ty

Say Yes, Figure It Out Later. Starting from the Start with Tyler Babin

“It’s impossible to move forward while staying the same”. That’s what motivated Tyler Babin, a 25 year old up & coming filmmaker, who hustled his way into his dream job only to leave it to pursue the riskier thing, an even bigger bet – on himself. I’ve had literally hundreds of requests over the years to have someone on the show who isn’t Richard Branson or Brene Brown or {fill in the blank star}…ie. host someone who hasn’t “made it big” and is, instead, on the come-up themselves…someone from within our very own community who has been listening for years, connecting dots, gleaning knowledge and is now taking major action on that.  Well THIS is Tyler’s story. If you’ve  followed my pal Gary Vaynerchuk, it’s likely you’ve actually seen some of Tyler’s work. For the last 3-4 years, he’s been a whirlwind tour traveling the world with Gary, shooting photo + video, creative directing projects at Vayner… and it all started right here on this show nearly 8 years ago.  This episode goes full circle, friends. Also – instead of the usual studio conversation, Tyler and I recorded the show while grabbing a burger & margarita just around the corner […]

The post Say Yes, Figure It Out Later. Starting from the Start with Tyler Babin appeared first on Chase Jarvis Photography.




ty

the quest for personal style (with pal Alex Strohl)

One of the most common questions I get is about how to stand out + how to develop personal style. So when fellow photographer Alex Strohl stopped by the studio, I wanted to get his take on this ever-popular question. If you’re not familiar with Alex’s work, a quick spin on instagram will fill in the blanks. He’s a photographer that tells stories through pictures and film. And when you see his work, there is a distinct thumbprint on it. Developing a personal style is critical. It’s the reason why someone would seek you out vs someone else. It’s the thing that differentiates your work from everyone else. There’s a thousand ways to develop your personal style. In our conversation, Alex shares some of his insights he’s gained along the way. Though each of us may take a different path to get there, there is one constant, and that’s doing a lot of work. So take a listen and then get back to work. ???? Enjoy and subscribe to the podcast below if you dig.  Please give Alex a shout on social @alexstrohl ???? FOLLOW ALEX: twitter | instagram | website Listen to the Podcast Subscribe   Watch the Episode  […]

The post the quest for personal style (with pal Alex Strohl) appeared first on Chase Jarvis Photography.




ty

Redefine Creativity – A conversation with Kevin Rose

Today I’m sitting down with investor, serial entrepreneur and all around good human, Kevin Rose. If you’re a long timer listener, you might remember Kevin was part of 30 Days of Genius. Now the tables are turned and I’m in the hot seat as a guest on his podcast, the Kevin Rose Show. Of course, it’s always fun sitting down with one of my long time homies to unpack some of my favorite topics, including: How to build your creative muscle and why it’s becoming more important Standing out and why you’re uniquely qualified. Forgetting the “shoulds” is a must do to uncork our richest lives and much more… Big shoutout to Kevin for having me on the show … and if you haven’t already, be sure to check out his podcast The Kevin Rose Show anywhere you listen to podcasts. Enjoy! FOLLOW KEVIN: instagram | twitter | website Listen to the Podcast Subscribe   This podcast is brought to you by CreativeLive. CreativeLive is the world’s largest hub for online creative education in photo/video, art/design, music/audio, craft/maker, money/life and the ability to make a living in any of those disciplines. They are high quality, highly curated classes taught by the world’s top […]

The post Redefine Creativity – A conversation with Kevin Rose appeared first on Chase Jarvis Photography.




ty

Choose Creativity – A Conversation with Jordon Harbinger

Recently sat down with my man Jordan Harbinger on his podcast The Jordan Harbinger Show. As a radio personality and a podcaster long before it was cool, Jordan is no stranger to the mic. It was a fun conversation and I hope you enjoy! A few of my fav topics: I share my framework for learning from the masters by deconstructing what they do and applying it My creative slumps and how I dug out How mindset matters and unwinding our self-limiting beliefs and much more … Big shoutout to Jordan for having me on the show … and if you haven’t already, be sure to check out his podcast The Jordan Harbinger Show anywhere you listen to podcasts. Enjoy! FOLLOW JORDAN: instagram| facebook | twitter | website Listen to the Podcast Subscribe   This podcast is brought to you by CreativeLive. CreativeLive is the world’s largest hub for online creative education in photo/video, art/design, music/audio, craft/maker, money/life and the ability to make a living in any of those disciplines. They are high quality, highly curated classes taught by the world’s top experts — Pulitzer, Oscar, Grammy Award winners, New York Times best selling authors and the best entrepreneurs of our […]

The post Choose Creativity – A Conversation with Jordon Harbinger appeared first on Chase Jarvis Photography.




ty

Hope in a Sea of Endless Calamity with Mark Manson

Today on the show, I’m chatting with New York Times bestselling author Mark Manson. He is the #1 New York Times Bestselling author of Everything is F*cked and The Subtle Art of Not Giving a F*ck, the mega-bestseller that reached #1 in fourteen different countries. Mark also runs one of the largest personal growth websites in the world, MarkManson.net, a blog with more than two million monthly readers and half a million subscribers, making him one of the largest and most successful independent publishers in the world. In this episode, we take a deep dive into the creative process. How to spend your time when you’re trying get comfortable with being uncomfortable. Mark helps bring into focus the up-side that this moment has created for us while also sharing some of the tactics he while quarantined. Enjoy! FOLLOW MARK: instagram | twitter | website Listen to the Podcast Subscribe   This podcast is brought to you by CreativeLive. CreativeLive is the world’s largest hub for online creative education in photo/video, art/design, music/audio, craft/maker, money/life and the ability to make a living in any of those disciplines. They are high quality, highly curated classes taught by the world’s top experts — Pulitzer, Oscar, […]

The post Hope in a Sea of Endless Calamity with Mark Manson appeared first on Chase Jarvis Photography.




ty

Implementing Dark Mode In React Apps Using styled-components

One of the most commonly requested software features is dark mode (or night mode, as others call it). We see dark mode in the apps that we use every day. From mobile to web apps, dark mode has become vital for companies that want to take care of their users’ eyes. Dark mode is a supplemental feature that displays mostly dark surfaces in the UI. Most major companies (such as YouTube, Twitter, and Netflix) have adopted dark mode in their mobile and web apps.




ty

Join Our New Online Workshops On CSS, Accessibility, Performance, And UX

It has been a month since we launched our first online workshop and, to be honest, we really didn’t know whether people would enjoy them — or if we would enjoy running them. It was an experiment, but one we are so glad we jumped into! I spoke about the experience of taking my workshop online on a recent episode of the Smashing podcast. As a speaker, I had expected it to feel very much like I was presenting into the empty air, with no immediate feedback and expressions to work from.




ty

Readability Algorithms Should Be Tools, Not Targets

The web is awash with words. They’re everywhere. On websites, in emails, advertisements, tweets, pop-ups, you name it. More people are publishing more copy than at any point in history. That means a lot of information, and a lot of competition. In recent years a slew of ‘readability’ programs have appeared to help us tidy up the things we write. (Grammarly, Readable, and Yoast are just a handful that come to mind.




ty

eagereyesTV Episode 2: Unit Charts, Dot Plots, ISOTYPE, and What Makes Them Special

Charts usually show values as visual properties, like the length in a bar chart, the location in a scatterplot, the area in a bubble chart, etc. Unit charts show values as multiples instead. One famous example of these charts is called ISOTYPE, and you may have seen them in information graphics as well. They’re an […]




ty

ISOTYPE Book: Young, Prager, There’s Work for All

This book from 1945 contains a very interesting mix of different charts made by the ISOTYPE Institute, some classic and some quite unusual. As a book about labor and unemployment, it also makes extensive use of Gerd Arntz’s famous unemployed man icon. Michael Young and Theodor Prager’s There’s Work for All is part of a […]




ty

A Marstrand type slicing theorem for subsets of $mathbb{Z}^2 subset mathbb{R}^2$ with the mass dimension. (arXiv:2005.02813v2 [math.CO] UPDATED)

We prove a Marstrand type slicing theorem for the subsets of the integer square lattice. This problem is the dual of the corresponding projection theorem, which was considered by Glasscock, and Lima and Moreira, with the mass and counting dimensions applied to subsets of $mathbb{Z}^{d}$. In this paper, more generally we deal with a subset of the plane that is $1$ separated, and the result for subsets of the integer lattice follow as a special case. We show that the natural slicing question in this setting is true with the mass dimension.




ty

Resonances as Viscosity Limits for Exponentially Decaying Potentials. (arXiv:2005.01257v2 [math.SP] UPDATED)

We show that the complex absorbing potential (CAP) method for computing scattering resonances applies to the case of exponentially decaying potentials. That means that the eigenvalues of $-Delta + V - iepsilon x^2$, $|V(x)|leq e^{-2gamma |x|}$ converge, as $ epsilon o 0+ $, to the poles of the meromorphic continuation of $ ( -Delta + V -lambda^2 )^{-1} $ uniformly on compact subsets of $ extrm{Re},lambda>0$, $ extrm{Im},lambda>-gamma$, $arglambda > pi/8$.




ty

Approximate Two-Sphere One-Cylinder Inequality in Parabolic Periodic Homogenization. (arXiv:2005.00989v2 [math.AP] UPDATED)

In this paper, for a family of second-order parabolic equation with rapidly oscillating and time-dependent periodic coefficients, we are interested in an approximate two-sphere one-cylinder inequality for these solutions in parabolic periodic homogenization, which implies an approximate quantitative propagation of smallness. The proof relies on the asymptotic behavior of fundamental solutions and the Lagrange interpolation technique.




ty

Complete reducibility: Variations on a theme of Serre. (arXiv:2004.14604v2 [math.GR] UPDATED)

In this note, we unify and extend various concepts in the area of $G$-complete reducibility, where $G$ is a reductive algebraic group. By results of Serre and Bate--Martin--R"{o}hrle, the usual notion of $G$-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of $G$. We show that other variations of this notion, such as relative complete reducibility and $sigma$-complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.




ty

Equivalence of classical and quantum completeness for real principal type operators on the circle. (arXiv:2004.07547v3 [math.AP] UPDATED)

In this article, we prove that the completeness of the Hamilton flow and essential self-dajointness are equivalent for real principal type operators on the circle. Moreover, we study spectral properties of these operators.




ty

$L^p$-regularity of the Bergman projection on quotient domains. (arXiv:2004.02598v2 [math.CV] UPDATED)

We relate the $L^p$-mapping properties of the Bergman projections on two domains in $mathbb{C}^n$, one of which is the quotient of the other under the action of a finite group of biholomorphic automorphisms. We use this relation to deduce the sharp ranges of $L^p$-boundedness of the Bergman projection on certain $n$-dimensional model domains generalizing the Hartogs triangle.




ty

Quasistatic evolution for dislocation-free finite plasticity. (arXiv:1912.10118v2 [math.AP] UPDATED)

We investigate quasistatic evolution in finite plasticity under the assumption that the plastic strain is compatible. This assumption is well-suited to describe the special case of dislocation-free plasticity and entails that the plastic strain is the gradient of a plastic deformation map. The total deformation can be then seen as the composition of a plastic and an elastic deformation. This opens the way to an existence theory for the quasistatic evolution problem featuring both Lagrangian and Eulerian variables. A remarkable trait of the result is that it does not require second-order gradients.




ty

Khintchine-type theorems for values of subhomogeneous functions at integer points. (arXiv:1910.02067v2 [math.NT] UPDATED)

This work has been motivated by recent papers that quantify the density of values of generic quadratic forms and other polynomials at integer points, in particular ones that use Rogers' second moment estimates. In this paper we establish such results in a very general framework. Namely, given any subhomogeneous function (a notion to be defined) $f: mathbb{R}^n o mathbb{R}$, we derive a necessary and sufficient condition on the approximating function $psi$ for guaranteeing that a generic element $fcirc g$ in the $G$-orbit of $f$ is $psi$-approximable; that is, $|fcirc g(mathbf{v})| le psi(|mathbf{v}|)$ for infinitely many $mathbf{v} in mathbb{Z}^n$. We also deduce a sufficient condition in the case of uniform approximation. Here, $G$ can be any closed subgroup of $operatorname{ASL}_n(mathbb{R})$ satisfying certain axioms that allow for the use of Rogers-type estimates.




ty

Topology Identification of Heterogeneous Networks: Identifiability and Reconstruction. (arXiv:1909.11054v2 [math.OC] UPDATED)

This paper addresses the problem of identifying the graph structure of a dynamical network using measured input/output data. This problem is known as topology identification and has received considerable attention in recent literature. Most existing literature focuses on topology identification for networks with node dynamics modeled by single integrators or single-input single-output (SISO) systems. The goal of the current paper is to identify the topology of a more general class of heterogeneous networks, in which the dynamics of the nodes are modeled by general (possibly distinct) linear systems. Our two main contributions are the following. First, we establish conditions for topological identifiability, i.e., conditions under which the network topology can be uniquely reconstructed from measured data. We also specialize our results to homogeneous networks of SISO systems and we will see that such networks have quite particular identifiability properties. Secondly, we develop a topology identification method that reconstructs the network topology from input/output data. The solution of a generalized Sylvester equation will play an important role in our identification scheme.




ty

Multitype branching process with nonhomogeneous Poisson and generalized Polya immigration. (arXiv:1909.03684v2 [math.PR] UPDATED)

In a multitype branching process, it is assumed that immigrants arrive according to a nonhomogeneous Poisson or a generalized Polya process (both processes are formulated as a nonhomogeneous birth process with an appropriate choice of transition intensities). We show that the renormalized numbers of objects of the various types alive at time $t$ for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, some transient moment analysis when there are only two types of particles is provided. AMS 2000 subject classifications: Primary 60J80, 60J85; secondary 60K10, 60K25, 90B15.




ty

Integrability of moduli and regularity of Denjoy counterexamples. (arXiv:1908.06568v4 [math.DS] UPDATED)

We study the regularity of exceptional actions of groups by $C^{1,alpha}$ diffeomorphisms on the circle, i.e. ones which admit exceptional minimal sets, and whose elements have first derivatives that are continuous with concave modulus of continuity $alpha$. Let $G$ be a finitely generated group admitting a $C^{1,alpha}$ action $ ho$ with a free orbit on the circle, and such that the logarithms of derivatives of group elements are uniformly bounded at some point of the circle. We prove that if $G$ has spherical growth bounded by $c n^{d-1}$ and if the function $1/alpha^d$ is integrable near zero, then under some mild technical assumptions on $alpha$, there is a sequence of exceptional $C^{1,alpha}$ actions of $G$ which converge to $ ho$ in the $C^1$ topology. As a consequence for a single diffeomorphism, we obtain that if the function $1/alpha$ is integrable near zero, then there exists a $C^{1,alpha}$ exceptional diffeomorphism of the circle. This corollary accounts for all previously known moduli of continuity for derivatives of exceptional diffeomorphisms. We also obtain a partial converse to our main result. For finitely generated free abelian groups, the existence of an exceptional action, together with some natural hypotheses on the derivatives of group elements, puts integrability restrictions on the modulus $alpha$. These results are related to a long-standing question of D. McDuff concerning the length spectrum of exceptional $C^1$ diffeomorphisms of the circle.




ty

A stand-alone analysis of quasidensity. (arXiv:1907.07278v8 [math.FA] UPDATED)

In this paper we consider the "quasidensity" of a subset of the product of a Banach space and its dual, and give a connection between quasidense sets and sets of "type (NI)". We discuss "coincidence sets" of certain convex functions and prove two sum theorems for coincidence sets. We obtain new results on the Fitzpatrick extension of a closed quasidense monotone multifunction. The analysis in this paper is self-contained, and independent of previous work on "Banach SN spaces". This version differs from the previous version because it is shown that the (well known) equivalence of quasidensity and "type (NI)" for maximally monotone sets is not true without the monotonicity assumption and that the appendix has been moved to the end of Section 10, where it rightfully belongs.




ty

Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in R^{1+3}. (arXiv:1907.01126v2 [math.AP] UPDATED)

This paper is devoted to the study of the singularity phenomenon of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$. We find that there are two explicit lightlike self-similar solutions to a graph representation of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$, the geometry of them are two spheres. The linear mode unstable of those lightlike self-similar solutions for the radially symmetric membranes equation is given. After that, we show those self-similar solutions of the radially symmetric membranes equation are nonlinearly stable inside a strictly proper subset of the backward lightcone. This means that the dynamical behavior of those two spheres is as attractors. Meanwhile, we overcome the double roots case (the theorem of Poincar'{e} can't be used) in solving the difference equation by construction of a Newton's polygon when we carry out the analysis of spectrum for the linear operator.




ty

On the rationality of cycle integrals of meromorphic modular forms. (arXiv:1810.00612v3 [math.NT] UPDATED)

We derive finite rational formulas for the traces of cycle integrals of certain meromorphic modular forms. Moreover, we prove the modularity of a completion of the generating function of such traces. The theoretical framework for these results is an extension of the Shintani theta lift to meromorphic modular forms of positive even weight.




ty

A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED)

In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.




ty

Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED)

The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations.




ty

Simulation of Integro-Differential Equation and Application in Estimation of Ruin Probability with Mixed Fractional Brownian Motion. (arXiv:1709.03418v6 [math.PR] UPDATED)

In this paper, we are concerned with the numerical solution of one type integro-differential equation by a probability method based on the fundamental martingale of mixed Gaussian processes. As an application, we will try to simulate the estimation of ruin probability with an unknown parameter driven not by the classical L'evy process but by the mixed fractional Brownian motion.




ty

A survey of Hardy type inequalities on homogeneous groups. (arXiv:2005.03614v1 [math.FA])

In this review paper, we survey Hardy type inequalities from the point of view of Folland and Stein's homogeneous groups. Particular attention is paid to Hardy type inequalities on stratified groups which give a special class of homogeneous groups. In this environment, the theory of Hardy type inequalities becomes intricately intertwined with the properties of sub-Laplacians and more general subelliptic partial differential equations. Particularly, we discuss the Badiale-Tarantello conjecture and a conjecture on the geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant.




ty

On abelianity lines in elliptic $W$-algebras. (arXiv:2005.03579v1 [math-ph])

We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $mathcal{A}_{q,p}(widehat{gl}(N)_{c})$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.




ty

Continuity properties of the shearlet transform and the shearlet synthesis operator on the Lizorkin type spaces. (arXiv:2005.03505v1 [math.FA])

We develop a distributional framework for the shearlet transform $mathcal{S}_{psi}colonmathcal{S}_0(mathbb{R}^2) omathcal{S}(mathbb{S})$ and the shearlet synthesis operator $mathcal{S}^t_{psi}colonmathcal{S}(mathbb{S}) omathcal{S}_0(mathbb{R}^2)$, where $mathcal{S}_0(mathbb{R}^2)$ is the Lizorkin test function space and $mathcal{S}(mathbb{S})$ is the space of highly localized test functions on the standard shearlet group $mathbb{S}$. These spaces and their duals $mathcal{S}_0^prime (mathbb R^2),, mathcal{S}^prime (mathbb{S})$ are called Lizorkin type spaces of test functions and distributions. We analyze the continuity properties of these transforms when the admissible vector $psi$ belongs to $mathcal{S}_0(mathbb{R}^2)$. Then, we define the shearlet transform and the shearlet synthesis operator of Lizorkin type distributions as transpose mappings of the shearlet synthesis operator and the shearlet transform, respectively. They yield continuous mappings from $mathcal{S}_0^prime (mathbb R^2)$ to $mathcal{S}^prime (mathbb{S})$ and from $mathcal{S}^prime (mathbb S)$ to $mathcal{S}_0^prime (mathbb{R}^2)$. Furthermore, we show the consistency of our definition with the shearlet transform defined by direct evaluation of a distribution on the shearlets. The same can be done for the shearlet synthesis operator. Finally, we give a reconstruction formula for Lizorkin type distributions, from which follows that the action of such generalized functions can be written as an absolutely convergent integral over the standard shearlet group.




ty

A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France. (arXiv:2005.03499v1 [q-bio.PE])

A reaction-diffusion model was developed describing the spread of the COVID-19 virus considering the mean daily movement of susceptible, exposed and asymptomatic individuals. The model was calibrated using data on the confirmed infection and death from France as well as their initial spatial distribution. First, the system of partial differential equations is studied, then the basic reproduction number, R0 is derived. Second, numerical simulations, based on a combination of level-set and finite differences, shown the spatial spread of COVID-19 from March 16 to June 16. Finally, scenarios of unlockdown are compared according to variation of distancing, or partially spatial lockdown.




ty

Continuity in a parameter of solutions to boundary-value problems in Sobolev spaces. (arXiv:2005.03494v1 [math.CA])

We consider the most general class of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of an arbitrary order whose solutions and right-hand sides belong to appropriate Sobolev spaces. For parameter-dependent problems from this class, we prove a constructive criterion for their solutions to be continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of these solutions to the solution of the nonperturbed problem.




ty

Filtered expansions in general relativity II. (arXiv:2005.03390v1 [math-ph])

This is the second of two papers in which we construct formal power series solutions in external parameters to the vacuum Einstein equations, implementing one bounce for the Belinskii-Khalatnikov-Lifshitz (BKL) proposal for spatially inhomogeneous spacetimes. Here we show that spatially inhomogeneous perturbations of spatially homogeneous elements are unobstructed. A spectral sequence for a filtered complex, and a homological contraction based on gauge-fixing, are used to do this.




ty

A reducibility problem for even Unitary groups: The depth zero case. (arXiv:2005.03386v1 [math.RT])

We study a problem concerning parabolic induction in certain p-adic unitary groups. More precisely, for $E/F$ a quadratic extension of p-adic fields the associated unitary group $G=mathrm{U}(n,n)$ contains a parabolic subgroup $P$ with Levi component $L$ isomorphic to $mathrm{GL}_n(E)$. Let $pi$ be an irreducible supercuspidal representation of $L$ of depth zero. We use Hecke algebra methods to determine when the parabolically induced representation $iota_P^G pi$ is reducible.




ty

A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz. (arXiv:2005.03377v1 [math.AP])

In this paper, we study the regularity criterion of weak solutions to the three-dimensional (3D) MHD equations. It is proved that the solution $(u,b)$ becomes regular provided that one velocity and one current density component of the solution satisfy% egin{equation} u_{3}in L^{frac{30alpha }{7alpha -45}}left( 0,T;L^{alpha ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{45}{7}% leq alpha leq infty , label{eq01} end{equation}% and egin{equation} j_{3}in L^{frac{2eta }{2eta -3}}left( 0,T;L^{eta ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{3}{2}leq eta leq infty , label{eq02} end{equation}% which generalize some known results.




ty

Type space functors and interpretations in positive logic. (arXiv:2005.03376v1 [math.LO])

We construct a 2-equivalence $mathfrak{CohTheory}^ ext{op} simeq mathfrak{TypeSpaceFunc}$. Here $mathfrak{CohTheory}$ is the 2-category of positive theories and $mathfrak{TypeSpaceFunc}$ is the 2-category of type space functors. We give a precise definition of interpretations for positive logic, which will be the 1-cells in $mathfrak{CohTheory}$. The 2-cells are definable homomorphisms. The 2-equivalence restricts to a duality of categories, making precise the philosophy that a theory is `the same' as the collection of its type spaces (i.e. its type space functor).

In characterising those functors that arise as type space functors, we find that they are specific instances of (coherent) hyperdoctrines. This connects two different schools of thought on the logical structure of a theory.

The key ingredient, the Deligne completeness theorem, arises from topos theory, where positive theories have been studied under the name of coherent theories.




ty

A Schur-Nevanlinna type algorithm for the truncated matricial Hausdorff moment problem. (arXiv:2005.03365v1 [math.CA])

The main goal of this paper is to achieve a parametrization of the solution set of the truncated matricial Hausdorff moment problem in the non-degenerate and degenerate situation. We treat the even and the odd cases simultaneously. Our approach is based on Schur analysis methods. More precisely, we use two interrelated versions of Schur-type algorithms, namely an algebraic one and a function-theoretic one. The algebraic version, worked out in our former paper arXiv:1908.05115, is an algorithm which is applied to finite or infinite sequences of complex matrices. The construction and discussion of the function-theoretic version is a central theme of this paper. This leads us to a complete description via Stieltjes transform of the solution set of the moment problem under consideration. Furthermore, we discuss special solutions in detail.




ty

On the Incomparability of Systems of Sets of Lengths. (arXiv:2005.03316v1 [math.AC])

Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor. We consider the system $mathcal L (H)$ of all sets of lengths of $H$ and study when $mathcal L (H)$ contains or is contained in a system $mathcal L (H')$ of a Krull monoid $H'$ with finite class group $G'$, prime divisors in all classes and Davenport constant $mathsf D (G')=mathsf D (G)$. Among others, we show that if $G$ is either cyclic of order $m ge 7$ or an elementary $2$-group of rank $m-1 ge 6$, and $G'$ is any group which is non-isomorphic to $G$ but with Davenport constant $mathsf D (G')=mathsf D (G)$, then the systems $mathcal L (H)$ and $mathcal L (H')$ are incomparable.




ty

Fourier transformation and stability of differential equation on $L^1(Bbb{R})$. (arXiv:2005.03296v1 [math.FA])

In the present paper by the Fourier transform we show that every linear differential equations of $n$-th order has a solution in $L^1(Bbb{R})$ which is infinitely differentiable in $Bbb{R} setminus {0}$. Moreover the Hyers-Ulam stability of such equations on $L^1(Bbb{R})$ is investigated.




ty

On the Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph. (arXiv:2005.03259v1 [math.CO])

In this paper, we give a criterion of the Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph: the Ehrhart ring of the stable set polytope of an h-perfect graph $G$ is Gorenstein if and only if (1) sizes of maximal cliques are constant (say $n$) and (2) (a) $n=1$, (b) $n=2$ and there is no odd cycle without chord and length at least 7 or (c) $ngeq 3$ and there is no odd cycle without chord and length at least 5.




ty

Non-relativity of K"ahler manifold and complex space forms. (arXiv:2005.03208v1 [math.CV])

We study the non-relativity for two real analytic K"ahler manifolds and complex space forms of three types. The first one is a K"ahler manifold whose polarization of local K"ahler potential is a Nash function in a local coordinate. The second one is the Hartogs domain equpped with two canonical metrics whose polarizations of the K"ahler potentials are the diastatic functions.




ty

Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT])

We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly.




ty

Categorifying Hecke algebras at prime roots of unity, part I. (arXiv:2005.03128v1 [math.RT])

We equip the type A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p it becomes a p-dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. We conjecture that the $p$-dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p-canonical basis. More precise conjectures will be found in the sequel.

Here are some other results contained in this paper. We provide an incomplete proof of the classification of all degree +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A. We also examine a particular Bott-Samelson bimodule in type A_7, which is indecomposable in characteristic 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p-dg setting of being indecomposable.




ty

GraCIAS: Grassmannian of Corrupted Images for Adversarial Security. (arXiv:2005.02936v2 [cs.CV] UPDATED)

Input transformation based defense strategies fall short in defending against strong adversarial attacks. Some successful defenses adopt approaches that either increase the randomness within the applied transformations, or make the defense computationally intensive, making it substantially more challenging for the attacker. However, it limits the applicability of such defenses as a pre-processing step, similar to computationally heavy approaches that use retraining and network modifications to achieve robustness to perturbations. In this work, we propose a defense strategy that applies random image corruptions to the input image alone, constructs a self-correlation based subspace followed by a projection operation to suppress the adversarial perturbation. Due to its simplicity, the proposed defense is computationally efficient as compared to the state-of-the-art, and yet can withstand huge perturbations. Further, we develop proximity relationships between the projection operator of a clean image and of its adversarially perturbed version, via bounds relating geodesic distance on the Grassmannian to matrix Frobenius norms. We empirically show that our strategy is complementary to other weak defenses like JPEG compression and can be seamlessly integrated with them to create a stronger defense. We present extensive experiments on the ImageNet dataset across four different models namely InceptionV3, ResNet50, VGG16 and MobileNet models with perturbation magnitude set to {epsilon} = 16. Unlike state-of-the-art approaches, even without any retraining, the proposed strategy achieves an absolute improvement of ~ 4.5% in defense accuracy on ImageNet.




ty

On the list recoverability of randomly punctured codes. (arXiv:2005.02478v2 [math.CO] UPDATED)

We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.




ty

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. (arXiv:2005.01348v2 [cs.CL] UPDATED)

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.




ty

On the regularity of De Bruijn multigrids. (arXiv:2004.10128v2 [cs.DM] UPDATED)

In this paper we prove that any odd multigrid with non-zero rational offsets is regular, which means that its dual is a rhombic tiling. To prove this result we use a result on trigonometric diophantine equations.




ty

Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus. (arXiv:2004.06295v2 [cs.CL] UPDATED)

Many efforts of research are devoted to semantic role labeling (SRL) which is crucial for natural language understanding. Supervised approaches have achieved impressing performances when large-scale corpora are available for resource-rich languages such as English. While for the low-resource languages with no annotated SRL dataset, it is still challenging to obtain competitive performances. Cross-lingual SRL is one promising way to address the problem, which has achieved great advances with the help of model transferring and annotation projection. In this paper, we propose a novel alternative based on corpus translation, constructing high-quality training datasets for the target languages from the source gold-standard SRL annotations. Experimental results on Universal Proposition Bank show that the translation-based method is highly effective, and the automatic pseudo datasets can improve the target-language SRL performances significantly.




ty

Eccentricity terrain of $delta$-hyperbolic graphs. (arXiv:2002.08495v2 [cs.DM] UPDATED)

A graph $G=(V,E)$ is $delta$-hyperbolic if for any four vertices $u,v,w,x$, the two larger of the three distance sums $d(u,v)+d(w,x)$, $d(u,w)+d(v,x)$, and $d(u,x)+d(v,w)$ differ by at most $2delta geq 0$. Recent work shows that many real-world graphs have small hyperbolicity $delta$. This paper describes the eccentricity terrain of a $delta$-hyperbolic graph. The eccentricity function $e_G(v)=max{d(v,u) : u in V}$ partitions the vertex set of $G$ into eccentricity layers $C_{k}(G) = {v in V : e(v)=rad(G)+k}$, $k in mathbb{N}$, where $rad(G)=min{e_G(v): vin V}$ is the radius of $G$. The paper studies the eccentricity layers of vertices along shortest paths, identifying such terrain features as hills, plains, valleys, terraces, and plateaus. It introduces the notion of $eta$-pseudoconvexity, which implies Gromov's $epsilon$-quasiconvexity, and illustrates the abundance of pseudoconvex sets in $delta$-hyperbolic graphs. In particular, it shows that all sets $C_{leq k}(G)={vin V : e_G(v) leq rad(G) + k}$, $kin mathbb{N}$, are $(2delta-1)$-pseudoconvex. Additionally, several bounds on the eccentricity of a vertex are obtained which yield a few approaches to efficiently approximating all eccentricities. An $O(delta |E|)$ time eccentricity approximation $hat{e}(v)$, for all $vin V$, is presented that uses distances to two mutually distant vertices and satisfies $e_G(v)-2delta leq hat{e}(v) leq {e_G}(v)$. It also shows existence of two eccentricity approximating spanning trees $T$, one constructible in $O(delta |E|)$ time and the other in $O(|E|)$ time, which satisfy ${e}_G(v) leq e_T(v) leq {e}_G(v)+4delta+1$ and ${e}_G(v) leq e_T(v) leq {e}_G(v)+6delta$, respectively. Thus, the eccentricity terrain of a tree gives a good approximation (up-to an additive error $O(delta))$ of the eccentricity terrain of a $delta$-hyperbolic graph.




ty

Two-Stream FCNs to Balance Content and Style for Style Transfer. (arXiv:1911.08079v2 [cs.CV] UPDATED)

Style transfer is to render given image contents in given styles, and it has an important role in both computer vision fundamental research and industrial applications. Following the success of deep learning based approaches, this problem has been re-launched recently, but still remains a difficult task because of trade-off between preserving contents and faithful rendering of styles. Indeed, how well-balanced content and style are is crucial in evaluating the quality of stylized images. In this paper, we propose an end-to-end two-stream Fully Convolutional Networks (FCNs) aiming at balancing the contributions of the content and the style in rendered images. Our proposed network consists of the encoder and decoder parts. The encoder part utilizes a FCN for content and a FCN for style where the two FCNs have feature injections and are independently trained to preserve the semantic content and to learn the faithful style representation in each. The semantic content feature and the style representation feature are then concatenated adaptively and fed into the decoder to generate style-transferred (stylized) images. In order to train our proposed network, we employ a loss network, the pre-trained VGG-16, to compute content loss and style loss, both of which are efficiently used for the feature injection as well as the feature concatenation. Our intensive experiments show that our proposed model generates more balanced stylized images in content and style than state-of-the-art methods. Moreover, our proposed network achieves efficiency in speed.