en Morphological control for hollow rod crystals of a photochromic diarylethene on spherulites by surface properties of substrates By journals.iucr.org Published On :: 1,2-Bis(3,5-dimethyl-2-thienyl)perfluorocyclopentene formed its own spherulites by sublimation onto the hydrophilic surfaces of the (0001) planes of α-quartz and sapphire substrates. The formation of different morphologies of these spherulites was attributed to the surface properties of each substrate. Depending on the morphology of the spherulites, hollow rod crystals with cross sections of different sizes and shapes and branching structures were generated on the surfaces of the spherulites. Full Article text
en Structures of hexamethyl-[1,1'-biphenyl]-4,4'-diammonium salts By journals.iucr.org Published On :: The structures of nine hexamethyl-[1,1'-biphenyl]-4,4'-diammonium (HMB) salts are described Full Article text
en The incommensurate composite YxOs4B4 (x = 1.161) By journals.iucr.org Published On :: Tetragonal YxOs4B4 (x = 1.161) is an incommensurate composite of columns of Y atoms in a three-dimensional Os4B4 framework. The structure was refined using the superspace approach. Full Article text
en Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability By journals.iucr.org Published On :: Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances. Full Article text
en Seed layer formation by deposition of micro-crystallites on a revolving substrate: modeling of the effective linear elastic, piezoelectric, and dielectric coefficients By journals.iucr.org Published On :: The rotating substrate method of crystallite deposition is modeled, allowing computation of effective material coefficients of the layers resulting from the averaging. A worked numerical example particularized to 6mm ZnO is provided. Full Article text
en Selective Acceleration and Inhibition of Crystal Growth of Glass Carbamazepine by Low-Concentration Poly(ethylene oxide):Effects of Drug Polymorph By journals.iucr.org Published On :: Low-concentration poly(ethylene oxide) exhibit the polymorph-dependent effects on both the surface and bulk crystal growth of carbamazepine polymorphs. These polymorph-dependent effects of PEO were mainly attributed to the polymer enrichment at the interface and different crystal surface-polymer interactions. Full Article text
en Density functional theory investigation of the phase transition, elastic and thermal characteristics for AuMTe2(M = Ga, In) chalcopyrite compounds By journals.iucr.org Published On :: This study presents the first theoretical predictions of the phase transitions, elastic properties, and thermal behavior of AuMTe2 (M = Ga, In) chalcopyrite compounds. Using density functional theory and the quasi-harmonic Debye model, key mechanical and thermodynamic properties are analyzed, offering insights valuable for future experimental validation. Full Article text
en Atypical phase transition, twinning and ferroelastic domain structure in bis(ethylenediammonium) tetrabromozincate(II) bromide, [NH3(CH2)2NH3]2[ZnBr4]Br2 By journals.iucr.org Published On :: 2024-11-04 Single-crystal growth, differential thermal analysis (DTA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray structural studies and polarized microscopy observations of bis(ethylenediammonium) tetrabromozincate(II) bromide [NH3(CH2)2NH3]2[ZnBr4]Br2 are presented. A reversible phase transition is described. At room temperature, the complex crystallizes in the monoclinic system. In some cases, the single crystals are twinned into two or more large domains of ferroelastic type with domain walls in the (100) crystallographic plane. DTA and DTG measurements show chemical stability of the crystal up to ∼538 K. In the DSC studies, a reversible isostructural phase transition was revealed at ∼526/522 K on heating/cooling run, respectively. Optical observation on the heating run reveals that at the phase transition the plane of twinning (domain wall) does not disappear and additionally the appearance of a new domain structure of ferroelastic type with domain walls in the planes (101), (101), (100) and (001) is observed. The domain structure pattern is preserved after cooling to the room-temperature phase and the symmetry of this phase is unchanged. Full Article text
en Morphological control for hollow rod crystals of a photochromic diarylethene on spherulites by surface properties of substrates By journals.iucr.org Published On :: 2024-10-31 Sublimation methods utilizing the surface properties of substrates can address the challenge of controlling hollow morphologies in rod crystals. Spherulites were formed on the hydrophilic surface of the (0001) planes of α-quartz and sapphire substrates by sublimation of 1,2-bis(3,5-dimethyl-2-thienyl)perfluorocyclopentene (1a). Various types of hollow morphologies, distinguished by the size and shape of their cross sections and by the presence or absence of branching structures, were formed separately on α-quartz and sapphire substrates. Such precise control of the hollow morphologies was attributed to the wettability of each substrate, leading to the formation of spherulites of 1a. In addition, it was indicated that the formation process of the surface morphologies of spherulites was associated with the hollow morphologies of rod crystals of 1a. Full Article text
en The incommensurate composite YxOs4B4 (x = 1.161) By journals.iucr.org Published On :: 2024-10-31 YxOs4B4 (x = 1.161) crystallizes as a tetragonal incommensurate composite of columns of Y atoms extending along [001] in an Os4B4 framework. The structure was refined using the superspace approach. The basic structure of the Y subsystem can be idealized as having I4/mmm symmetry, with a crystallographically unique Y atom located on the 4/mmm position. The actual superspace symmetry is P42/nmc(00σ3)s0s0. The Y atoms feature only subtle positional modulation in the [001] direction. The Os4B4 subsystem [P42/ncm(00σ3)00ss superspace symmetry] is built of columns of edge-sharing Os4 tetrahedra extending along [001] and B2 dumbbells. The Os4 tetrahedra feature pronounced positional modulation with a distinct variation of the Os—Os bond lengths. Modulation of the B2 dumbbells is best described as a rotation about the [001] axis. Full Article text
en Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: 2024-10-08 The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196]. Full Article text
en Spin reorientation and the interplay of magnetic sublattices in Er2CuMnMn4O12 By journals.iucr.org Published On :: 2024-10-21 Through a combination of magnetic susceptibility, specific heat, and neutron powder diffraction measurements we have revealed a sequence of four magnetic phase transitions in the columnar quadruple perovskite Er2CuMnMn4O12. A key feature of the quadruple perovskite structural framework is the complex interplay of multiple magnetic sublattices via frustrated exchange topologies and competing magnetic anisotropies. It is shown that in Er2CuMnMn4O12, this phenomenology gives rise to multiple spin-reorientation transitions driven by the competition of easy-axis single ion anisotropy and the Dzyaloshinskii–Moriya interaction; both within the manganese B-site sublattice. At low temperature, one Er sublattice orders due to a finite f-d exchange field aligned parallel to its Ising axis, while the other Er sublattice remains non-magnetic until a final, symmetry-breaking phase transition into the ground state. This non-trivial low-temperature interplay of transition metal and rare-earth sublattices, as well as an observed k = (0, 0, ½) periodicity in both manganese spin canting and Er ordering, raises future challenges to develop a complete understanding of the R2CuMnMn4O12 family. Full Article text
en Contrasting conformational behaviors of molecules XXXI and XXXII in the seventh blind test of crystal structure prediction By journals.iucr.org Published On :: 2024-10-14 Accurate modeling of conformational energies is key to the crystal structure prediction of conformational polymorphs. Focusing on molecules XXXI and XXXII from the seventh blind test of crystal structure prediction, this study employs various electronic structure methods up to the level of domain-local pair natural orbital coupled cluster singles and doubles with perturbative triples [DLPNO-CCSD(T1)] to benchmark the conformational energies and to assess their impact on the crystal energy landscapes. Molecule XXXI proves to be a relatively straightforward case, with the conformational energies from generalized gradient approximation (GGA) functional B86bPBE-XDM changing only modestly when using more advanced density functionals such as PBE0-D4, ωB97M-V, and revDSD-PBEP86-D4, dispersion-corrected second-order Møller–Plesset perturbation theory (SCS-MP2D), or DLPNO-CCSD(T1). In contrast, the conformational energies of molecule XXXII prove difficult to determine reliably, and variations in the computed conformational energies appreciably impact the crystal energy landscape. Even high-level methods such as revDSD-PBEP86-D4 and SCS-MP2D exhibit significant disagreements with the DLPNO-CCSD(T1) benchmarks for molecule XXXII, highlighting the difficulty of predicting conformational energies for complex, drug-like molecules. The best-converged predicted crystal energy landscape obtained here for molecule XXXII disagrees significantly with what has been inferred about the solid-form landscape experimentally. The identified limitations of the calculations are probably insufficient to account for the discrepancies between theory and experiment on molecule XXXII, and further investigation of the experimental solid-form landscape would be valuable. Finally, assessment of several semi-empirical methods finds r2SCAN-3c to be the most promising, with conformational energy accuracy intermediate between the GGA and hybrid functionals and a low computational cost. Full Article text
en Assessment of the exchange-hole dipole moment dispersion correction for the energy ranking stage of the seventh crystal structure prediction blind test By journals.iucr.org Published On :: 2024-10-15 The seventh blind test of crystal structure prediction (CSP) methods substantially increased the level of complexity of the target compounds relative to the previous tests organized by the Cambridge Crystallographic Data Centre. In this work, the performance of density-functional methods is assessed using numerical atomic orbitals and the exchange-hole dipole moment dispersion correction (XDM) for the energy-ranking phase of the seventh blind test. Overall, excellent performance was seen for the two rigid molecules (XXVII, XXVIII) and for the organic salt (XXXIII). However, for the agrochemical (XXXI) and pharmaceutical (XXXII) targets, the experimental polymorphs were ranked fairly high in energy amongst the provided candidate structures and inclusion of thermal free-energy corrections from the lattice vibrations was found to be essential for compound XXXI. Based on these results, it is proposed that the importance of vibrational free-energy corrections increases with the number of rotatable bonds. Full Article text
en Polymorph sampling with coupling to extended variables: enhanced sampling of polymorph energy landscapes and free energy perturbation of polymorph ensembles By journals.iucr.org Published On :: 2024-10-15 A novel approach to computationally enhance the sampling of molecular crystal structures is proposed and tested. This method is based on the use of extended variables coupled to a Monte Carlo based crystal polymorph generator. Inspired by the established technique of quasi-random sampling of polymorphs using the rigid molecule constraint, this approach represents molecular clusters as extended variables within a thermal reservoir. Polymorph unit-cell variables are generated using pseudo-random sampling. Within this framework, a harmonic coupling between the extended variables and polymorph configurations is established. The extended variables remain fixed during the inner loop dedicated to polymorph sampling, enforcing a stepwise propagation of the extended variables to maintain system exploration. The final processing step results in a polymorph energy landscape, where the raw structures sampled to create the extended variable trajectory are re-optimized without the thermal coupling term. The foundational principles of this approach are described and its effectiveness using both a Metropolis Monte Carlo type algorithm and modifications that incorporate replica exchange is demonstrated. A comparison is provided with pseudo-random sampling of polymorphs for the molecule coumarin. The choice to test a design of this algorithm as relevant for enhanced sampling of crystal structures was due to the obvious relation between molecular structure variables and corresponding crystal polymorphs as representative of the inherent vapor to crystal transitions that exist in nature. Additionally, it is shown that the trajectories of extended variables can be harnessed to extract fluctuation properties that can lead to valuable insights. A novel thermodynamic variable is introduced: the free energy difference between ensembles of Z' = 1 and Z' = 2 crystal polymorphs. Full Article text
en The seventh blind test of crystal structure prediction: structure ranking methods By journals.iucr.org Published On :: 2024-10-17 A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4 kJ mol−1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases. Full Article text
en The seventh blind test of crystal structure prediction: structure generation methods By journals.iucr.org Published On :: 2024-12-01 A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures. Full Article text
en X-ray crystallographic structure of a novel enantiopure chiral isothiourea with potential applications in enantioselective synthesis By journals.iucr.org Published On :: 2024-01-01 The synthesis of a chiral isothiourea, namely, (4aR,8aR)-3-phenyl-4a,5,6,7,8,8a-hexahydrobenzo[4,5]imidazo[2,1-b]thiazol-9-ium bromide, C15H17N2S+·Br−, with potential organocatalytic and anti-inflammatory activity is reported. The preparation of the heterocycle of interest was carried out in two high-yielding steps. The hydrobromide salt of the isothiourea of interest provided suitable crystals for X-ray diffraction analysis, the results of which are reported. Salient observations from this analysis are the near perpendicular arrangement of the phenyl ring and the mean plane of the heterocycle. This conformational characteristic may be relevant with regard the stereoselectivity induced by the chiral isothiourea in asymmetric reactions. Furthermore, evidence was found for the existence of an S...Br− halogen bond. Full Article text
en Analytical models representing X-ray form factors of ions By journals.iucr.org Published On :: 2024-01-01 Parameters in analytical models for X-ray form factors of ions f0(s), based on the inverse Mott–Bethe formula involving a variable number of Gaussians, are determined for a wide range of published data sets {s, f0(s)}. The models reproduce the calculated form-factor values close to what is expected from a uniform statistical distribution with limits determined by their precision. For different ions associated with the same atom, the number of Gaussians in the models decreases with increasing net positive charge. Full Article text
en Modelling dynamical 3D electron diffraction intensities. I. A scattering cluster algorithm By journals.iucr.org Published On :: 2024-01-25 Three-dimensional electron diffraction (3D-ED) is a powerful technique for crystallographic characterization of nanometre-sized crystals that are too small for X-ray diffraction. For accurate crystal structure refinement, however, it is important that the Bragg diffracted intensities are treated dynamically. Bloch wave simulations are often used in 3D-ED, but can be computationally expensive for large unit cell crystals due to the large number of diffracted beams. Proposed here is an alternative method, the `scattering cluster algorithm' (SCA), that replaces the eigen-decomposition operation in Bloch waves with a simpler matrix multiplication. The underlying principle of SCA is that the intensity of a given Bragg reflection is largely determined by intensity transfer (i.e. `scattering') from a cluster of neighbouring diffracted beams. However, the penalty for using matrix multiplication is that the sample must be divided into a series of thin slices and the diffracted beams calculated iteratively, similar to the multislice approach. Therefore, SCA is more suitable for thin specimens. The accuracy and speed of SCA are demonstrated on tri-isopropyl silane (TIPS) pentacene and rubrene, two exemplar organic materials with large unit cells. Full Article text
en Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering By journals.iucr.org Published On :: 2024-01-25 The strong interaction of high-energy electrons with a crystal results in both dynamical elastic scattering and inelastic events, particularly phonon and plasmon excitation, which have relatively large cross sections. For accurate crystal structure refinement it is therefore important to uncover the impact of inelastic scattering on the Bragg beam intensities. Here a combined Bloch wave–Monte Carlo method is used to simulate phonon and plasmon scattering in crystals. The simulated thermal and plasmon diffuse scattering are consistent with experimental results. The simulations also confirm the empirical observation of a weaker unscattered beam intensity with increasing energy loss in the low-loss regime, while the Bragg-diffracted beam intensities do not change significantly. The beam intensities include the diffuse scattered background and have been normalized to adjust for the inelastic scattering cross section. It is speculated that the random azimuthal scattering angle during inelastic events transfers part of the unscattered beam intensity to the inner Bragg reflections. Inelastic scattering should not significantly influence crystal structure refinement, provided there are no artefacts from any background subtraction, since the relative intensity of the diffracted beams (which includes the diffuse scattering) remains approximately constant in the low energy loss regime. Full Article text
en Universal parameters of bulk-solvent masks By journals.iucr.org Published On :: 2024-02-09 The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice. Full Article text
en N-representable one-electron reduced density matrix reconstruction with frozen core electrons By journals.iucr.org Published On :: 2024-03-21 Recent advances in quantum crystallography have shown that, beyond conventional charge density refinement, a one-electron reduced density matrix (1-RDM) satisfying N-representability conditions can be reconstructed using jointly experimental X-ray structure factors and directional Compton profiles (DCP) through semidefinite programming. So far, such reconstruction methods for 1-RDM, not constrained to idempotency, have been tested only on a toy model system (CO2). In this work, a new method is assessed on crystalline urea [CO(NH2)2] using static (0 K) and dynamic (50 K) artificial experimental data. An improved model, including symmetry constraints and frozen core-electron contribution, is introduced to better handle the increasing system complexity. Reconstructed 1-RDMs, deformation densities and DCP anisotropy are analysed, and it is demonstrated that the changes in the model significantly improve the reconstruction quality, even when there is insufficient information and data corruption. The robustness of the model and the strategy are thus shown to be well adapted to address the reconstruction problem from actual experimental scattering data. Full Article text
en Bond topology of chain, ribbon and tube silicates. Part II. Geometrical analysis of infinite 1D arrangements of (TO4)n− tetrahedra By journals.iucr.org Published On :: 2024-04-29 In Part I of this series, all topologically possible 1-periodic infinite graphs (chain graphs) representing chains of tetrahedra with up to 6–8 vertices (tetrahedra) per repeat unit were generated. This paper examines possible restraints on embedding these chain graphs into Euclidean space such that they are compatible with the metrics of chains of tetrahedra in observed crystal structures. Chain-silicate minerals with T = Si4+ (plus P5+, V5+, As5+, Al3+, Fe3+, B3+, Be2+, Zn2+ and Mg2+) have a grand nearest-neighbour 〈T–T〉 distance of 3.06±0.15 Å and a minimum T⋯T separation of 3.71 Å between non-nearest-neighbour tetrahedra, and in order for embedded chain graphs (called unit-distance graphs) to be possible atomic arrangements in crystals, they must conform to these metrics, a process termed equalization. It is shown that equalization of all acyclic chain graphs is possible in 2D and 3D, and that equalization of most cyclic chain graphs is possible in 3D but not necessarily in 2D. All unique ways in which non-isomorphic vertices may be moved are designated modes of geometric modification. If a mode (m) is applied to an equalized unit-distance graph such that a new geometrically distinct unit-distance graph is produced without changing the lengths of any edges, the mode is designated as valid (mv); if a new geometrically distinct unit-distance graph cannot be produced, the mode is invalid (mi). The parameters mv and mi are used to define ranges of rigidity of the unit-distance graphs, and are related to the edge-to-vertex ratio, e/n, of the parent chain graph. The program GraphT–T was developed to embed any chain graph into Euclidean space subject to the metric restraints on T–T and T⋯T. Embedding a selection of chain graphs with differing e/n ratios shows that the principal reason why many topologically possible chains cannot occur in crystal structures is due to violation of the requirement that T⋯T > 3.71 Å. Such a restraint becomes increasingly restrictive as e/n increases and indicates why chains with stoichiometry TO<2.5 do not occur in crystal structures. Full Article text
en Instrumental broadening and the radial pair distribution function with 2D detectors By journals.iucr.org Published On :: 2024-07-15 The atomic pair distribution function (PDF) is a real-space representation of the structure of a material. Experimental PDFs are obtained using a Fourier transform from total scattering data which may or may not have Bragg diffraction peaks. The determination of Bragg peak resolution in scattering data from the fundamental physical parameters of the diffractometer used is well established, but after the Fourier transform from reciprocal to direct space, these contributions are harder to identify. Starting from an existing definition of the resolution function of large-area detectors for X-ray diffraction, this approach is expanded into direct space. The effect of instrumental parameters on PDF peak resolution is developed mathematically, then studied with modelling and comparison with experimental PDFs of LaB6 from measurements made in different-sized capillaries. Full Article text
en Structure of the outer membrane porin OmpW from the pervasive pathogen Klebsiella pneumoniae By journals.iucr.org Published On :: 2024-01-01 Conjugation is the process by which plasmids, including those that carry antibiotic-resistance genes, are mobilized from one bacterium (the donor) to another (the recipient). The conjugation efficiency of IncF-like plasmids relies on the formation of mating-pair stabilization via intimate interactions between outer membrane proteins on the donor (a plasmid-encoded TraN isoform) and recipient bacteria. Conjugation of the R100-1 plasmid into Escherichia coli and Klebsiella pneumoniae (KP) recipients relies on pairing between the plasmid-encoded TraNα in the donor and OmpW in the recipient. Here, the crystal structure of K. pneumoniae OmpW (OmpWKP) is reported at 3.2 Å resolution. OmpWKP forms an eight-stranded β-barrel flanked by extracellular loops. The structures of E. coli OmpW (OmpWEC) and OmpWKP show high conservation despite sequence variability in the extracellular loops. Full Article text
en Expression, purification and crystallization of the photosensory module of phytochrome B (phyB) from Sorghum bicolor By journals.iucr.org Published On :: 2024-02-20 Sorghum, a short-day tropical plant, has been adapted for temperate grain production, in particular through the selection of variants at the MATURITY loci (Ma1–Ma6) that reduce photoperiod sensitivity. Ma3 encodes phytochrome B (phyB), a red/far-red photochromic biliprotein photoreceptor. The multi-domain gene product, comprising 1178 amino acids, autocatalytically binds the phytochromobilin chromophore to form the photoactive holophytochrome (Sb.phyB). This study describes the development of an efficient heterologous overproduction system which allows the production of large quantities of various holoprotein constructs, along with purification and crystallization procedures. Crystals of the Pr (red-light-absorbing) forms of NPGP, PGP and PG (residues 1–655, 114–655 and 114–458, respectively), each C-terminally tagged with His6, were successfully produced. While NPGP crystals did not diffract, those of PGP and PG diffracted to 6 and 2.1 Å resolution, respectively. Moving the tag to the N-terminus and replacing phytochromobilin with phycocyanobilin as the ligand produced PG crystals that diffracted to 1.8 Å resolution. These results demonstrate that the diffraction quality of challenging protein crystals can be improved by removing flexible regions, shifting fusion tags and altering small-molecule ligands. Full Article text
en Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase By journals.iucr.org Published On :: 2024-05-01 Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation. Full Article text
en Preparing research samples for safe arrival at centers and facilities: recipes for successful experiments By journals.iucr.org Published On :: 2024-07-11 Preparation of biomacromolecules for structural biology studies is a complex and time-consuming process. The goal is to produce a highly concentrated, highly pure product that is often shipped to large facilities with tools to prepare the samples for crystallization trials or for measurements at synchrotrons and cryoEM centers. The aim of this article is to provide guidance and to discuss general considerations for shipping biomacromolecular samples. Details are also provided about shipping samples for specific experiment types, including solution- and cryogenic-based techniques. These guidelines are provided with the hope that the time and energy invested in sample preparation is not lost due to shipping logistics. Full Article text
en Crystallographic fragment screen of the c-di-AMP-synthesizing enzyme CdaA from Bacillus subtilis By journals.iucr.org Published On :: 2024-08-23 Crystallographic fragment screening has become a pivotal technique in structure-based drug design, particularly for bacterial targets with a crucial role in infectious disease mechanisms. The enzyme CdaA, which synthesizes an essential second messenger cyclic di-AMP (c-di-AMP) in many pathogenic bacteria, has emerged as a promising candidate for the development of novel antibiotics. To identify crystals suitable for fragment screening, CdaA enzymes from Streptococcus pneumoniae, Bacillus subtilis and Enterococcus faecium were purified and crystallized. Crystals of B. subtilis CdaA, which diffracted to the highest resolution of 1.1 Å, were used to perform the screening of 96 fragments, yielding data sets with resolutions spanning from 1.08 to 1.87 Å. A total of 24 structural hits across eight different sites were identified. Four fragments bind to regions that are highly conserved among pathogenic bacteria, specifically the active site (three fragments) and the dimerization interface (one fragment). The coordinates of the three active-site fragments were used to perform an in silico drug-repurposing screen using the OpenEye suite and the DrugBank database. This screen identified tenofovir, an approved drug, that is predicted to interact with the ATP-binding region of CdaA. Its inhibitory potential against pathogenic E. faecium CdaA has been confirmed by ITC measurements. These findings not only demonstrate the feasibility of this approach for identifying lead compounds for the design of novel antibacterial agents, but also pave the way for further fragment-based lead-optimization efforts targeting CdaA. Full Article text
en Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy By journals.iucr.org Published On :: 2024-09-11 Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation. Full Article text
en First crystal structure of the DUF2436 domain of virulence proteins from Porphyromonas gingivalis By journals.iucr.org Published On :: 2024-09-26 Porphyromonas gingivalis is a major pathogenic oral bacterium that is responsible for periodontal disease. It is linked to chronic periodontitis, gingivitis and aggressive periodontitis. P. gingivalis exerts its pathogenic effects through mechanisms such as immune evasion and tissue destruction, primarily by secreting various factors, including cysteine proteases such as gingipain K (Kgp), gingipain R (RgpA and RgpB) and PrtH (UniProtKB ID P46071). Virulence proteins comprise multiple domains, including the pro-peptide region, catalytic domain, K domain, R domain and DUF2436 domain. While there is a growing database of knowledge on virulence proteins and domains, there was no prior evidence or information regarding the structure and biological function of the well conserved DUF2436 domain. In this study, the DUF2436 domain of PrtH from P. gingivalis (PgDUF2436) was determined at 2.21 Å resolution, revealing a noncanonical β-jelly-roll sandwich topology with two antiparallel β-sheets and one short α-helix. Although the structure of PgDUF2436 was determined by the molecular-replacement method using an AlphaFold model structure as a template, there were significant differences in the positions of β1 between the AlphaFold model and the experimentally determined PgDUF2436 structure. The Basic Local Alignment Search Tool sequence-similarity search program showed no sequentially similar proteins in the Protein Data Bank. However, DaliLite search results using structure-based alignment revealed that the PgDUF2436 structure has structural similarity Z-scores of 5.9–5.4 with the C-terminal domain of AlgF, the D4 domain of cytolysin, IglE and the extracellular domain structure of PepT2. This study has elucidated the structure of the DUF2436 domain for the first time and a comparative analysis with similar structures has been performed. Full Article text
en X-ray crystal structure of proliferating cell nuclear antigen 1 from Aeropyrum pernix By journals.iucr.org Published On :: 2024-10-09 Proliferating cell nuclear antigen (PCNA) plays a critical role in DNA replication by enhancing the activity of various proteins involved in replication. In this study, the crystal structure of ApePCNA1, one of three PCNAs from the thermophilic archaeon Aeropyrum pernix, was elucidated. ApePCNA1 was cloned and expressed in Escherichia coli and the protein was purified and crystallized. The resulting crystal structure determined at 2.00 Å resolution revealed that ApePCNA1 does not form a trimeric ring, unlike PCNAs from other domains of life. It has unique structural features, including a long interdomain-connecting loop and a PIP-box-like sequence at the N-terminus, indicating potential interactions with other proteins. These findings provide insights into the functional mechanisms of PCNAs in archaea and their evolutionary conservation across different domains of life. A modified medium and protocol were used to express recombinant protein containing the lac operon. The expression of the target protein increased and the total incubation time decreased when using this system compared with those of previous expression protocols. Full Article text
en The smearing function for a multi-slit very small angle neutron scattering instrument By journals.iucr.org Published On :: This study validates the feasibility of applying a smearing method for the multi-slit very small angle neutron scattering instrument (MS-VSANS) at the China Spallation Neutron Source. Through analysis limited to a vertical range of 8 mm, the study demonstrates consistency between the predicted smearing function and experimental data, marking a significant milestone in utilizing real data from such instruments. Full Article text
en Grazing-incidence small-angle neutron scattering at high pressure (HP-GISANS): a soft matter feasibility study on grafted brush films By journals.iucr.org Published On :: We present a demonstration of high-pressure grazing-incidence small-angle neutron scattering for soft matter thin films. The results suggest changes in water reorganization at different pressures. Full Article text
en A micro-beamstop with transmission detection by fluorescence for scanning-beam synchrotron scattering beamlines By journals.iucr.org Published On :: The correct determination of X-ray transmission at X-ray nanoprobes equipped with small beamstops for small- and wide-angle X-ray scattering collection is an unsolved problem with huge implications for data correction pipelines. We present a cost-effective solution to detect the transmission via the X-ray fluorescence of the beamstop with an avalanche photodiode. Full Article text
en Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile By journals.iucr.org Published On :: New software capabilities in RMCProfile allow researchers to study the structure of materials by combining machine learning interatomic potentials and reverse Monte Carlo. Full Article text
en Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation By journals.iucr.org Published On :: Rotations of small- and wide-angle X-ray scattering samples during acquisition are shown to give a drastic improvement in the reliability of the characterization of anisotropic precipitates in metallic alloys. Full Article text
en AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography By journals.iucr.org Published On :: AnACor2.0 significantly accelerates the calculation of analytical absorption corrections in long-wavelength crystallography, achieving up to 175× speed improvements. This enhancement is achieved through innovative sampling techniques, bisection and gridding methods, and optimized CUDA implementations, ensuring efficient and accurate results. Full Article text
en Towards expansion of the MATTS data bank with heavier elements: the influence of the wavefunction basis set on the multipole model derived from the wavefunction By journals.iucr.org Published On :: This study examines the quality of charge density obtained by fitting the multipole model to wavefunctions in different basis sets. The complex analysis reveals that changing the basis set quality from double- to triple-zeta can notably improve the charge density related properties of a multipole model. Full Article text
en PyFaults: a Python tool for stacking fault screening By journals.iucr.org Published On :: Here, an open-source Python library for identifying and screening potential stacking fault models in crystalline materials with planar disorder is presented. Full Article text
en Characterization and calibration of DECTRIS PILATUS3 X CdTe 2M high-Z hybrid pixel detector for high-precision powder diffraction measurements By journals.iucr.org Published On :: The performance of a high-Z photon-counting detector for powder diffraction measurements at high (>50 keV) energies is characterized, and the appropriate corrections are described in order to obtain data of higher quality than have previously been obtained from 2D detectors in these energy ranges. Full Article text
en Modulating phase segregation during spin-casting of fullerene-based polymer solar-cell thin films upon minor addition of a high-boiling co-solvent By journals.iucr.org Published On :: Combined 100 ms resolved grazing-incidence small/wide-angle X-ray scattering and optical interferometry reveal that the additive diiodooctane can significantly double the solvent evaporation rate, thereby effectively suppressing the rapid spinodal decomposition process in the early stage of spin-coasting, favouring slow phase segregation kinetics with nucleation and growth. Full Article text
en Position-independent product increase rate in a shaker mill revealed by position-resolved in situ synchrotron powder X-ray diffraction By journals.iucr.org Published On :: The position- and time-resolved monitoring of a mechanochemical reaction using synchrotron powder X-ray diffraction revealed a position-independent increase rate of product in the jar of a shaker mill. Full Article text
en Non-invasive nanoscale imaging of protein micro- and nanocrystals for screening crystallization conditions By journals.iucr.org Published On :: The article presents a non-invasive nanoscale imaging technique that can be used in screening crystallization conditions for protein micro- and nanocrystals. Full Article text
en Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier By journals.iucr.org Published On :: This study proposes an operation optimization framework for impurity-free recycling of spent lithium-ion batteries. Using a hybrid population balance equation integrated with a data-driven condition classifier, the study firstly identifies the optimal batch and semi-batch operation conditions that significantly reduce the operation time with 100% purity of product; detailed guidelines are given for industrial applications. Full Article text
en Specific radiation damage to halogenated inhibitors and ligands in protein–ligand crystal structures By journals.iucr.org Published On :: This article reports an investigation into the effects of specific radiation damage to halogenated ligands in crystal structures of protein-inhibitor complexes. Full Article text
en High accuracy, high resolution measurements of fluorescence in manganese using extended-range high-energy-resolution fluorescence detection By journals.iucr.org Published On :: We explain analysis of RIXS, HERFD and XR-HERFD data to discover new physical processes in manganese and manganese-containing materials, by applying our new technique XR-HERFD, developed from high resolution RIXS and HERFD. Full Article text
en Crystal structure and Hirshfeld surface analysis of bis(benzoylacetonato)(ethanol)dioxidouranium(VI) By journals.iucr.org Published On :: In the complex, the ligand binds to the metal through an oxygen atom. The geometry of the seven-coordinate U atom is pentagonal bipyramidal, with the uranyl O atoms in apical positions. Full Article text
en Synthesis and structure of pentakis(2-aminopyridinium) nonavanado(V)tellurate(VI) By journals.iucr.org Published On :: In the title compound, the tellurium(VI) and vanadium(V) atoms are statistically disordered over two of the ten metal-atom sites in the unprotonated [TeV9O28]5– heteropolyanion. Full Article text