m Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Nathan B. Cruze, Andreea L. Erciulescu, Balgobin Nandram, Wendy J. Barboza, Linda J. Young. Source: Statistical Science, Volume 34, Number 2, 301--316.Abstract: In the United States, county-level estimates of crop yield, production, and acreage published by the United States Department of Agriculture’s National Agricultural Statistics Service (USDA NASS) play an important role in determining the value of payments allotted to farmers and ranchers enrolled in several federal programs. Given the importance of these official county-level crop estimates, NASS continually strives to improve its crops county estimates program in terms of accuracy, reliability and coverage. In 2015, NASS engaged a panel of experts convened under the auspices of the National Academies of Sciences, Engineering, and Medicine Committee on National Statistics (CNSTAT) for guidance on implementing models that may synthesize multiple sources of information into a single estimate, provide defensible measures of uncertainty, and potentially increase the number of publishable county estimates. The final report titled Improving Crop Estimates by Integrating Multiple Data Sources was released in 2017. This paper discusses several needs and requirements for NASS county-level crop estimates that were illuminated during the activities of the CNSTAT panel. A motivating example of planted acreage estimation in Illinois illustrates several challenges that NASS faces as it considers adopting any explicit model for official crops county estimates. Full Article
m The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015 By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Laura Anderlucci, Angela Montanari, Cinzia Viroli. Source: Statistical Science, Volume 34, Number 2, 280--300.Abstract: In this paper, we retrace the recent history of statistics by analyzing all the papers published in five prestigious statistical journals since 1970, namely: The Annals of Statistics , Biometrika , Journal of the American Statistical Association , Journal of the Royal Statistical Society, Series B and Statistical Science . The aim is to construct a kind of “taxonomy” of the statistical papers by organizing and clustering them in main themes. In this sense being identified in a cluster means being important enough to be uncluttered in the vast and interconnected world of the statistical research. Since the main statistical research topics naturally born, evolve or die during time, we will also develop a dynamic clustering strategy, where a group in a time period is allowed to migrate or to merge into different groups in the following one. Results show that statistics is a very dynamic and evolving science, stimulated by the rise of new research questions and types of data. Full Article
m Rejoinder: Bayes, Oracle Bayes, and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Bradley Efron. Source: Statistical Science, Volume 34, Number 2, 234--235. Full Article
m Comment: Variational Autoencoders as Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Yixin Wang, Andrew C. Miller, David M. Blei. Source: Statistical Science, Volume 34, Number 2, 229--233. Full Article
m Comment: Empirical Bayes, Compound Decisions and Exchangeability By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Eitan Greenshtein, Ya’acov Ritov. Source: Statistical Science, Volume 34, Number 2, 224--228.Abstract: We present some personal reflections on empirical Bayes/ compound decision (EB/CD) theory following Efron (2019). In particular, we consider the role of exchangeability in the EB/CD theory and how it can be achieved when there are covariates. We also discuss the interpretation of EB/CD confidence interval, the theoretical efficiency of the CD procedure, and the impact of sparsity assumptions. Full Article
m Comment: Empirical Bayes Interval Estimation By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Wenhua Jiang. Source: Statistical Science, Volume 34, Number 2, 219--223.Abstract: This is a contribution to the discussion of the enlightening paper by Professor Efron. We focus on empirical Bayes interval estimation. We discuss the oracle interval estimation rules, the empirical Bayes estimation of the oracle rule and the computation. Some numerical results are reported. Full Article
m Comment: Bayes, Oracle Bayes and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Aad van der Vaart. Source: Statistical Science, Volume 34, Number 2, 214--218. Full Article
m Comment: Minimalist $g$-Modeling By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Roger Koenker, Jiaying Gu. Source: Statistical Science, Volume 34, Number 2, 209--213.Abstract: Efron’s elegant approach to $g$-modeling for empirical Bayes problems is contrasted with an implementation of the Kiefer–Wolfowitz nonparametric maximum likelihood estimator for mixture models for several examples. The latter approach has the advantage that it is free of tuning parameters and consequently provides a relatively simple complementary method. Full Article
m Comment: Bayes, Oracle Bayes, and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Nan Laird. Source: Statistical Science, Volume 34, Number 2, 206--208. Full Article
m Comment: Bayes, Oracle Bayes, and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Thomas A. Louis. Source: Statistical Science, Volume 34, Number 2, 202--205. Full Article
m Bayes, Oracle Bayes and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Bradley Efron. Source: Statistical Science, Volume 34, Number 2, 177--201.Abstract: This article concerns the Bayes and frequentist aspects of empirical Bayes inference. Some of the ideas explored go back to Robbins in the 1950s, while others are current. Several examples are discussed, real and artificial, illustrating the two faces of empirical Bayes methodology: “oracle Bayes” shows empirical Bayes in its most frequentist mode, while “finite Bayes inference” is a fundamentally Bayesian application. In either case, modern theory and computation allow us to present a sharp finite-sample picture of what is at stake in an empirical Bayes analysis. Full Article
m A Conversation with Piet Groeneboom By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Geurt Jongbloed. Source: Statistical Science, Volume 34, Number 1, 156--168.Abstract: Petrus (Piet) Groeneboom was born in Scheveningen in 1941 and grew up in Voorburg. Both villages are located near The Hague in The Netherlands; Scheveningen actually being part of The Hague. He attended the gymnasium of the Huygens lyceum. In 1959, he entered the University of Amsterdam, where he studied psychology. After his “candidate” exam (comparable to BSc) in 1963, he worked at the psychological laboratory of the University of Amsterdam until 1966. In 1965, he took up mathematics as a part-time study. After having obtained his master’s degree in 1971, he had a position at the psychological laboratory again until 1973, when he was appointed to the Mathematical Center in Amsterdam. There, he wrote between 1975 and 1979 his Ph.D. thesis with Kobus Oosterhoff as advisor, graduating in 1979. After a period of two years as visiting professor at the University of Washington (UW) in Seattle, Piet moved back to the Mathematical Center until he was appointed full professor of statistics at the University of Amsterdam in 1984. Four years later, he moved to Delft University of Technology where he became professor of statistics and stayed until his retirement in 2006. Between 2000 and 2006 he also held a part-time professorship at the Vrije Universiteit in Amsterdam. From 1999 till 2013 he was Affiliate Professor at the statistics department of UW, Seattle. Apart from being visiting professor at the UW in Seattle, he was also visiting professor at Stanford University, Université Paris 6 and ETH Zürich. Piet is well known for his work on shape constrained statistical inference. He worked on asymptotic theory for these problems, created algorithms to compute nonparametric estimates in such models and applied these models to real data. He also worked on interacting particle systems, extreme value analysis and efficiency theory for testing procedures. Piet (co-)authored four books and 64 papers and served as promotor of 13 students. He is the recipient of the 1985 Rollo Davidson prize, a fellow of the IMS and elected member of the ISI. In 2015, he delivered the Wald lecture at the Joint Statistical Meeting in Montreal. Piet and his wife Marijke live in Naarden. He has two sons, Thomas and Tim, and (since June 12, 2018) one grandson, Tarik. This conversation was held at Piet’s house in Naarden, on February 28 and April 24, 2018. Full Article
m Generalized Multiple Importance Sampling By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Víctor Elvira, Luca Martino, David Luengo, Mónica F. Bugallo. Source: Statistical Science, Volume 34, Number 1, 129--155.Abstract: Importance sampling (IS) methods are broadly used to approximate posterior distributions or their moments. In the standard IS approach, samples are drawn from a single proposal distribution and weighted adequately. However, since the performance in IS depends on the mismatch between the targeted and the proposal distributions, several proposal densities are often employed for the generation of samples. Under this multiple importance sampling (MIS) scenario, extensive literature has addressed the selection and adaptation of the proposal distributions, interpreting the sampling and weighting steps in different ways. In this paper, we establish a novel general framework with sampling and weighting procedures when more than one proposal is available. The new framework encompasses most relevant MIS schemes in the literature, and novel valid schemes appear naturally. All the MIS schemes are compared and ranked in terms of the variance of the associated estimators. Finally, we provide illustrative examples revealing that, even with a good choice of the proposal densities, a careful interpretation of the sampling and weighting procedures can make a significant difference in the performance of the method. Full Article
m Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Georg Lindgren. Source: Statistical Science, Volume 34, Number 1, 100--128.Abstract: We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods. Full Article
m Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Nicole Bohme Carnegie. Source: Statistical Science, Volume 34, Number 1, 90--93.Abstract: With a thorough exposition of the methods and results of the 2016 Atlantic Causal Inference Competition, Dorie et al. have set a new standard for reproducibility and comparability of evaluations of causal inference methods. In particular, the open-source R package aciccomp2016, which permits reproduction of all datasets used in the competition, will be an invaluable resource for evaluation of future methodological developments. Building upon results from Dorie et al., we examine whether a set of potential modifications to Bayesian Additive Regression Trees (BART)—multiple chains in model fitting, using the propensity score as a covariate, targeted maximum likelihood estimation (TMLE), and computing symmetric confidence intervals—have a stronger impact on bias, RMSE, and confidence interval coverage in combination than they do alone. We find that bias in the estimate of SATT is minimal, regardless of the BART formulation. For purposes of CI coverage, however, all proposed modifications are beneficial—alone and in combination—but use of TMLE is least beneficial for coverage and results in considerably wider confidence intervals. Full Article
m Comment: Causal Inference Competitions: Where Should We Aim? By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Ehud Karavani, Tal El-Hay, Yishai Shimoni, Chen Yanover. Source: Statistical Science, Volume 34, Number 1, 86--89.Abstract: Data competitions proved to be highly beneficial to the field of machine learning, and thus expected to provide similar advantages in the field of causal inference. As participants in the 2016 and 2017 Atlantic Causal Inference Conference (ACIC) data competitions and co-organizers of the 2018 competition, we discuss the strengths of simulation-based competitions and suggest potential extensions to address their limitations. These suggested augmentations aim at making the data generating processes more realistic and gradually increase in complexity, allowing thorough investigations of algorithms’ performance. We further outline a community-wide competition framework to evaluate an end-to-end causal inference pipeline, beginning with a causal question and a database, and ending with causal estimates. Full Article
m Comment on “Automated Versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition” By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Susan Gruber, Mark J. van der Laan. Source: Statistical Science, Volume 34, Number 1, 82--85.Abstract: Dorie and co-authors (DHSSC) are to be congratulated for initiating the ACIC Data Challenge. Their project engaged the community and accelerated research by providing a level playing field for comparing the performance of a priori specified algorithms. DHSSC identified themes concerning characteristics of the DGP, properties of the estimators, and inference. We discuss these themes in the context of targeted learning. Full Article
m Matching Methods for Causal Inference: A Review and a Look Forward By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Elizabeth A. StuartSource: Statist. Sci., Volume 25, Number 1, 1--21.Abstract: When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed. Full Article
m Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning By www.jneurosci.org Published On :: 2016-09-21T09:33:18-07:00 The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence–divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. SIGNIFICANCE STATEMENT The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Full Article
m Smart women don't smoke / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Road, London SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [1989?] Full Article
m We thank you for not smoking / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m 'Smoke gets in your eyes' / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stllness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m 'Smoking is slow-motion suicide' / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 ING) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m Smoking affects us all. / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m If you must smoke don't exhale / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m Passive smoking kills / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Be nice to yourself and others / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Pollution / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Cleanair not smoke / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m No smoking no hate / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m No smoking zone / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Smoking is anti-social / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Tapadh leibh airson nach do smoc sibh / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m No smoking is the norm / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m We thank you for not smoking / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m No smoking zone / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m We thank you for not smoking / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
m If you must smoke don't exhale / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
m Muchas gracias por no fumar / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
m Merci de ne pas fumer / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
m Elle est classe, elle ne fume pas / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Road, London SE23 1NG) : Cleanair, [1989?] Full Article
m We thank you for not smoking / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
m No smoking is the norm / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Be nice to yourself and others / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m दिल की जलन। = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [1989?] Full Article
m Dila jalana = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Hārtabarna = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Ha gubin wadnahaaga! = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
m Hārta jbalē = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article