pi

Episode 94 - The Internet of Screens (IoS) Netflix is huge and Fortnite is popular

This week it’s David Price in the hosting seat to dig into two meaty tech topics: how does Netflix buy and develop its massive content library, and why is Fortnite such a sensation?


Helping him dig into Netflix is Computerworld UK editor Scott Carey, with our new entertainment and lifestyle editor at Tech Advisor Dominic Preston joining in.


Then staff writer at Tech Advisor Sean Bradley is on hand to talk about how Fortnite has become such a sensation, and if it is built to last.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 95 - The Internet of Digital Ministers (IoDM) Political turmoil, Surface Go and CaveX

Join host Scott Carey as the team dissects Tory meltdown and what it means for tech and the ministers we haven't heard of. What can they actually do to help the country? Charlotte Jee explains.


Then Henry Burrell chats on the new Microsoft Surface Go, an 'affordable' Surface tablet that actually still breaks the bank. Who is it for, and is Microsoft really chasing the iPad market?


David Price rounds up the pod with Musk Corner as everyone's favourite Twitter megalomaniac flies off to Thailand to help with a cave rescue - but should he stay out of it?

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 96 - The Internet of Automation (IoA) IBM and the Third Reich, Facebook slump and MacBook Pro woes

Join host Henry Burrell in hot as hell London town to bring you 40 minutes of air conditioned tech chat.


Tamlin Magee talks us through the murky ways IBM helped the Third Reich in the Thirties and Forties with data collection and asks what responsibility tech companies have today to ensure their work does not contribute to evil.


Charlotte Jee then analyses Facebook's stock price slump, asking why it happened and does it really affect the company? The team muses on Facebook as a whole and the fascinating if polarising Zuckerberg.


Finally Macworld's David Price chats about the new MacBook Pros and how Apple has already fixed the major flaw in the high-end model - but why did they ship this way? Is Apple less concerned with quality control these days?

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 97 - The Internet of Big Companies (IoBC) Apple results, Amazon worker rights and Google Cloud Next

This week our host Scott Carey is joined by Macworld UK editor Karen Khan to chat about Apple's latest blockbuster results.


Then group production editor Tamlin Magee jumps in to discuss Amazon's working practices following the collective action around Prime Day.


Finally, Scott chats through his experience at the Google Cloud Next conference in San Francisco last week to see how it is trying to compete with the big boys at Amazon and Microsoft.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 98 - The Internet of Banning Idiots (IoBI) Infowars, new phone hype and the Millennium Dome

This week on the UK Tech Weekly Podcast our host Scott Carey talks to Macworld editor David Price about the ever-controversial Alex Jones and why the big tech companies are finally stepping up their efforts to ban him from their platforms. Editors note: we recorded this on Thursday before Twitter finally started to take some measures against Jones, without outright banning him.


Next our resident phone nerd and consumer tech editor at Tech Advisor Henry Burrell talks about the upcoming Samsung Galaxy Note 9, the latest iPhone X rumours and how Apple and Google are trying to make you use your phone less.


Lastly Techworld editor Charlotte Jee takes us on a trip down memory lane to talk about the utopian vision of the Millennium Experience, how it reflected the values of a New Labour government and its legacy.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 99 - The Internet of Redemption (IoR) Google tracking, Red Dead Redemption 2 and the iMac at 20

This week our host Scott Carey is joined by Techworld editor Charlotte Jee to discuss the revelation that Google is still tracking users, even if you have that feature disabled, and the wider topic of privacy.


Then games editor at Tech Advisor, Lewis Painter, joins to talk about one of the most hotly anticipated games of the year: Red Dead Redemption 2.


Lastly Macworld UK editor Karen Khan talks about the enduring legacy of the iMac PC 20 years on and how it set Apple on a historic trajectory.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 100 - The Internet of Interval Timers (IoIT) Bumper 100 topic special!

Here it is folks, the insane 100th episode we have been planned for weeks (ahem). What better way to spend just over 50 minutes than with 100 tech topics covering over two years, one taken from each of the last 99 episodes of the pod plus the bonus round at the end.


Henry Burrell leads Tamlin Magee, Charlotte Jee, Scott Carey, Karen Khan and Christina Mercer down the tech rabbit hole in a game show-style quick fire test of our tech brains. In this game, everyone is a winner. Naw.


Thanks a lot for listening - here's to the next 100.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 101 - The Internet of Chucking Tech in the Bin (IoCTitB) Room 101 special

Episode 101 is a second special in a row as we take tech to trial and consign our least favourite digital surplus to Room 101.


The Orwellian nightmare is compered by Henry Burrell as he, David Price, Tamlin Magee and Scott Carey each pick two things to banish forever. Cue a a bumper edition where we throw people, buzzwords, fads and entire companies down the trash chute.


May contain arguments.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 102 - The Internet of Tennis Max (IoTM) Apple event special, new iPhones and Apple Watch

A quick-fire reaction Apple special, recorded the morning after new iPhones and an Apple Watch were announced at an event in California.


Henry Burrell joins David Price, Ashleigh Macro and Scott Carey to discuss which products we'll be buying, avoiding and coveting over the Christmas period.


Is the new iPhone named terribly? Is it an upgrade at all? What wasn't announced? And does Scott give the new Apple Watch any praise at all? It's all here.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 103 - The Internet of Dystopia (IoD) Skirting the line between fact and fiction

It's a pop culture episode this week as we do a deep dive into dystopian fiction. Scott Carey is your host as he chats to Dominic Preston and Tamlin Magee about the best novels, films, TV shows and video games set in dystopian universes.


We talk about how the world is closer to fiction than ever before, and how this impacts the way we think about fictional dystopias, and end on a positive note to discuss our favourite utopian fiction too.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 104 - The Internet of Circles (IoC) RIP Google+, Pixel 3 and new tech in films

This week our host Scott Carey catches up on the Google+ breach news and the final demise of the doomed social media network before being joined by consumer technology editor at Tech Advisor, Henry Burrell, to talk about Google's latest batch of smartphones: the Pixel 3 and Pixel 3 XL.


Then Techworld reporter Tamlin Magee joins to talk about the technology-related films screening during the London Film Festival this month and his hopes for more utopian tech-flecked stories in the future.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 105 - The Internet of Good & Bad (IoG&B) Google Rubin scandal and iPhone XR hands-on

It's episode 105, and David Price takes on hosting duties as the team dissect the best and absolute worst of the week's tech developments.


Scott Carey talks us through the troubling and wide-ranging allegations of sexual misconduct at Google, and discusses how this relates to the tech industry's culture of protected privilege, and to the #metoo movement.


Then Henry Burrell, fresh from a briefing at Apple HQ, reports his distinctly positive first impressions of the iPhone XR, which he would gladly recommend to tech newbie grandmas, and also to Scott.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 106 - The Internet of Cowboys (IoC) Apple event and Red Dead review

This week we are talking about Apple's New York event, where Digital Arts editor Neil Bennett was in attendance for the launch of a fresh new iPad, Mac Mini and a new Macbook Air. We discuss if the Apple laptop range is a mess and who the new iPad is really for.


Later on we have games editor at Tech Advisor Lewis Painter on to talk about the biggest game of the year: Red Dead Redemption 2 and if it lives up to the hype, and if it's worth the 'crunch' put in by overworked Rockstar developers.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 107 - The Internet of Super Sleuthing (IoSS) Detective Pikachu and Facebook still sucks

We were all surprised this week with the weirdly excellent trailer for Detective Pikachu with Ryan Reynolds voicing the yellow pocket scamp. Dom Preston drops in to tell us how Nintendo is getting into film and we laugh about the Bob Hoskins Mario film. We also talk about the moving new Tetris game (yes, it's made people cry).


Scott Carey then lays out the latest Facebook expose and asks if Zuck and Sheryl Sandberg are ruling the company properly - should it be actively siding politically and morally against misuses of the platform? Or is it too big for them to even control?

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 108 - The Internet of Silicon Valley Meal Drinks (IoSVMD) Soylent tasting, Black Friday and Bitcoin slump

David Price is in the host's chair this week, as the team talk about the latest hot tech topics. Tamlin Magee has got the drinks in - futuristic meal-replacement drinks called Soylent, which he forces everyone to try and which are apparently not people.


Then Dominic Preston talks us through the positive and extremely negative sides of Amazon's Black Friday activities, before Sean Bradley attempts to explain why Bitcoin is tanking and what the future holds for crypto currencies. Cheers!

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 109 - The Internet of Takes Two to Tango (IoTTtT) Fallout 76, Red Dead online and Christmas buying guide

Two’s a crowd for this week’s games and Christmas pod with Consumer Tech Editor Henry Burrell and Games Editor Lewis Painter. Lewis lines up reviews of the awful Fallout 76 and the excellent online mode of Red Dead Redemption 2 – two polar opposites in how to make a decent online multiplayer game.


We also discuss smartwatches we’ve recently reviewed that left us feeling cold and why Apple is still king of the hill.


And to get into the festive vibe, interspersed throughout as we enter December are our top tech Christmas gift picks, both cheap and indulgent.


Everything we recommend is linked below:


Google Home Hub


Tile Bluetooth tracker


Red Dead Redemption 2 (PS4)


Super Smash Bros – Ultimate (Switch)


Pokémon: Let’s Go, Pikachu! (Switch)


Turtle Beach Elite Pro 2 + Superamp


Amazon Kindle Paperwhite


PlayStation Classic


PlayStation VR Starter Pack


The best budget smartphones

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 110 - The Internet of These are a Few of Our Favourite Things (IoTaaFoOFT) Best Tech of 2018

Scott Carey is in the hosting chair this week as we have a rotating cast of staffers from across Macworld, Tech Advisor, Techworld and Computerworld to discuss our two favourite techie things of the year, from the best games and films, to our favourite devices and even, microchips.


Thank you for listening this year and for your continued support for the UK Tech Weekly Podcast and we will see you in the new year.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 111 - The Internet of Not Watching Films (IoNWF) Bird Box, Black Mirror and bent iPads

Happy New Year from the UK Tech Weekly Podcast!


We are back this week to discuss what we have been watching (or not watching) over the festive period, including Scott Carey on the meme-marketed sensation of Bird Box and what this says about Netflix's ability to dominate the cultural conversation. Then Tamlin Magee jumps in to talk about the interactive Black Mirror movie Bandersnatch and why it may have been destined to fail.


Lastly David Price steps out of the hosting chair to talk about bendy iPads and Apple's strange rhetoric.

 

See acast.com/privacy for privacy and opt-out information.




pi

Episode 112 - The Internet of Controversial Dildos (IoCD) CES roundup ft. sex toys and smart wood

This week our host Scott Carey catches up with Sean Bradley and Dominic Preston fresh off the back of the International Consumer Electronics Show (CES) in Las Vegas.


Dom explains why he was surprised, both in a good and bad way, by the latest foldable screen technology and Sean talks about what is going on in the gaming laptop space, as Alienware looks to soften its image.


Then Dom talks about a piece of connected wood and the gang break down the big controversy from the show floor regarding a certain innovative dildo.


We are also announcing the sad news that the UK Tech Weekly Podcast will be going on an indefinite hiatus while we reassess our podcasting output. We would like to thank anyone that has taken the time to listen to us for these one hundred and twelve (112!) episodes and rest assured we will be back in some guise soon.

 

See acast.com/privacy for privacy and opt-out information.




pi

Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes [Research Articles]

Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPS) on the outer leaflet and phospholipids (PLs) on the inner leaflet. Loss of this asymmetry due to mutations in the lipopolysaccharide (LPS) biosynthesis or transport pathways causes externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we employed metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase (Pcs) expression in Escherichia coli allowed for incorporation of exogenous propargylcholine (PCho) into phosphatidyl(propargyl)choline (PPC) and for incorporation of exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC) as confirmed by LC-MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells, but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains, and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool to detect a compromised bacterial OM, reveal aberrant PL externalization, and identify or characterize novel cell-active inhibitors of LPS biosynthesis or transport.




pi

The lncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice [Research Articles]

Excessive lipid deposition is a hallmark of nonalcoholic fatty liver disease (NAFLD). Although much has been learned about the enzymes and metabolites involved in NAFLD, few studies have focused on the role of long non-coding RNAs (lncRNAs) in hepatic lipid accumulation. Here, using in vitro and in vivo models of NAFLD, we found that the lncRNA Gm15622 is highly expressed in the liver of obese mice fed a high-fat diet (HFD) and in murine liver (AML-12) cells treated with free fatty acids. Investigating the molecular mechanism in the liver-enriched expression of Gm15622 and its effects on lipid accumulation in hepatocytes and on NAFLD pathogenesis, we found that Gm15622 acts as a sponge for the microRNA miR-742-3p. This sponging activity increased the expression of the transcriptional regulator sterol regulatory element–binding transcription factor 1c (SREBP-1c) and promoted lipid accumulation in the liver of the HFD mice and AML-12 cells. Moreover, further results indicated that metformin suppresses Gm15622 and alleviates NAFLD-associated lipid deposition in mice. In conclusion, we have identified an lncRNA Gm15622–miR-742-3p–SREBP-1c regulatory circuit associated with NAFLD in mice, a finding that significantly advances our insight into how lipid metabolism and accumulation are altered in this metabolic disorder. Our results also suggest that Gm15622 may be a potential therapeutic target for managing NAFLD.




pi

The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes [Images in Lipid Research]




pi

Roles of endogenous ether lipids and associated PUFA in the regulation of ion channels and their relevance for disease [Research Articles]

Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage (i.e. plasmalogens [Pls]) at the sn1 position of the glycerol backbone and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs), and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.




pi

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities [Research Articles]

Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) stratum corneum ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active, epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in stratum corneum ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered stratum corneum ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS. 




pi

Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. [Research Articles]

Niemann–Pick type C1 (NPC1) disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key-factor in the development of atherosclerosis and non-alcoholic steatohepatitis (NASH). In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring an Npc1 null allele (Npc1nih), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a two or six percent plant stanol esters–enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol–enriched diet exhibited lower hepatic cholesterol accumulation, damage and inflammation than regular chow–fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular towards an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.




pi

LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL [Patient-Oriented and Epidemiological Research]

Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity?  What is the effect of statin treatment? Obese, hypertriglyceridemic, hypercholesterolemic males (n=12; Lp(a) <10 mg/dL) received pitavastatin calcium (4mg/day) for 180 days in a single-phase, unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids (lysophosphatidylcholine (LPC); lysophosphatidylinositol (LPI); lyso-platelet activating factor (LPC(O)); 9,0.2 and 0.14 mol/mol apoB respectively; all p<0.001 versus LDL1-4), suggesting  elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5 - 3 mol/mol apoB; 3 - 7 mmol/mol phosphatidylcholine) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.




pi

Dispersed lipid droplets: an intermediate site for lipid transport and metabolism in primary human adipocytes. [Images in Lipid Research]




pi

Ebola virus matrix protein VP40 hijacks the host plasma membrane to form the virus envelope [Images in Lipid Research]




pi

ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images in Lipid Research]




pi

Accessibility of cholesterol at cell surfaces [Images in Lipid Research]




pi

A Direct Fluorometric Activity Assay for Lipid Kinases and Phosphatases [Methods]

Lipid kinases and phosphatases play key roles in cell signaling and regulation, and are implicated in many human diseases, and are hence thus attractive targets for drug development. Currently, no direct in vitro activity assay is available for these important enzymes, which hampers mechanistic studies as well as high-throughput screening of small molecule modulators. Here we report a highly sensitive and quantitative assay employing a ratiometric fluorescence sensor that directly and specifically monitors the real-time concentration change of a single lipid species. Due Because of to its modular design, the assay system can be applied to a wide variety of lipid kinases and phosphatases, including Class I phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN). When applied to PI3K, the assay provided the newdetailed mechanistic information about the product inhibition and substrate acyl acyl-chain selectivity of PI3K and allowed enabled rapid evaluation of its small molecule inhibitors. We also used this assay to quantitatively determine the substrate specificity of PTEN, providing new insight into its physiological functionThe assay also quantitatively determined the substrate specificity of PTEN, thereby providing new insight into its physiological function. In summary, we have developed a fluorescence-based real-time assay for PI3K and PTEN that we anticipate could be adapted to measure the activities of other lipid kinases and phosphatases with high sensitivity and accuracy.




pi

A simple method for sphingolipid analysis of tissues embedded in optimal cutting temperature compound [Methods]

Mass spectrometry (MS) assisted lipidomic tissue analysis is a valuable tool to assess sphingolipid metabolism dysfunction in disease. These analyses can reveal potential pharmacological targets or direct mechanistic studies to better understand the molecular underpinnings and influence of sphingolipid metabolism alterations on disease etiology. But procuring sufficient human tissues for adequately powered studies can be challenging. Therefore, biorepositories, which hold large collections of cryopreserved human tissues, are an ideal retrospective source of specimens. However, this resource has been vastly underutilized by lipid biologists, as the components of optimal cutting temperature compound (OCT) used in cryopreservation are incompatible with MS analyses. Here, we report results indicating that OCT also interferes with protein quantification assays, and that the presence of OCT impacts the quantification of extracted sphingolipids by LC–ESI–MS/MS. We developed and validated a simple and inexpensive method that removes OCT from OCT-embedded tissues. Our results indicate that removal of OCT from cryopreserved tissues does not significantly affect the accuracy of sphingolipid measurements with LC–ESI–MS/MS. We used the validated method to analyze sphingolipid alterations in tumors compared with normal adjacent uninvolved lung tissues from individuals with lung cancer, and to determine the long-term stability of sphingolipids in OCT-cryopreserved normal lung tissues. We show that lung cancer tumors have significantly altered sphingolipid profiles and that sphingolipids are stable for up to 16 years in OCT-cryopreserved normal lung tissues. This validated sphingolipidomic OCT-removal protocol should be a valuable addition to the lipid biologist’s toolbox.




pi

Phosphatidylinositol Metabolism, Phospholipases, Lipidomics, and Cancer:In Memoriam of Michael J. O. Wakelam (1955-2020) [Tribute]




pi

Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs [Research Articles]

Multi-component lipid emulsions, rather than soy-oil emulsions, prevent cholestasis by an unknown mechanism. Here, we quantified liver function, bile acid pools, and gut microbial and metabolite profiles in premature, parenterally fed pigs given a soy-oil lipid emulsion, Intralipid (IL); a multi component lipid emulsion, SMOFlipid (SMOF); a novel emulsion with a modified fatty-acid composition (EXP); or a control enteral diet (ENT) for 22 days. We assayed serum cholestasis markers; measured total bile acid levels in plasma, liver, and gut contents; and analyzed colonic bacterial 16S rRNA gene sequences and metabolomic profiles. Serum cholestasis markers (i.e. bilirubin, bile acids, and g-glutamyl transferase) were highest in IL-fed pigs and normalized in those given SMOF, EXP, or ENT. Gut bile acid pools were lowest in the IL treatment and were increased in the SMOF and EXP treatments and comparable to ENT. Multiple bile acids, especially their conjugated forms, were higher in the colon contents of SMOF and EXP than in IL pigs. Colonic microbial communities of SMOF and EXP pigs had lower relative abundance of several Gram-positive anaerobes, including Clostridrium XIVa, and higher abundance of Enterobacteriaceae than those of IL and ENT pigs. Differences in lipid and microbial-derived compounds were also observed in colon metabolite profiles. These results indicate that multi-component lipid emulsions prevent cholestasis and restore enterohepatic bile flow in association with gut microbial and metabolomic changes. We conclude that sustained bile flow induced by multi-component lipid emulsions likely exerts a dominant effect in reducing bile acid–sensitive, Gram-positive bacteria.




pi

Sphingolipids distribution at mitochondria-associated membranes (MAM) upon induction of apoptosis. [Research Articles]

The levels and composition of sphingolipids and related metabolites are altered in aging and common disorders such as diabetes and cancers, as well as in neurodegenerative, cardiovascular, and respiratory diseases. Changes in sphingolipids have been implicated as being an essential step in mitochondria-driven cell death. However, little is known about the precise sphingolipid composition and modulation in mitochondria or related organelles. Here, we used LC–MS/MS to analyze the presence of key components of the ceramide metabolic pathway in vivo and in vitro in purified endoplasmic reticulum (ER), mitochondria-associated membranes (MAM), and mitochondria. Specifically, we analyzed the sphingolipids in the three pathways that generate ceramide: sphinganine in the de novo ceramide pathway, sphingomyelin in the breakdown pathway, and sphingosine in the salvage pathway. We observed sphingolipid profiles in mouse liver, mouse brain, and a human glioma cell line (U251). We analyzed the quantitative and qualitative changes of these sphingolipids during staurosporine (STS)-induced apoptosis in U251 cells. Ceramide, especially C16-ceramide, levels increased during early apoptosis possibly through a conversion from mitochondrial sphinganine and sphingomyelin, but sphingosine and lactosyl- and glucosyl-ceramide levels were unaffected. We also found that ceramide generation is enhanced in mitochondria when sphingomyelin levels are decreased in the MAM. This decrease was associated with an increase in acid sphingomyelinase (ASM) activity in MAM. We conclude that meaningful sphingolipid modifications occur in MAM, the mitochondria, and ER during the early phases of apoptosis.




pi

Mass spectrometry imaging and LC-MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice [Research Articles]

Niemann-Pick disease, type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized consensus spectra analysis of MS imaging datasets and orthogonal LC–MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP), and bisphosphate (PIP2), in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2 α (PI4K2A) in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.




pi

Bisretinoid phospholipid and vitamin A aldehyde: Shining a light [Thematic Reviews]

Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate (N-retinylidene-PE, NRPE) through a Schiff base linkage with phosphatidylethanolamine (PE). The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial (RPE) cells, their fluorescence characters and new findings related to light and iron-associated oxidation of bisretinoids.




pi

Lipid sensing tips the balance for a key cholesterol synthesis enzyme [Images in Lipid Research]




pi

The Hurdles to Developing a COVID-19 Vaccine: Why International Cooperation is Needed

23 April 2020

Professor David Salisbury CB

Associate Fellow, Global Health Programme

Dr Champa Patel

Director, Asia-Pacific Programme
While the world pins its hopes on vaccines to prevent COVID-19, there are scientific, regulatory and market hurdles to overcome. Furthermore, with geopolitical tensions and nationalistic approaches, there is a high risk that the most vulnerable will not get the life-saving interventions they need.

2020-04-23-Covid-Vaccine.jpg

A biologist works on the virus inactivation process in Belo Horizonte, Brazil on 24 March 2020. The Brazilian Ministry of Health convened The Technological Vaccine Center to conduct research on COVID-19 in order to diagnose, test and develop a vaccine. Photo: Getty Images.

On 10 January 2020, Chinese scientists released the sequence of the COVID-19 genome on the internet. This provided the starting gun for scientists around the world to start developing vaccines or therapies. With at least 80 different vaccines in development, many governments are pinning their hopes on a quick solution. However, there are many hurdles to overcome. 

Vaccine development

Firstly, vaccine development is normally a very long process to ensure vaccines are safe and effective before they are used. 

Safety is not a given: a recent dengue vaccine caused heightened disease in vaccinated children when they later were exposed to dengue, while Respiratory Syncytial Virus vaccine caused the same problem. Nor is effectiveness a given. Candidate vaccines that use novel techniques where minute fragments of the viruses’ genetic code are either injected directly into humans or incorporated into a vaccine (as is being pursued, or could be pursued for COVID-19) have higher risks of failure simply because they haven’t worked before. For some vaccines, we know what levels of immunity post-vaccination are likely to be protective. This is not the case for coronavirus. 

Clinical trials will have to be done for efficacy. This is not optional – regulators will need to know extensive testing has taken place before licencing any vaccine. Even if animal tests are done in parallel with early human tests, the remainder of the process is still lengthy. 

There is also great interest in the use of passive immunization, whereby antibodies to SARS-CoV-2 (collected from people who have recovered from infection or laboratory-created) are given to people who are currently ill. Antivirals may prove to be a quicker route than vaccine development, as the testing requirements would be shorter, manufacturing may be easier and only ill people would need to be treated, as opposed to all at-risk individuals being vaccinated.

Vaccine manufacturing

Developers, especially small biotechs, will have to make partnerships with large vaccine manufacturers in order to bring products to market. One notorious bottleneck in vaccine development is getting from proof-of-principle to commercial development: about 95 per cent of vaccines fail at this step. Another bottleneck is at the end of production. The final stages of vaccine production involve detailed testing to ensure that the vaccine meets the necessary criteria and there are always constraints on access to the technologies necessary to finalize the product. Only large vaccine manufacturers have these capacities. There is a graveyard of failed vaccine candidates that have not managed to pass through this development and manufacturing process.

Another consideration is adverse or unintended consequences. Highly specialized scientists may have to defer their work on other new vaccines to work on COVID-19 products and production of existing products may have to be set aside, raising the possibility of shortages of other essential vaccines. 

Cost is another challenge. Vaccines for industrialized markets can be very lucrative for pharmaceutical companies, but many countries have price caps on vaccines. Important lessons have been learned from the 2009 H1N1 flu pandemic when industrialized countries took all the vaccines first. Supplies were made available to lower-income countries at a lower price but this was much later in the evolution of the pandemic. For the recent Ebola outbreaks, vaccines were made available at low or no cost. 

Geopolitics may also play a role. Should countries that manufacture a vaccine share it widely with other countries or prioritize their own populations first? It has been reported that President Trump attempted to purchase CureVac, a German company with a candidate vaccine.  There are certainly precedents for countries prioritizing their own populations. With H1N1 flu in 2009, the Australian Government required a vaccine company to meet the needs of the Australian population first. 

Vaccine distribution

Global leadership and a coordinated and coherent response will be needed to ensure that any vaccine is distributed equitably. There have been recent calls for a G20 on health, but existing global bodies such as the Coalition for Epidemic Preparedness Innovations (CEPI) and GAVI are working on vaccines and worldwide access to them. Any new bodies should seek to boost funding for these entities so they can ensure products reach the most disadvantaged. 

While countries that cannot afford vaccines may be priced out of markets, access for poor, vulnerable or marginalized peoples, whether in developed or developing countries, is of concern. Developing countries are at particular risk from the impacts of COVID-19. People living in conflict-affected and fragile states – whether they are refugees or asylum seekers, internally displaced or stateless, or in detention facilities – are at especially high risk of devastating impacts. 

Mature economies will also face challenges. Equitable access to COVID-19 vaccine will be challenging where inequalities and unequal access to essential services have been compromised within some political systems. 

The need for global leadership 

There is an urgent need for international coordination on COVID-19 vaccines. While the WHO provides technical support and UNICEF acts as a procurement agency, responding to coronavirus needs clarity of global leadership that arches over national interests and is capable of mobilizing resources at a time when economies are facing painful recessions. We see vaccines as a salvation but remain ill-equipped to accelerate their development.

While everyone hopes for rapid availability of safe, effective and affordable vaccines that will be produced in sufficient quantities to meet everyone’s needs, realistically, we face huge hurdles. 




pi

The Proteomics of Networks and Pathways: A Movie is Worth a Thousand Pictures [Editorial]

none




pi

Energy for Asia: Chasing Pipe Dreams

1 July 2008 , Number 9

Oil people call them pipe dreams: plans to transport energy across vast distances to places where it is needed most. That need is clear in Pakistan and India, but can the obstacles be overcome at this time of high prices, to turn the recurring dreams into reality?

Elizabeth Mills

Freelance analyst and consultant, Islamabad

AP00060801194.jpg

Indian women protesting against electricity price increases in Hyderabad




pi

Secrets and Spies: UK Intelligence Accountability After Iraq and Snowden

20 January 2020

How can democratic governments hold intelligence and security agencies to account when what they do is largely secret? Jamie Gaskarth explores how intelligence professionals view accountability in the context of 21st century politics. 

Jamie Gaskarth

Senior Lecturer, University of Birmingham

Using the UK as a case study, this book provides the first systematic exploration of how accountability is understood inside the secret world. It is based on new interviews with current and former UK intelligence practitioners, as well as extensive research into the performance and scrutiny of the UK intelligence machinery.

The result is the first detailed analysis of how intelligence professionals view their role, what they feel keeps them honest, and how far external overseers impact on their work.

The UK gathers material that helps inform global decisions on such issues as nuclear proliferation, terrorism, transnational crime, and breaches of international humanitarian law. On the flip side, the UK was a major contributor to the intelligence failures leading to the Iraq war in 2003, and its agencies were complicit in the widely discredited U.S. practices of torture and 'rendition' of terrorism suspects. UK agencies have come under greater scrutiny since those actions, but it is clear that problems remain.

Secrets and Spies is the result of a British Academy funded project (SG151249) on intelligence accountability.

Open society is increasingly defended by secret means. For this reason, oversight has never been more important. This book offers a new exploration of the widening world of accountability for UK intelligence, encompassing informal as well as informal mechanisms. It substantiates its claims well, drawing on an impressive range of interviews with senior figures. This excellent book offers both new information and fresh interpretations. It will have a major impact.

Richard Aldrich, Professor of International Security, University of Warwick, UK

Gaskarth’s novel approach, interpreting interviews with senior figures from the intelligence world, brings fresh insight on a significant yet contested topic. He offers an impressively holistic account of intelligence accountability—both formal and informal—and, most interestingly of all, of how those involved understand it. This is essential reading for those wanting to know what accountability means and how it is enacted.

Rory Cormac, Professor of International Relations, University of Nottingham

About the author

Jamie Gaskarth is senior lecturer at the University of Birmingham, where he teaches strategy and decision-making. His research looks at the ethical dilemmas of leadership and accountability in intelligence, foreign policy, and defence. He is author/editor or co-editor of six books and served on the Academic Advisory panel for the 2015 UK National Security Strategy and Strategic Defence and Security Review.

Available now: Buying options

Insights: Critical Thinking on International Affairs

Department/project




pi

Russia’s Human and Social Capital

Invitation Only Research Event

5 March 2020 - 9:30am to 1:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Christopher Davis, Professorial Fellow, Institute of Population Ageing, University of Oxford
Samuel Greene, Director, King's Russia Institute; Reader of Russian Politics, King’s College London
Nikolai Petrov, Senior Research Fellow, Russia and Eurasia Programme, Chatham House
Natalia Zubarevich, Director, Regional Programme, Independent Institute for Social Policy

Russia’s published development agenda to 2024 focused on gaining advantage from its human capital. In reality however, issues surrounding Russia’s population remain a major challenge, considering its demographic trends, an undoubted brain drain and societal divisions.

This expert roundtable will explore the current state of – and interconnections between – human and social capital in Russia. The speakers will also address Russia’s regional disparities, migration effects and political elite dynamics and their relationship to the population at large.

Event attributes

Chatham House Rule

Anna Morgan

Administrator, Ukraine Forum
+44 (0)20 7389 3274




pi

Virtual Roundtable: Re-integration or Dis-integration: What Does the Future Hold for Occupied Donbas?

Invitation Only Research Event

28 April 2020 - 4:00pm to 5:30pm

Event participants

Paul D’anieri, Professor of Public Policy and Political Science, University of California, Riverside
Vlad Mykhnenko, Associate Professor of Sustainable Urban Development, St Peter’s College, University of Oxford
Chair: Orysia Lutsevych, Research Fellow and Manager, Ukraine Forum, Chatham House

The armed conflict in Donbas has now entered its seventh year. President Zelenskyy, who came to power in May 2019, promised to end the war with Russia and bring peace to Ukraine.

Since assuming office, Zelenskyy has managed to revive the Normandy Format talks, complete military disengagement at three points along the line of contact and negotiate the release of over a hundred Ukrainians held as prisoners of war in Russia. However, ceasefire violations continue to occur frequently.

Looking at the origins of the armed conflict in Donbas and the region’s economic role in Ukraine’s economy, this event discusses the prospects for conflict resolution. Do the recent events signify an opportunity for peace? Does Zelenskyy have a viable plan for re-integrating Donbas or will the region be cut off from mainland Ukraine for the foreseeable future?

The speakers assess the strategy and track record of the Ukrainian government and its Western allies in bringing parts of the occupied Donbas under Kyiv’s control. They also review possible policy implications of the COVID-19 pandemic for the conflict.

Anna Morgan

Administrator, Ukraine Forum
+44 (0)20 7389 3274




pi

Plasma membrane asymmetry of lipid organization: fluorescence lifetime microscopy and correlation spectroscopy analysis [Methods]

A fundamental feature of the eukaryotic cell membrane is the asymmetric arrangement of lipids in its two leaflets. A cell invests significant energy to maintain this asymmetry and uses it to regulate important biological processes, such as apoptosis and vesiculation. The dynamic coupling of the inner or cytoplasmic and outer or exofacial leaflets is a challenging open question in membrane biology. Here, we combined fluorescence lifetime imaging microscopy (FLIM) with imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) to differentiate the dynamics and organization of the two leaflets of live mammalian cells. We characterized the biophysical properties of fluorescent analogs of phosphatidylcholine, sphingomyelin, and phosphatidylserine in the plasma membrane of two mammalian cell lines (CHO-K1 and RBL-2H3). Because of their specific transverse membrane distribution, these probes allowed leaflet-specific investigation of the plasma membrane. We compared the results of the two methods having different temporal and spatial resolution. Fluorescence lifetimes of fluorescent lipid analogs were in ranges characteristic for the liquid ordered phase in the outer leaflet and for the liquid disordered phase in the inner leaflet. The observation of a more fluid inner leaflet was supported by free diffusion in the inner leaflet, with high average diffusion coefficients. The liquid ordered phase in the outer leaflet was accompanied by slower diffusion and diffusion with intermittent transient trapping. Our results show that the combination of FLIM and ITIR-FCS with specific fluorescent lipid analogs is a powerful tool for investigating lateral and transbilayer characteristics of plasma membrane in live cell lines.




pi

Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models [Research Articles]

Ceramides (Cers) with ultralong (~32-carbon) chains and -esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ~10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.




pi

Endocytosis of very low-density lipoproteins: an unexpected mechanism for lipid acquisition by breast cancer cells [Research Articles]

We previously described the expression of CD36 and LPL by breast cancer (BC) cells and tissues and the growth-promoting effect of VLDL observed only in the presence of LPL. We now report a model in which LPL is bound to a heparan sulfate proteoglycan motif on the BC cell surface and acts in concert with the VLDL receptor to internalize VLDLs via receptor-mediated endocytosis. We also demonstrate that gene-expression programs for lipid synthesis versus uptake respond robustly to triglyceride-rich lipoprotein availability. The literature emphasizes de novo FA synthesis and exogenous free FA uptake using CD36 as paramount mechanisms for lipid acquisition by cancer cells. We find that the uptake of intact lipoproteins is also an important mechanism for lipid acquisition and that the relative reliance on lipid synthesis versus uptake varies among BC cell lines and in response to VLDL availability. This metabolic plasticity has important implications for the development of therapies aimed at the lipid dependence of many types of cancer, in that the inhibition of FA synthesis may elicit compensatory upregulation of lipid uptake. Moreover, the mechanism that we have elucidated provides a direct connection between dietary fat and tumor biology.­.




pi

Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver [Research Articles]

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25–/– versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25’s action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.




pi

Macrophage polarization is linked to Ca2+-independent phospholipase A2{beta}-derived lipids and cross-cell signaling in mice [Research Articles]

Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β–/–) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β–/–, and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.




pi

High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia [Patient-Oriented and Epidemiological Research]

Whether HDL is associated with dementia risk is unclear. In addition to apoA1, other apolipoproteins are found in HDL, creating subspecies of HDL that may have distinct metabolic properties. We measured apoA1, apoC3, and apoJ levels in plasma and apoA1 levels in HDL that contains or lacks apoE, apoJ, or apoC3 using a modified sandwich ELISA in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 995 randomly selected participants and 521 participants who developed dementia during a mean of 5.1 years of follow-up. The level of total apoA1 was not significantly related to dementia risk, regardless of the coexistence of apoC3, apoJ, or apoE. Higher levels of total plasma apoC3 were associated with better cognitive function at baseline (difference in Modified Mini-Mental State Examination scores tertile 3 vs. tertile 1: 0.60; 95% CI: 0.23, 0.98) and a lower dementia risk (adjusted hazard ratio tertile 3 vs. tertile 1: 0.73; 95% CI: 0.55, 0.96). Plasma concentrations of apoA1 in HDL and its apolipoprotein-defined subspecies were not associated with cognitive function at baseline or with the risk of dementia during follow-up. Similar studies in other populations are required to better understand the association between apoC3 and Alzheimer’s disease pathology.