at Local MP checks in on development of new geothermal 'living laboratory' in Nottinghamshire - British Geological Survey By news.google.com Published On :: Thu, 19 Sep 2024 07:00:00 GMT Local MP checks in on development of new geothermal 'living laboratory' in Nottinghamshire British Geological Survey Full Article
at Update released for BGS open-source database software, ETL Helper - British Geological Survey By news.google.com Published On :: Tue, 09 Jul 2024 07:00:00 GMT Update released for BGS open-source database software, ETL Helper British Geological Survey Full Article
at New geological collaboration for Ordnance Survey - Ordnance Survey By news.google.com Published On :: Wed, 29 May 2024 07:00:00 GMT New geological collaboration for Ordnance Survey Ordnance Survey Full Article
at Update to BGS’s AGS file utilities tool released - British Geological Survey By news.google.com Published On :: Wed, 19 Jun 2024 07:00:00 GMT Update to BGS’s AGS file utilities tool released British Geological Survey Full Article
at BGS joins new initiative supporting technical career paths - British Geological Survey By news.google.com Published On :: Mon, 23 Sep 2024 09:08:49 GMT BGS joins new initiative supporting technical career paths British Geological Survey Full Article
at Forty years and counting: new topsoil data provides most extensive snapshot of environmental pollution effects - British Geological Survey By news.google.com Published On :: Tue, 01 Oct 2024 07:00:00 GMT Forty years and counting: new topsoil data provides most extensive snapshot of environmental pollution effects British Geological Survey Full Article
at Local MP helps BGS launch a ‘living laboratory’ - British Geological Survey By news.google.com Published On :: Tue, 05 Mar 2024 08:00:00 GMT Local MP helps BGS launch a ‘living laboratory’ British Geological Survey Full Article
at What lies beneath Liverpool? - British Geological Survey By news.google.com Published On :: Fri, 11 Oct 2024 07:59:10 GMT What lies beneath Liverpool? British Geological Survey Full Article
at New underground observatory open for research - British Geological Survey By news.google.com Published On :: Tue, 09 Apr 2024 07:00:00 GMT New underground observatory open for research British Geological Survey Full Article
at Seabed geology data: stakeholder consultation - British Geological Survey By news.google.com Published On :: Wed, 25 Sep 2024 15:58:38 GMT Seabed geology data: stakeholder consultation British Geological Survey Full Article
at BGS to update geological maps of Strathmore - British Geological Survey By news.google.com Published On :: Mon, 10 Jun 2024 07:00:00 GMT BGS to update geological maps of Strathmore British Geological Survey Full Article
at BGS announces collaboration with Ordnance Survey - British Geological Survey By news.google.com Published On :: Wed, 29 May 2024 07:00:00 GMT BGS announces collaboration with Ordnance Survey British Geological Survey Full Article
at Tris(4-chlorophenyl) phosphate By journals.iucr.org Published On :: In the title compound, the symmetric phosphate derived from para-chlorophenol and phosphoric acid, two of the three aromatic moieties adopt syn-orientation towards the P&z-dbnd;O bond while the last chlorophenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual molecules into sheets lying perpendicular to the crystallographic b axis. Full Article text
at Ethyl (2RS,3SR,4RS)-1-ethyl-2-(furan-2-yl)-4-hydroxy-5-oxopyrrolidine-3-carboxylate By journals.iucr.org Published On :: The crystal structure of a pyrrolidine analogue obtained from the stereoselective reduction of the enolic form of 4-hydroxy-2-furyl-pyrrolecarboxylate is described. Full Article text
at Tracking anharmonic oscillations in the structure of β 1,3-diacetylpyrene By journals.iucr.org Published On :: A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material. Its unique properties can be linked to anharmonic oscillations in the crystal structure. The onset and development of anharmonic behavior have been successfully tracked over a wide temperature range by single-crystal X-ray diffraction experiments. Sufficient diffraction data quality combined with modern quantum crystallography tools allowed a thorough analysis of the elusive anharmonic effects for a moderate-scattering purely organic compound. Full Article text
at Structural transformations and stability of benzo[a]pyrene under high pressure By journals.iucr.org Published On :: This study explores the high-pressure behavior of benzo[a]pyrene, revealing two previously unknown polymorphs at 4.8 and 7.1 GPa. These findings enhance our understanding of the structural dynamics and stability of polycyclic aromatic hydrocarbons under extreme conditions. Full Article text
at Exploiting fourth-generation synchrotron radiation for enzyme and photoreceptor characterization By journals.iucr.org Published On :: (Time-resolved) macromolecular crystallography at the new ESRF-ID29 beamline is described. Full Article text
at Crystal structure of nickel orthovanadate (Ni3V2O8) at 299 (3) K and 1323 (8) K: an X-ray diffraction study By journals.iucr.org Published On :: The structure of Ni3V2O8 was studied using X-ray diffraction at temperatures of 299 and 1323 K. No phase transition at high temperature is observed. The variation in V—O bond length is small as compared with the Ni—O bond due to its high rigidity. Full Article text
at A contribution to the crystal chemistry and topology of organic thiosulfates: bis(1-methylpiperazinium)·S2O3·H2O versus 1-methylpiperazinediium·S2O3·3H2O By journals.iucr.org Published On :: Crystal structure and topology of two new thiosulfates formed with mono- and diprotonated species of 1-methylpiperazine is reported. Full Article text
at The seventh blind test of crystal structure prediction: structure generation methods By journals.iucr.org Published On :: The results of the seventh blind test of crystal structure prediction are presented, focusing on structure generation methods. Full Article text
at Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: Incommensurate phase of potassium guaninate monohydrate is the first example of a modulation in purine derivatives and of a high-pressure incommensurate crystal structure to be solved for an organic compound. Full Article text
at From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®) By journals.iucr.org Published On :: The crystal structure of calcium atorvastatin trihydrate was redetermined from previously published synchrotron powder diffraction data to give a much-improved agreement with two independent density-functional theory calculations. Full Article text
at Spin reorientation and the interplay of magnetic sublattices in Er2CuMnMn4O12 By journals.iucr.org Published On :: We show that the interplay of multiple magnetic sublattices in Er2CuMnMn4O12 leads to four magnetic phase transitions characterized by the onset of ferrimagnetic order, spin-reorientation, spin canting, and the polarization of Er ions. While we elucidate numerous features of this complex magnetic system, the exact nature of the low-temperature coupling between erbium and manganese, and the origin of a k = (0, 0, ½) modulation, remain intriguing topics for future studies. Full Article text
at Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure By journals.iucr.org Published On :: In-situ diffraction measurements reveal that magnesium chloride forms a unique high-pressure phase, a heptahydrate, above 2 GPa. The hydrogen-bonding structure appears to contain orientational disorder. Full Article text
at Atypical phase transition, twinning and ferroelastic domain structure in bis(ethylenediammonium) tetrabromozincate(II) bromide, [NH3(CH2)2NH3]2[ZnBr4]Br2 By journals.iucr.org Published On :: A unique phase transition, twinning and ferroelastic domain structure in [NH3(CH2)2NH3]2[ZnBr4]Br2 is found. The new additional domain structure is observed at the phase transition on heating, which is preserved after cooling to room temperature. Full Article text
at Morphological control for hollow rod crystals of a photochromic diarylethene on spherulites by surface properties of substrates By journals.iucr.org Published On :: 1,2-Bis(3,5-dimethyl-2-thienyl)perfluorocyclopentene formed its own spherulites by sublimation onto the hydrophilic surfaces of the (0001) planes of α-quartz and sapphire substrates. The formation of different morphologies of these spherulites was attributed to the surface properties of each substrate. Depending on the morphology of the spherulites, hollow rod crystals with cross sections of different sizes and shapes and branching structures were generated on the surfaces of the spherulites. Full Article text
at The incommensurate composite YxOs4B4 (x = 1.161) By journals.iucr.org Published On :: Tetragonal YxOs4B4 (x = 1.161) is an incommensurate composite of columns of Y atoms in a three-dimensional Os4B4 framework. The structure was refined using the superspace approach. Full Article text
at Review of honeycomb-based Kitaev materials with zigzag magnetic ordering By journals.iucr.org Published On :: Full Article text
at Coordination geometry flexibility driving supramolecular isomerism of Cu/Mo pillared-layer hybrid networks By journals.iucr.org Published On :: The hydrothermal synthesis and structural characterization of four novel 3D pillared-layer metal–organic frameworks are studied, revealing how the malleability of copper coordination geometries drives diverse supramolecular isomerism. The findings provide new insights into designing advanced hybrid materials with tailored properties, emphasizing the significant role of reaction conditions and metal ion flexibility in determining network topologies. Full Article text
at Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability By journals.iucr.org Published On :: Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances. Full Article text
at Seed layer formation by deposition of micro-crystallites on a revolving substrate: modeling of the effective linear elastic, piezoelectric, and dielectric coefficients By journals.iucr.org Published On :: The rotating substrate method of crystallite deposition is modeled, allowing computation of effective material coefficients of the layers resulting from the averaging. A worked numerical example particularized to 6mm ZnO is provided. Full Article text
at Selective Acceleration and Inhibition of Crystal Growth of Glass Carbamazepine by Low-Concentration Poly(ethylene oxide):Effects of Drug Polymorph By journals.iucr.org Published On :: Low-concentration poly(ethylene oxide) exhibit the polymorph-dependent effects on both the surface and bulk crystal growth of carbamazepine polymorphs. These polymorph-dependent effects of PEO were mainly attributed to the polymer enrichment at the interface and different crystal surface-polymer interactions. Full Article text
at Density functional theory investigation of the phase transition, elastic and thermal characteristics for AuMTe2(M = Ga, In) chalcopyrite compounds By journals.iucr.org Published On :: This study presents the first theoretical predictions of the phase transitions, elastic properties, and thermal behavior of AuMTe2 (M = Ga, In) chalcopyrite compounds. Using density functional theory and the quasi-harmonic Debye model, key mechanical and thermodynamic properties are analyzed, offering insights valuable for future experimental validation. Full Article text
at Atypical phase transition, twinning and ferroelastic domain structure in bis(ethylenediammonium) tetrabromozincate(II) bromide, [NH3(CH2)2NH3]2[ZnBr4]Br2 By journals.iucr.org Published On :: 2024-11-04 Single-crystal growth, differential thermal analysis (DTA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray structural studies and polarized microscopy observations of bis(ethylenediammonium) tetrabromozincate(II) bromide [NH3(CH2)2NH3]2[ZnBr4]Br2 are presented. A reversible phase transition is described. At room temperature, the complex crystallizes in the monoclinic system. In some cases, the single crystals are twinned into two or more large domains of ferroelastic type with domain walls in the (100) crystallographic plane. DTA and DTG measurements show chemical stability of the crystal up to ∼538 K. In the DSC studies, a reversible isostructural phase transition was revealed at ∼526/522 K on heating/cooling run, respectively. Optical observation on the heating run reveals that at the phase transition the plane of twinning (domain wall) does not disappear and additionally the appearance of a new domain structure of ferroelastic type with domain walls in the planes (101), (101), (100) and (001) is observed. The domain structure pattern is preserved after cooling to the room-temperature phase and the symmetry of this phase is unchanged. Full Article text
at Morphological control for hollow rod crystals of a photochromic diarylethene on spherulites by surface properties of substrates By journals.iucr.org Published On :: 2024-10-31 Sublimation methods utilizing the surface properties of substrates can address the challenge of controlling hollow morphologies in rod crystals. Spherulites were formed on the hydrophilic surface of the (0001) planes of α-quartz and sapphire substrates by sublimation of 1,2-bis(3,5-dimethyl-2-thienyl)perfluorocyclopentene (1a). Various types of hollow morphologies, distinguished by the size and shape of their cross sections and by the presence or absence of branching structures, were formed separately on α-quartz and sapphire substrates. Such precise control of the hollow morphologies was attributed to the wettability of each substrate, leading to the formation of spherulites of 1a. In addition, it was indicated that the formation process of the surface morphologies of spherulites was associated with the hollow morphologies of rod crystals of 1a. Full Article text
at The incommensurate composite YxOs4B4 (x = 1.161) By journals.iucr.org Published On :: 2024-10-31 YxOs4B4 (x = 1.161) crystallizes as a tetragonal incommensurate composite of columns of Y atoms extending along [001] in an Os4B4 framework. The structure was refined using the superspace approach. The basic structure of the Y subsystem can be idealized as having I4/mmm symmetry, with a crystallographically unique Y atom located on the 4/mmm position. The actual superspace symmetry is P42/nmc(00σ3)s0s0. The Y atoms feature only subtle positional modulation in the [001] direction. The Os4B4 subsystem [P42/ncm(00σ3)00ss superspace symmetry] is built of columns of edge-sharing Os4 tetrahedra extending along [001] and B2 dumbbells. The Os4 tetrahedra feature pronounced positional modulation with a distinct variation of the Os—Os bond lengths. Modulation of the B2 dumbbells is best described as a rotation about the [001] axis. Full Article text
at Crystal structure of nickel orthovanadate (Ni3V2O8) at 299 (3) K and 1323 (8) K: an X-ray diffraction study By journals.iucr.org Published On :: 2024-10-23 Nickel orthovanadate is a promising material with potential applications in energy storage and photocatalytic devices. The crystal structure of Ni3V2O8 at 299 (3) K and 1323 (8) K was studied using X-ray powder diffraction. The sample was a single-phase orthorhombic kagome-staircase-Ni3(VO4)2-type structure (space group Cmca) at both temperatures. The phase purity and morphology was studied using energy-dispersive X-ray spectroscopy and scanning electron microscopy. The refined unit-cell parameters at 299 (3) K are a = 5.93384 (4) Å, b = 11.38318 (7) Å and c = 8.23818 (5) Å, and at 1323 (8) K are a = 6.02077 (7) Å, b = 11.48838 (7) Å and c = 8.32611 (9) Å. The obtained results indicate thermal expansion anisotropy, with a largest expansivity along a. Variations in Ni—O and V—O bonds with temperature are observed. The variation in the Ni—O bond is about one order higher in magnitude than that of the V—O bond, signifying the high rigidity of V—O bonds. The unit-cell size variations with rising effective ionic volume of the divalent A ion in the A3B2O8 family [A = Ni, Mg, Zn, Co, Mn (experimental data) and also A = Cu, Cd (theoretical data), B = V or As] are analyzed. Based on experimental and theoretical data, trends within the family are observed and the unit-cell size for reported solid solution of nickel (87%) and copper (13%) mixture in (Ni1–xCux)3V2O8 are predicted. Predictions are also provided for some hypothetical A3B2O8 ternary compound and solid solutions. Full Article text
at Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure By journals.iucr.org Published On :: 2024-10-21 The odd hydration number has so far been missing in the water-rich magnesium chloride hydrate series (MgCl2·nH2O). In this study, magnesium chloride heptahydrate, MgCl2·7H2O (or MgCl2·7D2O), which forms at high pressures above 2 GPa and high temperatures above 300 K, has been identified. Its structure has been determined by a combination of in-situ single-crystal X-ray diffraction at 2.5 GPa and 298 K and powder neutron diffraction at 3.1 GPa and 300 K. The single-crystal specimen was grown by mixing alcohols to prevent nucleation of undesired crystalline phases. The results show orientational disorder of water molecules, which was also examined using density functional theory calculations. The disorder involves the reconnection of hydrogen bonds, which differs from those in water ice phases and known disordered salt hydrates. Shrinkage by compression occurs mainly in one direction. In the plane perpendicular to this most compressible direction, oxygen and chlorine atoms are in a hexagonal-like arrangement. Full Article text
at From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®) By journals.iucr.org Published On :: 2024-10-08 With ever-improving quantum-mechanical computational methods, the accuracy requirements for experimental crystal structures increase. The crystal structure of calcium atorvastatin trihydrate, which has 56 degrees of freedom when determined with a real-space algorithm, was determined from powder diffraction data by Hodge et al. [Powder Diffr. (2020), 35, 136–143]. The crystal structure was a good fit to the experimental data, indicating that the electron density had been captured essentially correctly, but two independent quantum-mechanical calculations disagreed with the experimental structure and with each other. Using the same experimental data, the crystal structure was redetermined from scratch and it was shown that it can be reproduced within a root-mean-square Cartesian displacement of 0.1 Å by two independent quantum-mechanical calculations. The consequences for the calculated energies and solubilities are described. Full Article text
at Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: 2024-10-08 The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196]. Full Article text
at Spin reorientation and the interplay of magnetic sublattices in Er2CuMnMn4O12 By journals.iucr.org Published On :: 2024-10-21 Through a combination of magnetic susceptibility, specific heat, and neutron powder diffraction measurements we have revealed a sequence of four magnetic phase transitions in the columnar quadruple perovskite Er2CuMnMn4O12. A key feature of the quadruple perovskite structural framework is the complex interplay of multiple magnetic sublattices via frustrated exchange topologies and competing magnetic anisotropies. It is shown that in Er2CuMnMn4O12, this phenomenology gives rise to multiple spin-reorientation transitions driven by the competition of easy-axis single ion anisotropy and the Dzyaloshinskii–Moriya interaction; both within the manganese B-site sublattice. At low temperature, one Er sublattice orders due to a finite f-d exchange field aligned parallel to its Ising axis, while the other Er sublattice remains non-magnetic until a final, symmetry-breaking phase transition into the ground state. This non-trivial low-temperature interplay of transition metal and rare-earth sublattices, as well as an observed k = (0, 0, ½) periodicity in both manganese spin canting and Er ordering, raises future challenges to develop a complete understanding of the R2CuMnMn4O12 family. Full Article text
at Contrasting conformational behaviors of molecules XXXI and XXXII in the seventh blind test of crystal structure prediction By journals.iucr.org Published On :: 2024-10-14 Accurate modeling of conformational energies is key to the crystal structure prediction of conformational polymorphs. Focusing on molecules XXXI and XXXII from the seventh blind test of crystal structure prediction, this study employs various electronic structure methods up to the level of domain-local pair natural orbital coupled cluster singles and doubles with perturbative triples [DLPNO-CCSD(T1)] to benchmark the conformational energies and to assess their impact on the crystal energy landscapes. Molecule XXXI proves to be a relatively straightforward case, with the conformational energies from generalized gradient approximation (GGA) functional B86bPBE-XDM changing only modestly when using more advanced density functionals such as PBE0-D4, ωB97M-V, and revDSD-PBEP86-D4, dispersion-corrected second-order Møller–Plesset perturbation theory (SCS-MP2D), or DLPNO-CCSD(T1). In contrast, the conformational energies of molecule XXXII prove difficult to determine reliably, and variations in the computed conformational energies appreciably impact the crystal energy landscape. Even high-level methods such as revDSD-PBEP86-D4 and SCS-MP2D exhibit significant disagreements with the DLPNO-CCSD(T1) benchmarks for molecule XXXII, highlighting the difficulty of predicting conformational energies for complex, drug-like molecules. The best-converged predicted crystal energy landscape obtained here for molecule XXXII disagrees significantly with what has been inferred about the solid-form landscape experimentally. The identified limitations of the calculations are probably insufficient to account for the discrepancies between theory and experiment on molecule XXXII, and further investigation of the experimental solid-form landscape would be valuable. Finally, assessment of several semi-empirical methods finds r2SCAN-3c to be the most promising, with conformational energy accuracy intermediate between the GGA and hybrid functionals and a low computational cost. Full Article text
at Polymorph sampling with coupling to extended variables: enhanced sampling of polymorph energy landscapes and free energy perturbation of polymorph ensembles By journals.iucr.org Published On :: 2024-10-15 A novel approach to computationally enhance the sampling of molecular crystal structures is proposed and tested. This method is based on the use of extended variables coupled to a Monte Carlo based crystal polymorph generator. Inspired by the established technique of quasi-random sampling of polymorphs using the rigid molecule constraint, this approach represents molecular clusters as extended variables within a thermal reservoir. Polymorph unit-cell variables are generated using pseudo-random sampling. Within this framework, a harmonic coupling between the extended variables and polymorph configurations is established. The extended variables remain fixed during the inner loop dedicated to polymorph sampling, enforcing a stepwise propagation of the extended variables to maintain system exploration. The final processing step results in a polymorph energy landscape, where the raw structures sampled to create the extended variable trajectory are re-optimized without the thermal coupling term. The foundational principles of this approach are described and its effectiveness using both a Metropolis Monte Carlo type algorithm and modifications that incorporate replica exchange is demonstrated. A comparison is provided with pseudo-random sampling of polymorphs for the molecule coumarin. The choice to test a design of this algorithm as relevant for enhanced sampling of crystal structures was due to the obvious relation between molecular structure variables and corresponding crystal polymorphs as representative of the inherent vapor to crystal transitions that exist in nature. Additionally, it is shown that the trajectories of extended variables can be harnessed to extract fluctuation properties that can lead to valuable insights. A novel thermodynamic variable is introduced: the free energy difference between ensembles of Z' = 1 and Z' = 2 crystal polymorphs. Full Article text
at The seventh blind test of crystal structure prediction: structure generation methods By journals.iucr.org Published On :: 2024-12-01 A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures. Full Article text
at X-ray crystallographic structure of a novel enantiopure chiral isothiourea with potential applications in enantioselective synthesis By journals.iucr.org Published On :: 2024-01-01 The synthesis of a chiral isothiourea, namely, (4aR,8aR)-3-phenyl-4a,5,6,7,8,8a-hexahydrobenzo[4,5]imidazo[2,1-b]thiazol-9-ium bromide, C15H17N2S+·Br−, with potential organocatalytic and anti-inflammatory activity is reported. The preparation of the heterocycle of interest was carried out in two high-yielding steps. The hydrobromide salt of the isothiourea of interest provided suitable crystals for X-ray diffraction analysis, the results of which are reported. Salient observations from this analysis are the near perpendicular arrangement of the phenyl ring and the mean plane of the heterocycle. This conformational characteristic may be relevant with regard the stereoselectivity induced by the chiral isothiourea in asymmetric reactions. Furthermore, evidence was found for the existence of an S...Br− halogen bond. Full Article text
at Crystal structures of three uranyl–acetate–bipyridine complexes crystallized from hydraulic fracking fluid By journals.iucr.org Published On :: 2024-01-01 Hydraulic fracking exposes shale plays to acidic hydraulic fracking fluid (HFF), releasing toxic uranium (U) along with the desired oil and gas. With no existing methods to ensure U remains sequestered in the shale, this study sought to add organic ligands to HFF to explore potential U retention in shale plays. To test this possibility, incubations were set up in which uranyl acetate and one organic bipyridine ligand (either 2,2'-, 2,3'-, 2,4'-, or 4,4'-bipyridine) were added to pristine HFF as the crystallization medium. After several months and complete evaporation of all volatiles, bulk yellow crystalline material was obtained from the incubations, three of which yielded crystals suitable for single-crystal analysis, resulting in two novel structures and a high-quality structure of a previously described compound. The UO2VI acetate complexes bis(acetato-κ2O,O')(2,2'-bipyridine-κ2N,N')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,2'-bipyridine]UVIO2(CH3CO2)2, (I), and bis(acetato-κ2O,O')(2,4'-bipyridine-κN1')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,4'-bipyridine]2UVIO2(CH3CO2)2, (III), contain eight-coordinate UVI in a pseudo-hexagonal bipyramidal coordination geometry and are molecular, packing via weak C—H...O/N interactions, whereas catena-poly[bis(2,3'-bipyridinium) [di-μ-acetato-μ3-hydroxido-μ-hydroxido-di-μ3-oxido-hexaoxidotriuranium(VI)]–2,3'-bipyridine–water (1/1/1)], (C10H9N2)2[U3(C2H3O2)2O8(OH)2]·C10H8N2·H2O or {[2,3'-bipyridinium]2[2,3'-bipyridine][(UVIO2)3(O)2(OH)2(CH3CO2)2·H2O]}n, (II), forms an ionic one-dimensional polymer with seven-coordinate pentagonal bipyramidal UVI centers and hydrogen-bonding interactions within each chain. The formation of these crystals could indicate the potential for bipyridine to bind with U in shale during fracking, which will be explored in a future study via ICP-MS (inductively coupled plasma mass spectrometry) analyses of U concentration in HFF/bipyridine/shale incubations. The variation seen here between the molecular structures may indicate variance in the ability of bipyridine isomers to form complexes with U, which could impact their ability to retain U within shale in the context of fracking. Full Article text
at Modelling dynamical 3D electron diffraction intensities. I. A scattering cluster algorithm By journals.iucr.org Published On :: 2024-01-25 Three-dimensional electron diffraction (3D-ED) is a powerful technique for crystallographic characterization of nanometre-sized crystals that are too small for X-ray diffraction. For accurate crystal structure refinement, however, it is important that the Bragg diffracted intensities are treated dynamically. Bloch wave simulations are often used in 3D-ED, but can be computationally expensive for large unit cell crystals due to the large number of diffracted beams. Proposed here is an alternative method, the `scattering cluster algorithm' (SCA), that replaces the eigen-decomposition operation in Bloch waves with a simpler matrix multiplication. The underlying principle of SCA is that the intensity of a given Bragg reflection is largely determined by intensity transfer (i.e. `scattering') from a cluster of neighbouring diffracted beams. However, the penalty for using matrix multiplication is that the sample must be divided into a series of thin slices and the diffracted beams calculated iteratively, similar to the multislice approach. Therefore, SCA is more suitable for thin specimens. The accuracy and speed of SCA are demonstrated on tri-isopropyl silane (TIPS) pentacene and rubrene, two exemplar organic materials with large unit cells. Full Article text
at Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering By journals.iucr.org Published On :: 2024-01-25 The strong interaction of high-energy electrons with a crystal results in both dynamical elastic scattering and inelastic events, particularly phonon and plasmon excitation, which have relatively large cross sections. For accurate crystal structure refinement it is therefore important to uncover the impact of inelastic scattering on the Bragg beam intensities. Here a combined Bloch wave–Monte Carlo method is used to simulate phonon and plasmon scattering in crystals. The simulated thermal and plasmon diffuse scattering are consistent with experimental results. The simulations also confirm the empirical observation of a weaker unscattered beam intensity with increasing energy loss in the low-loss regime, while the Bragg-diffracted beam intensities do not change significantly. The beam intensities include the diffuse scattered background and have been normalized to adjust for the inelastic scattering cross section. It is speculated that the random azimuthal scattering angle during inelastic events transfers part of the unscattered beam intensity to the inner Bragg reflections. Inelastic scattering should not significantly influence crystal structure refinement, provided there are no artefacts from any background subtraction, since the relative intensity of the diffracted beams (which includes the diffuse scattering) remains approximately constant in the low energy loss regime. Full Article text
at Parameterized absorptive electron scattering factors By journals.iucr.org Published On :: 2024-01-25 In electron diffraction, thermal atomic motion produces incoherent scattering over a relatively wide angular range, which appears as a diffuse background that is usually subtracted from measurements of Bragg spot intensities in structure solution methods. The transfer of electron flux from Bragg spots to diffuse scatter is modelled using complex scattering factors f + if' in the Bloch wave methodology. In a two-beam Einstein model the imaginary `absorptive' scattering factor f' can be obtained by the evaluation of an integral containing f over all possible scattering angles. While more sophisticated models of diffuse scatter are widely used in the electron microscopy community, it is argued in this paper that this simple model is appropriate for current structure solution and refinement methods. The two-beam model is a straightforward numerical calculation, but even this simplistic approach can become time consuming for simulations of materials with large numbers of atoms in the unit cell and/or many incident beam orientations. Here, a parameterized form of f' is provided for 103 elements as neutral, spherical atoms that reduces calculation time considerably. Full Article text