m

Binary code fingerprinting for cybersecurity : application to malicious code fingerprinting

Alrabaee, Saed, authior
9783030342388 (electronic bk.)




m

Beyond our genes : pathophysiology of gene and environment interaction and epigenetic inheritance

9783030352134 (electronic bk.)




m

Berquist's musculoskeletal imaging companion

Peterson, Jeffrey J., author.
9781496314994




m

Atlas of ulcers in systemic sclerosis : diagnosis and management

9783319984773 (electronic bk.)




m

Atlas of sexually transmitted diseases : clinical aspects and differential diagnosis

9783319574707 (electronic bk.)




m

Atlas of mohs and frozen section cutaneous pathology

9783319748474 978-3-319-74847-4




m

Atlas of male genital dermatology

Hall, Anthony, author.
9783319997506 (electronic bk.)




m

Atlas of Lymphatic System in Cancer

Gantsev, Shamil. author. aut http://id.loc.gov/vocabulary/relators/aut
9783030409678 978-3-030-40967-8




m

Atlas of Lasers and Lights in Dermatology

Cannarozzo, Giovanni. author.
9783030312329




m

Arctic plants of Svalbard : what we learn from the green in the treeless white world

Lee, Yoo Kyung, author
9783030345600 (electronic bk.)




m

Aquatic biopolymers : understanding their industrial significance and environmental implications

Olatunji, Ololade.
9783030347093 (electronic bk.)




m

Apical periodontitis in root-filled teeth : endodontic retreatment and alternative approaches

9783319572505 (electronic bk.)




m

Anomalies of the Developing Dentition : a Clinical Guide to Diagnosis and Management

Soxman, Jane A., author.
9783030031640 (electronic bk.)




m

Animal agriculture : sustainability, challenges and innovations

9780128170526




m

Anatomical chart company atlas of pathophysiology

Atlas of pathophysiology.
9781496370921




m

Agronomic crops.

9789811500251 (electronic bk.)




m

African edible insects as alternative source of food, oil, protein and bioactive components

9783030329525 (electronic bk.)




m

Advances in protein chemistry and structural biology.

9780123819635 (electronic bk.)




m

Advances in protein chemistry and structural biology.

9780123864840 (electronic bk.)




m

Advances in applied microbiology.

1282169459




m

Advances in applied microbiology.

1282169416




m

Advanced age geriatric care : a comprehensive guide

9783319969985 (electronic bk.)




m

A treatise on topical corticosteroids in dermatology : use, misuse and abuse

9789811046094




m

A handbook of nuclear applications in humans' lives

Tabbakh, Farshid, author.
9781527544512 (electronic bk.)




m

100 cases in clinical pharmacology, therapeutics and prescribing

Layne, Kerry, author.
9780429624537 electronic book




m

Fill Management Plan PIC





m

InBios receives Emergency Use Authorization for its Smart Detect...

InBios International, Inc. announces the U.S. Food and Drug Administration (FDA) issued an emergency use authorization (EUA) for its diagnostic test that can be used immediately by CLIA...

(PRWeb April 08, 2020)

Read the full story at https://www.prweb.com/releases/inbios_receives_emergency_use_authorization_for_its_smart_detect_sars_cov_2_rrt_pcr_kit_for_detection_of_the_virus_causing_covid_19/prweb17036897.htm







m

New Partnerships Emerge for COVID-19 Relief: Dade County Farm Bureau...

Harvested produce crops feed Florida Department of Corrections’ (FDC) more than 87,000 inmates; action saves food costs while reducing COVID-19 related supply chain impacts.

(PRWeb April 20, 2020)

Read the full story at https://www.prweb.com/releases/new_partnerships_emerge_for_covid_19_relief_dade_county_farm_bureau_teams_with_state_leaders_to_launch_farm_to_inmate_program/prweb17052045.htm







m

Jamboree Begins Construction on Capstone Development to Change...

In a public-private partnership to develop housing, resident services and hope for 102 working families in Haster Orangewood community, Jamboree Housing Corporation and the City of Anaheim announce...

(PRWeb April 27, 2020)

Read the full story at https://www.prweb.com/releases/jamboree_begins_construction_on_capstone_development_to_change_trajectory_of_neighborhood_in_anaheim_ca/prweb17073166.htm








m

Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data

Niansheng Tang, Xiaodong Yan, Xingqiu Zhao.

Source: The Annals of Statistics, Volume 48, Number 1, 607--627.

Abstract:
This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored survival models where a parametric likelihood is not available. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood, where the general estimating equations are constructed based on the semiparametric efficiency bound of estimation with given moment conditions. The proposed penalized generalized empirical likelihood estimators enjoy the oracle properties, and the estimator of any fixed dimensional vector of nonzero parameters achieves the semiparametric efficiency bound asymptotically. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic central chi-square distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present a two-layer iterative algorithm for efficient implementation, and investigate its convergence property. The performance of the proposed methods is demonstrated by extensive simulation studies, and a real data example is provided for illustration.




m

Almost sure uniqueness of a global minimum without convexity

Gregory Cox.

Source: The Annals of Statistics, Volume 48, Number 1, 584--606.

Abstract:
This paper establishes the argmin of a random objective function to be unique almost surely. This paper first formulates a general result that proves almost sure uniqueness without convexity of the objective function. The general result is then applied to a variety of applications in statistics. Four applications are discussed, including uniqueness of M-estimators, both classical likelihood and penalized likelihood estimators, and two applications of the argmin theorem, threshold regression and weak identification.




m

Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo

Jere Koskela, Paul A. Jenkins, Adam M. Johansen, Dario Spanò.

Source: The Annals of Statistics, Volume 48, Number 1, 560--583.

Abstract:
We study weighted particle systems in which new generations are resampled from current particles with probabilities proportional to their weights. This covers a broad class of sequential Monte Carlo (SMC) methods, widely-used in applied statistics and cognate disciplines. We consider the genealogical tree embedded into such particle systems, and identify conditions, as well as an appropriate time-scaling, under which they converge to the Kingman $n$-coalescent in the infinite system size limit in the sense of finite-dimensional distributions. Thus, the tractable $n$-coalescent can be used to predict the shape and size of SMC genealogies, as we illustrate by characterising the limiting mean and variance of the tree height. SMC genealogies are known to be connected to algorithm performance, so that our results are likely to have applications in the design of new methods as well. Our conditions for convergence are strong, but we show by simulation that they do not appear to be necessary.




m

Markov equivalence of marginalized local independence graphs

Søren Wengel Mogensen, Niels Richard Hansen.

Source: The Annals of Statistics, Volume 48, Number 1, 539--559.

Abstract:
Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with $m$-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance, in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with $mu $-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. Several graphs may encode the same set of independence relations and this means that in many cases only an equivalence class of graphs can be identified from observational data. For statistical applications, it is therefore pivotal to characterize graphs that induce the same independence relations. Our main result is that for directed mixed graphs with $mu $-separation each equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with dashed and solid edges. This graph encodes all information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph.




m

Averages of unlabeled networks: Geometric characterization and asymptotic behavior

Eric D. Kolaczyk, Lizhen Lin, Steven Rosenberg, Jackson Walters, Jie Xu.

Source: The Annals of Statistics, Volume 48, Number 1, 514--538.

Abstract:
It is becoming increasingly common to see large collections of network data objects, that is, data sets in which a network is viewed as a fundamental unit of observation. As a result, there is a pressing need to develop network-based analogues of even many of the most basic tools already standard for scalar and vector data. In this paper, our focus is on averages of unlabeled, undirected networks with edge weights. Specifically, we (i) characterize a certain notion of the space of all such networks, (ii) describe key topological and geometric properties of this space relevant to doing probability and statistics thereupon, and (iii) use these properties to establish the asymptotic behavior of a generalized notion of an empirical mean under sampling from a distribution supported on this space. Our results rely on a combination of tools from geometry, probability theory and statistical shape analysis. In particular, the lack of vertex labeling necessitates working with a quotient space modding out permutations of labels. This results in a nontrivial geometry for the space of unlabeled networks, which in turn is found to have important implications on the types of probabilistic and statistical results that may be obtained and the techniques needed to obtain them.




m

Optimal prediction in the linearly transformed spiked model

Edgar Dobriban, William Leeb, Amit Singer.

Source: The Annals of Statistics, Volume 48, Number 1, 491--513.

Abstract:
We consider the linearly transformed spiked model , where the observations $Y_{i}$ are noisy linear transforms of unobserved signals of interest $X_{i}$: egin{equation*}Y_{i}=A_{i}X_{i}+varepsilon_{i},end{equation*} for $i=1,ldots ,n$. The transform matrices $A_{i}$ are also observed. We model the unobserved signals (or regression coefficients) $X_{i}$ as vectors lying on an unknown low-dimensional space. Given only $Y_{i}$ and $A_{i}$ how should we predict or recover their values? The naive approach of performing regression for each observation separately is inaccurate due to the large noise level. Instead, we develop optimal methods for predicting $X_{i}$ by “borrowing strength” across the different samples. Our linear empirical Bayes methods scale to large datasets and rely on weak moment assumptions. We show that this model has wide-ranging applications in signal processing, deconvolution, cryo-electron microscopy, and missing data with noise. For missing data, we show in simulations that our methods are more robust to noise and to unequal sampling than well-known matrix completion methods.




m

Efficient estimation of linear functionals of principal components

Vladimir Koltchinskii, Matthias Löffler, Richard Nickl.

Source: The Annals of Statistics, Volume 48, Number 1, 464--490.

Abstract:
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},dots,X_{n}$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma $. The complexity of the problem is characterized by its effective rank $mathbf{r}(Sigma):=frac{operatorname{tr}(Sigma)}{|Sigma |}$, where $mathrm{tr}(Sigma)$ denotes the trace of $Sigma $ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma $. Under the assumption that $mathbf{r}(Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality.




m

Uniformly valid confidence intervals post-model-selection

François Bachoc, David Preinerstorfer, Lukas Steinberger.

Source: The Annals of Statistics, Volume 48, Number 1, 440--463.

Abstract:
We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. ( Ann. Statist. 41 (2013) 802–837). In particular, the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory, we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures.




m

Consistent selection of the number of change-points via sample-splitting

Changliang Zou, Guanghui Wang, Runze Li.

Source: The Annals of Statistics, Volume 48, Number 1, 413--439.

Abstract:
In multiple change-point analysis, one of the major challenges is to estimate the number of change-points. Most existing approaches attempt to minimize a Schwarz information criterion which balances a term quantifying model fit with a penalization term accounting for model complexity that increases with the number of change-points and limits overfitting. However, different penalization terms are required to adapt to different contexts of multiple change-point problems and the optimal penalization magnitude usually varies from the model and error distribution. We propose a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods, including binary segmentation and optimal partitioning algorithms. The key idea is to select the number of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample. We develop a cross-validation estimation scheme based on an order-preserved sample-splitting strategy, and establish its asymptotic selection consistency under some mild conditions. Effectiveness of the proposed selection criterion is demonstrated on a variety of numerical experiments and real-data examples.




m

The numerical bootstrap

Han Hong, Jessie Li.

Source: The Annals of Statistics, Volume 48, Number 1, 397--412.

Abstract:
This paper proposes a numerical bootstrap method that is consistent in many cases where the standard bootstrap is known to fail and where the $m$-out-of-$n$ bootstrap and subsampling have been the most commonly used inference approaches. We provide asymptotic analysis under both fixed and drifting parameter sequences, and we compare the approximation error of the numerical bootstrap with that of the $m$-out-of-$n$ bootstrap and subsampling. Finally, we discuss applications of the numerical bootstrap, such as constrained and unconstrained M-estimators converging at both regular and nonstandard rates, Laplace-type estimators, and test statistics for partially identified models.