Genus Synthesis Solution using small Training Bytes available on the Cadence Learning and Support Portal. To explore these training bytes more, log on to support.cadence.com and select the learning section to choose the training videos, as shown below.

DFT Synthesis Flow with Genus Synthesis Solution

First, we will understand the Synthesis Flow with DFT in the Genus Synthesis Solution:

Understanding a Script File that Used to Run the Synthesis Flow With DFT

Here, we will show you "How to run the Test Synthesis Flow to Insert Scan Chains and Improve the Testability of a Design" in the Genus Synthesis Solution:

Running Test Synthesis Flow to Insert Scan Chains And Improve the Testability of a Design in the Genus Synthesis Solution

Let's check the flops marked with the dft_mapped attribute for scan mapping in Genus Synthesis Solution:

How to Check Flops Marked With dft_mapped Attribute For Scan Mapping in Genus Synthesis Solution?

How to Find Non-Scan Flops of a Design in Genus? (Video)

Once the flops are mapped to scan flip flops and the scan chain inserted, we will see how to handle the flops marked with the dft_dont_scan attribute for scan mapping in Genus Synthesis Solution.

How to Handle the Flops Marked With the dft_dont_scan Attribute For Scan Mapping in Genus Synthesis Solution?

Here, we will see how to fix DFT Violations using the command fix_dft_violations:

Fixing DFT Violations (Video)

Once the design has been synthesized, let's explore the DFT design hierarchy in Genus Stylus CUI:

Exploring DFT Design Hierarchy in Genus Stylus CUI (Video)

Understand why sequential elements are not mapped to a scan flop:

Why Are Sequential Elements Not Mapped to a Scan Flop?

Explore hierarchical scan synthesis in Genus Stylus Common UI:

Understanding Hierarchical Scan Synthesis in Genus Stylus Common UI. (Video)

To understand how to resolve different warnings and errors (for example, DFT-415, DFT-512, DFT-304, etc.) in Genus Synthesis Solution, here are some videos you can refer to:

How to Resolve Warning: DFT-415 (Video)

How to Resolve Error: DFT-407 (Video)

How to Resolve Error: DFT-404 (Video)

DFT-510 Warning During Mapping (Video)

How to Resolve Warning: DFT-512 (Video)

How to Resolve Warning: DFT-511 (Video)

How to Resolve Warning: DFT-304 (Video)

How to Resolve Warning: DFT-302 (Video)

How to Resolve Error: DFT-515 (Video)

How to Resolve Error: DFT-500 (Video)

Here, we will see how we can generate SDC constraints for DFT constructs for many scan insertion techniques, such as FULLSCAN, OPCG, Boundary Scan, PMBIST, XOR Compression, SmartScan Compression, LBIST, and IEEE 1500:

How to Generate SDC Constraints for DFT Constructs in Genus Synthesis Solution? (Video)

Explore advanced testability features that can be inserted in Genus Synthesis Solution, such as Boundary Scan, Programmable Memory built-in Self-Test Logic (PMBIST), Compression Logic, Masking, and On-Product Clock Generation Logic (OPCG):

Advanced Testability Features (Video)

To understand What the IEEE 1500 Wrapper and its Insertion Flow in Genus Synthesis Solution, follow the bytes:

What Is IEEE 1500 Wrapper? (Video)

IEEE 1500 Wrapper Insertion Flow in Genus Synthesis Solution (Video)

Understand the On-product Clock Generation (OPCG) insertion flow in Genus Synthesis Solution Stylus CUI with this byte:

Understanding On Product Clock Generator (OPCG) Insertion in Genus Stylus CUI (Video)

To debug DFT violations, you can use DFT Analyzer from Genus GUI and explore its features here:

Debugging Using GUI: DFT Analyzer (Video)

Exploring DFT Analyzer View of Genus Synthesis Solution GUI (Video)

To understand What is Shadow Logic, How to Insert Test Points, How to do Testability Analysis Using LBIST, and How to Deterministic Fault Analysis in Genus, follow this article:

What is Shadow Logic

To insert the Boundary Scan Logic in and control Boundary Optimization in Genus Synthesis Solution, refer to these small bytes:

How to Insert Boundary Scan Logic in Genus? Video)

Controlling Boundary Optimization in Genus Synthesis Solution Stylus CUI (Video)

Compression techniques are used during scan insertion to reduce the test data volume and test application time (TAT) while retaining the test coverage. To understand what compression and the compression techniques are, watch this article:

What is Compression Technique During Scan Insertion? (Video)

Interested to know what "Unified Compression" is? To get the concept, you can watch this small demo:

What Is Unified Compression? (Video)

To Explore More, Register for Online Training




nc

All EVs Need the Midas Functional Safety Platform

A more appropriate title for this blog could be “All Vehicles with ADAS Need the Midas Functional Safety Platform”.

EVs tend to have advanced driving assistance systems (ADAS) because they’re newer, but not all vehicles with ADAS are EVs!

Certifying Advanced Driver Assistance Systems (ADAS) is a multifaceted process involving rigorous testing, validation, and regulatory compliance to ensure safety and reliability.
As ADAS technologies become increasingly sophisticated, the certification process is evolving to meet these challenges.

The ISO26262 standard provides the requirements to be met to attain safety certification for digital designs.

One of the key aspects of ADAS certification is functional safety. This includes:

  • Ensuring the system operates as intended under all conditions, including failures.
  • Adherence to standards like ISO26262.
  • Rigorous testing to identify potential hazards and mitigate risks.

The Midas Safety Platform provides early-phase exploration of functional safety architectures and leverages native chip design data to perform accurate safety analysis efficiently.

The platform is a unified solution available across Cadence products, and with its modular architecture, it supports both embedded and standalone usage with the Cadence flow.

After extracting the design information, an output Midas database file contains the isolated DUT and provides the design components and their fault tolerances to various tools in the flow.

Conformal can easily verify design transformations that include necessary components like TMR for safety.

In these videos, we explore how to create reports for both Transient and Permanent faults.

Creating Detailed FMEDA in Midas (Video)

Creating Architectural FMEDA in Midas (Video) 


Also, read this blog post for additional motivation: What Is Zonal Architecture? And Why Is it Upending the Automotive Supply Chain?

What Next?

Join the Midas Safety Platform Introduction and the Functional Safety Implementation and Verification with Midas trainings and learn more about:

  • Setting up and defining the USF file
  • Using the Midas Safety Platform to create functional safety reports, and
  • Midas integration with the Genus  Synthesis Solution, Innovus  Implementation System, and Conformal Equivalence Checker tools to implement functional safety

The online class is free for all Cadence customers with a Cadence Learning and Support Portal account. If you don’t have a Cadence Support account, go to Registration Help or Register Now and complete the requested information. For instructor-led training sessions "Live" or "Blended" please contact Cadence Training.

Please don't forget to obtain your Digital Badge after completing the training. Add your free digital badge to your email signature or any social media and networking platform to show your qualities and build trust, making you and your projects even more successful.

If you want to make sure you are always the first to know about anything new in training, then you can use the SUBSCRIBE button on the landing page to sign up for our regular training newsletters.




nc

Unlocking the Concepts of IEEE 1801 Standard for Efficient Power Management

Power efficiency is a critical factor in the fast-evolving world of semiconductor design.

The IEEE 1801 standard, also known as UPF (Unified Power Format), was developed by the IEEE to address the intricate challenges associated with power management in contemporary semiconductor designs. This standard offers a uniform framework for defining power domains, power states, and power intent, ensuring consistency across diverse tools and phases of the design process. By utilizing UPF, you can precisely model and regulate power consumption, a critical aspect for battery-operated devices, high-performance computing, and energy-efficient designs.

The key concepts of IEEE 1801 are:

  1. Power domains
  2. Power states
  3. Power gating and isolation
  4. Power switches
  5. Level shifters, isolation, and retention cells
  6. Macro model

Based on these building blocks, you write the power intent of the design.

The power intent for the design includes identifying/implementing low-power strategies that provide a clear description of the power architecture of a design.

The power definitions can effectively manage power consumption and ensure the chip meets its power and performance requirements.

You can start by creating the Power Supply Network, which defines how power is supplied to the design's various power domains and logic cells.

What's the next step to build the file? How do you understand the various concepts related to IEEE 1801? How do you complete the rest of the power intent file?

Relax!

Gear up to attend the training class created just for you to dive deep into the entire format and explore this exciting power specification method/format with hands-on labs in one day!

Training

Fundamentals of IEEE 1801 Low-Power Specification Format Training

This course is a complete tutorial for understanding the fundamentals of IEEE 1801 low-power specification format concepts. You learn about IEEE 1801 power supply networks, ground ports and nets, creating and connecting supply ports/nets, power domain, power switch, power states, defining isolation and level shifter strategies, hierarchical IEEE 1801, and various versions of the IEEE 1801. You also explore how power intent information can be used for a design across various flow stages, such as functional verification, synthesis, logic equivalency checking, place-and-route, test, timing signoff, power integrity, and so forth, using Cadence® tools.

Labs

We ensure that your learning journey is smooth with hands-on labs covering various design scenarios.

Lab Videos

Now, the exciting part is that to help you further, we have created engaging videos of the training labs. You can refer to the lab module's instructions in demo format at https://support.cadence.com.

Lab DemoChecking Power Supply Network in IEEE 1801 format and Running IEEE 1801 Quality Checks using Conformal Low Power

Lab Demo: Checking Power Intent for The Macro Connections in IEEE 1801 Format And Running IEEE 1801 Quality Checks using Conformal Low Power 

Online Class

Here is the course link.

Get ready for the most thrilling experience with Accelerated Learning!

The more you know, the faster you go!

Grab the cycle  or hike it, based on your existing knowledge.

Take the quiz and increase your learning pace!!

What's Next?

Grab your Badge after finishing the training and flaunt the expertise you have built up. 😊

Ready to take a tour of this power specification world? Let's help you enroll in this course.

We organize this training for you as a "Blended" or "Live" training. Please reach out to Cadence Training for further information. If you want to ensure you are always the first to know about anything new in training, you can use the SUBSCRIBE button on the landing page to sign up for our regular training newsletters.

Related Short Training Bytes/Videos

Enhance the learning experience with short videos:

Genus Synthesis Solution: Video Library

 Joules RTL Power Solution: Video Library

Related Training

 Low-Power Synthesis Flow with Genus Synthesis Solution

Genus Low-Power Synthesis Flow with IEEE 1801

Related Blogs

It's the Digital Era; Why Not Showcase Your Brand Through a Digital Badge! - Digital Design - Cadence Blogs - Cadence Community

Relax in Summer with Cooler IC chips and Ice-Cream! Do you want to Explore the Recipe? - Digital Design - Cadence Blogs - Cadence Community

Power Is HOT and Touches Everything and Everybody! But the Challenge Is To Deal With Low Power During Design Synthesis; How? - Digital Design - Cadence Blogs - Cadence Community

Binge on Chip Design Concepts this Weekend! - Digital Design - Cadence Blogs - Cadence Community




nc

The Best Way to Learn – Cadence Cerebrus AI-Driven Design Implementation

The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, machine learning-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and Cadence Cerebrus will intelligently optimize the Cadence digital full flow to meet the power, performance, and area (PPA) goals in a completely automated way. Use Cerebrus Apps to optimize some aspects of the design as well.

Running a full RTL to GDSII flow, Cadence Cerebrus has a lot of possibilities and combinations of different tool settings to explore.

Using the knowledge from previous runs, combined with on-the-fly analysis within the flow, Cadence Cerebrus can assess many settings combinations and fine-tune the flow accordingly in a very efficient manner.

As technology advances, projects become bigger and way more complex than before. The ability of a single engineer to run simultaneously a large number of blocks in a traditional way is limited. Cadence Cerebrus allows a single engineer to work more efficiently and implement more blocks, while maintaining the same or even better PPA, using compute power.

Being such a revolutionary tool, integrating Cerebrus into your existing flow is surprisingly simple as it can wrap around any existing flow scripts.

Please join me in this course, to learn about the features and basics of Cadence Cerebrus Intelligent Chip Explorer.

We’ll walk through the tool setting stage, explain what is a primitive and how it effects our run, talk about the cost function and the run goals.

We’ll understand the concept of scenarios, learn how to analyze the results of the different runs, and compare them.

In addition, we’ll talk about basic debug rules and methods to analyze failures.

Sounds Interesting?

Please join our “live” one-day Cadence Cerebrus Intelligent Chip Explorer Training @Cadence Feldkirchen planned for October 9th, 2024!

For more details and registration, please contact Training Germany.

If you would like to have an instructor-led training session in another region please contact your local training department.

Become Cadence Certified

Cadence Training Services offers a digital badge for this training course. This badge indicates proficiency in a certain technology or skill and gives you a way to validate your expertise to managers and potential employers. You can highlight your expertise by adding this digital badge to your email signature or any social media platform, such as Facebook or LinkedIn.

Related Training

Innovus Block Implementation with Stylus Common UI

Related Training Bytes

Cerebrus Primitives (Video) 

How to Reuse Cerebrus (Video) 

Cerebrus - Verifying Distribution Script (Video)

How to distribute Cerebrus Scenarios (Video) 

Cerebrus Web Interface Monitor and Control (Video) 

How to Setup Cerebrus for a Successful Run (Video) 

Flow Wrapping: The Cadence Cerebrus Intelligent Chip Explorer Must Have (Webinar) (Video) 

Cerebrus Cost Functions (Video) 

Related Blogs

Training Insights: Cadence Cerebrus Webinar Recording Now Available!

Keep Up with the Revolution—Cadence Cerebrus Training

New to Equivalence Checking? Restart from the Basic Concepts

Training Insights - Free Online Courses on Cadence Learning and Support Portal

Training Insights – Important Facts You Should know About Our Cadence Learning and Support Portal




nc

Artificial Intelligence: Accelerating Knowledge in the Digital Age!

In an era of abundant and constantly evolving information, the challenge is not just accessing knowledge but understanding and applying it effectively. AI is a transformative technology that is reshaping how we learn, work, and grow. In this blog, we’ll explore how AI accelerates our knowledge acquisition and understand how it can relate to the process of learning, which connects with our daily lives.

The role of AI is to accelerate knowledge by personalizing learning experiences, providing instant access to information, and offering data-driven insights. AI empowers us to learn more efficiently and effectively in many ways. I won't go into much detail, as we are already busy searching for the meaning of AI and what it can do; however, I want to share one inspiring fact about AI. It can analyze vast amounts of data in seconds, making sense of complex information and providing instantaneous actionable insights or concise answers. I understand that humans are looking to speed up things, which can help us understand technology better and perform our tasks faster.

The main reason AI is in focus is because of its ability to perform tasks faster than ever. We aim to enhance the performance of all our products, including the everyday household electronic items we use. Similarly, are we striving to accelerate the learning process? I am committed to assisting you, and one such method is concise, short (minute-long) videos.

In today's fast-paced world, where attention spans are shorter than ever, the rise of social media platforms has made it easier for anyone to create and share short videos. This is where minute videos come in. These bite-sized clips offer a quick and engaging way to deliver information to the audience with a significant impact. Understanding the definitions of technical terms in VLSI Design can often be accomplished in just a minute.

Below are the definitions of the essential stages in the RTL2GDSII Flow. For further reference, these definitions are also accessible on YouTube.

What is RTL Coding in VLSI Design?

     

What is Digital Verification?

     

What Is Synthesis in VLSI Design?

     

What Is Logic Equivalence Checking in VLSI Design?

     

What Is DFT in VLSI Design?

     

What is Digital Implementation?

     

What is Power Planning?

     

What are DRC and LVS in Physical Verification?

     

What are On-Chip Variations?  

     

Want to Learn More?

The Cadence RTL-to-GDSII Flow training is available as both "Blended" and "Live" Please reach out to Cadence Training for further information.

And don't forget to obtain your Digital Badge after completing the training!

Related Blogs

Training Insights – Why Is RTL Translated into Gate-Level Netlist?

Did You Miss the RTL-to-GDSII Webinar? No Worries, the Recording Is Available!

It’s the Digital Era; Why Not Showcase Your Brand Through a Digital Badge!

Binge on Chip Design Concepts this Weekend!




nc

Training Insights: Cadence Certus Closure Solution Badge Now Available!

This blog informs about the new badge certification available for Cadence Certus Closure Solution, that grants credit to your proficiency.(read more)




nc

A Magical World - The Incredible Clock Tree Wizard to Augment Productivity and QoR!

In the era of Artificial Intelligence, front-end designers need a magical key to empower them with technology that enables fully optimized RTL for implementation handoff and provides RTL designers with capabilities to accurately assist in the implementation convergence process.

The magic lies with Cadence Joules RTL Design Studio, an expert system that leverages generative AI for RTL design exploration, triages possible causes of violations, and additional insights that empower designers to understand how to address issues in their RTL, leading to smarter and more efficient chip design.

This unlocks the immense debugging and design analysis capabilities from a single, unified cockpit, enabling fully optimized RTL design prior to implementation handoff for the front-end designers and addresses all aspects of physical design by adding visibility into power, performance, area, and congestion (PPAC)

One critical component is the clock tree, which distributes the clock signal to all sequential elements, such as flip-flops and latches. Designers need the right techniques in the beginning stage to optimize the clock tree structure, ensuring that their designs meet the required timing specifications, reduce power consumption, maintain signal integrity, and increase reliability.

 This incredible feature is part of the Joules RTL Design Studio.

How do you efficiently explore the clock tree structure to optimize the results using Joules RTL Design Studio?

Joules Studio allows viewing a simplified version of the clock structure. This feature is primarily designed to help display clock frequency scaling through clock dividers. You can customize colors, symbols, and design elements using an input file. Additionally, you can cross-probe the custom clock tree structure to other widgets and the main schematic view in Joules Studio.

Moreover, with the clock tree preference features of the ideal clock tree wizard in Joules Studio GUI, you can highlight clock path, generate clocks and master clock, set case analysis, fold and unfold instances, undo and redo, set sense and disable timing, color preference, etc.

You can binge on these features through the channel videos posted on the support portal, which covers the Joules RTL Design Studio GUI Clock Tree Structure and Features of Ideal Clock Tree Wizard.

You can refer to the videos on Cadence Online Support (Cadence login required).

Video Links:
Viewing
 Custom Clock Tree Structure in Joules RTL Design Studio (Video)
 

Exploring Clock Tree Preference Widget of Ideal Clock Tree Wizard in Joules RTL Design Studio (Video) 

Want to learn more?

Explore the one-stop solution Joules RTL Design Studio Product Page on Cadence Online Support (Cadence login required).

Related Resources 

Related Training Bytes:

Understanding Prototype Design Flow in Joules RTL Design Studio (Video)

Running Prototype Implementation Flow in Joules RTL Design Studio (Video)

Understanding Analyze Timing By Hierarchy In Joules RTL Design Studio (Video)

Related Courses:

Want to Enroll in this Course?

We organize this training for you as a "Blended" or "Live" training. Please reach out to Cadence Training for further information.

Please don't forget to obtain your Digital Badge after completing the training.

Related Blogs:

Let's Discover the Secret to Enhance Design's PPAC in a Single Cockpit! - Digital Design - Cadence Blogs - Cadence Community

Joules RTL Design Studio: Accelerating Fully Optimized RTL - Digital Design - Cadence Blogs - Cadence Community

Let's Replay the Process of Power Estimation with the Power of 'x'! - Digital Design - Cadence Blogs - Cadence Community

Is Design Power Estimation Lowering Your Power? Delegate and Relax! - Digital Design - Cadence Blogs - Cadence Community




nc

Greenfield FDI Performance Index 2019: Serbia storms to top

Research by fDi Intelligence reveals which countries receive more than their ‘expected share’ of FDI. 




nc

Tanzanian tourism boom undermined by investor concerns

Tanzania's economy is booming and its tourism sector is thriving. However, concerns about the president's strong-arm tactics and delays in the completion of key infrastructure projects are threatening this growth.




nc

How the Suez Canal Economic Zone is aiding Egypt's economic resurgence

Combining a strategic location with an investor-friendly environment, Egypt is ensuring its Suez Canal Economic Zone is primed for foreign investment. 




nc

Finance minister seeks to keep Serbia in FDI spotlight

Serbia’s minister of finance, Siniša Mali, explains why the country is one of Europe's economic stars, and how its FDI levels have risen on the back of this.




nc

fDi’s European Cities of the Future 2020/21 – London maintains European pre-eminence

London has retained its position as fDi’s European City of the Future, while Paris has climbed to second place, knocking Dublin into the third spot. 




nc

Frankfurt (Oder) looks to get the incentives mix right

The federal state of Brandenburg is committed to ensuring investors are welcomed into Frankfurt (Oder) through a string of generous incentives.




nc

Tshwane’s mayor balances FDI and climate goals

Stevens Mokgalapa talks about foreign investment opportunities and challenges in South Africa’s administrative capital, and the balancing act of development and environmental needs in the developing world.




nc

Brexit uncertainty drives auto industry towards Germany

Tesla's decision part of broader trend of investment into Germany at UK's expense.




nc

Gothenburg takes proactive stance as global headwinds bite

Despite its thriving automotive sector, Gothenburg is vulnerable to global economic pressures. However, local authorities are confident that their strategies will see the city ride out the uncertainties related to Brexit and the US-China trade wars.




nc

Climate concerns top long-term WEF risks for first time

Severe threats to the environment accounted for all of the five most likely long-term risks in the WEF’s Global Risks Report 2020.




nc

Global FDI flows stable in 2019, reports Unctad

Global FDI flows recorded a marginal 1% fall in 2019, but the value of announced greenfield investment projects plummets by 22%.




nc

France ups investment screening

Investors in France will face greater scrutiny under extended legislation.




nc

Mexico teams up with Singapore to launch Tehuantepec trade corridor

President Obrador aims to mobilise billions in public and private investment to create an alternative to the Panama Canal along the Tehuantepec corridor. 




nc

ECCB governor hopes for digital currency boost

The Eastern Caribbean Central Bank is to launch a digital currency for the benefit of its dispersed island economies – essential to a region that has been disproportionately affected by climate change-induced disasters, governor Timothy Antoine tells fDi.




nc

Bolivian minister hails tourism increase

Marcelo Eduardo Arze García, Bolivia’s vice minister of tourism, tells Sebastian Shehadi why tourists are turning their attention to one of South America's less explored destinations. 




nc

Santander’s Ana Botin on the challenges of sustainable finance

Santander head on the tightrope banks must walk in providing finance to support green transition, without shunning coal-reliant poorer nations.




nc

Can the largest fossil fuel financiers change?

JPMorgan has pledged to push clients towards aligning with the Paris Agreement




nc

Ford Bronco vs. Jeep Wrangler: Compare SUVs

Jeep Wrangler sets the bar for off-roading capability Larger Ford Bronco has a more modern suspension Both SUVs have removable doors and tops When Ford relaunched the Bronco for the 2021 model year, it had one target in its sights: The Jeep Wrangler. The Wrangler has been the American benchmark for off-roading capability in the 80-plus years since...




nc

Madeira vice-president eyes fiscal independence from Lisbon

Pedro Calado, vice-president of Madeira’s regional government, tells Sebastian Shehadi about the island's capacity for more upmarket tourism and its ongoing struggle to gain financial independence from Portugal. 




nc

EBRD makes climate resilience bond first

The European Bank for Reconstruction and Development has attracted praise for launching a climate-resilience bond to help finance environmental projects.




nc

FDI into Lithuania increases in 2018

Lithuania is enjoying a boost in FDI project and jobs, with the capital, Vilnius, getting the lion's share.




nc

China FDI into Europe: A cause for concern?

FDI project numbers from China into the EU are on a downward trend, but Europe is still a popular destination for Chinese investment.




nc

Middle East sees increase in investment from US

Investment into the Middle East region by US-based companies showed a notable increase between the beginning fo 2016 and the end of 2018. 




nc

UK top destination for financial services FDI in Europe

Over the past three years, the UK has led Europe for financial services FDI, with the US as top investor. Emma McCoy reports.




nc

Deploy NodeJS Express Application to Firebase as Function.

Few days back I posted an article about how to implement restful apis using the Node Express and MySql. In this post I am going to discuss deploying NodeJS RESTful apis with Express framework to the Firebase functions. This is helpful when you deal with external endpoints which need secret keys. Google Firebase functions as an alternate product for Amazon Lambda, and Google Firebase is offering Storage and Real-time databases.





nc

PUBNUB: Making Engaging Realtime Experiences a Reality in India

Realtime Communication is providing enterprises with an innovative way to deliver better, more cost-effective customer service.
Technology companies in India are racing towards a more connected and always-on world, making it easier, faster, safer, and more convenient for everyday people to do the things they need and achieve the things about which they dream. PubNub’s Realtime Communication Platform provides the backbone that any company can rely on to deliver engaging experiences that users love, including fast-growing companies like Swiggy, Apollo Health and others.





nc

Deploy a PHP Application on AWS Lambda Function Serverless

In this post, I will explain the steps to deploy a simple PHP email MX record validation application on AWS lambda function using Bref layers. AWS Lambda natively supports Java, Go, PowerShell, Node. js, C#, Python, and Ruby code, not PHP. You can deploy the lite weight PHP function to improve the application performance and it will reduce cost compared with the EC2 instance. AWS is offering the first one million requests free and you need an AWS account with a payment setup. The only disadvantage is that port 25(mail/SMTP) will not support it.