ba

ZERO BACKLASH PRE-DAMPER TO MAIN DAMPER ATTACHMENT SYSTEM

A driven damper assembly, comprises a first main-damper cover plate comprising an inclined portion. The inclined portion comprises a notch. A first plane passes through the first pre-damper cover plate. A second plane passes through the first main-damper cover plate and is parallel to the first plane. The notch comprises a first wall and a second wall. The first wall is not parallel to the second wall. The inclined portion extends away from the second plane at an angle greater than zero degrees away from the second plane and less than ninety degrees away from the second plane. The first pre-damper cover plate comprises a tab with a first portion extending outwardly at an angle greater than zero degrees away from the first plane and less than ninety degrees away from the first plane, wherein the tab engages the notch at the first wall and the second wall.




ba

Anti-Backlash Clutch Plates

An assembly comprising a first member, a second member, and a clutch plate. The second member is maintained in a spaced apart relationship from the first member. The clutch plate has radially extending engagement structures and is disposed between the first member and the second member. The clutch plate has a first half and a second half that are slidably rotatable with respect to one another. The first half and the second half of the clutch plate rotate in opposite directions when axial pressure is applied to the first member.




ba

INTEGRATED TORQUE LIMITER/NO-BACK DEVICE

An integrated torque limiter/no-back device for use in an actuator with an input shaft, an output, and a gear reduction. The device includes an input ramp, an output ramp coupled to the gear reduction, a combined ramp disposed between the input ramp and the output ramp, a first plurality of balls arranged between the input ramp and the combined ramp, a second plurality of balls arranged between the combined ramp and the output ramp, a pin, and a brake. The pin extends from the input ramp to the combined ramp and coupled to the input shaft. The combined ramp, the output ramp, and the second plurality of balls therebetween are configured to operate as a torque limiter by causing the combined ramp and the output ramp to separate and the output ramp to engage the brake when the torque from the input shaft exceeds a torque threshold.




ba

Method and apparatus for redistributing an imbalance in a laundry treating appliance

An apparatus and method for detecting an imbalance in the laundry load and effecting a redistribution of the imbalance by reducing the rotational speed of the treating chamber such that part of the load may redistribute while part of the load remains satellized, without ceasing rotation, and increasing the rotational speed back to a spin speed after redistribution.




ba

Fructan-based epilatory compositions

The invention relates to an epilatory mixture comprising a fructan, preferably inulin. Furthermore, an epilatory composition is disclosed comprising said epilatory effective mixture. Also a method of use of said epilatory composition of the invention for the removal of unwanted hair from the skin is disclosed, as well as a method of use of said composition for carrying out an epilatory treatment which can be carried out by a professional person as well as by a non-professional person.




ba

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND BATTERY PACK

A nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing olivine-structured Fe or a Mn-containing phosphorus compound as a positive electrode active material; a negative electrode containing a titanium-containing metal oxide capable of inserting and extracting lithium ions as a negative electrode active material; a nonwoven fabric separator, which contains an electrically insulating fiber and is bonded to a surface of at least one of the positive electrode and the negative electrode; and a nonaqueous electrolyte. In a thickness direction of the nonwoven fabric separator, a density of the fiber on a side having contact with the positive electrode is high, and a density of the fiber on a side having contact with the negative electrode is low.




ba

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY SEPARATOR

The present invention provides a nonaqueous electrolyte secondary battery separator that achieves an excellent rate characteristic by having a tensile creep compliance J satisfying at least one of the following three conditions in a case where stress of 30 MPa is applied for t seconds: (i) when t=300 seconds, J=4.5 GPa−1 to 14.0 GPa−1, (ii) when t=1800 seconds, J=9.0 GPa−1 to 25.0 GPa−1, (iii) when t=600 seconds, J=12.0 GPa−5 to 32.0 GPa−1.




ba

SEPARATOR FOR RECHARGEABLE BATTERY AND RECHARGEABLE BATTERY INCLUDING THE SAME

A separator for a rechargeable battery and a rechargeable lithium battery, the separator including a porous substrate; and a heat-resistant porous layer on at least one surface of the porous substrate, wherein the heat-resistant porous layer includes a filler and a copolymer including a structural unit of vinylidenefluoride, a structural unit of hexafluoropropylene, and a structural unit of a carboxyl-containing monomer, the structural unit of hexafluoropropylene is present in an amount of about 4 wt % to about 10 wt %, based on a total weight of the copolymer, and the structural unit of a carboxyl-containing monomer is present in an amount of about 1 wt % to about 7 wt %, based on the total weight of the copolymer.




ba

SECONDARY BATTERY

A secondary battery includes a case composed of a metal containing aluminum as a main component, a stacked electrode assembly arranged in the case, a negative electrode current collector electrically connecting negative electrodes of the stacked electrode assembly to a negative electrode terminal, a positive electrode current collector electrically connecting positive electrodes of the stacked electrode assembly to a positive electrode terminal, a first metal plate arranged between the case and the stacked electrode assembly, and a spacer arranged between the case and the first metal plate, the spacer being composed of an insulating material. The positive electrodes are electrically connected to the case or a second metal plate arranged on the first metal plate with an insulating member provided between the first metal plate and the insulating member. The negative electrode current collector is in contact with the first metal plate to establish electrical connection between the negative electrode current collector and the first metal plate.




ba

SECONDARY BATTERY

A secondary battery is disclosed. In one aspect, the secondary battery includes a case accommodating an electrode assembly, a cap plate sealing an opening of the case, an electrode terminal electrically connected to the electrode assembly and disposed over the cap, and an insulating member provided between the cap plate and the electrode terminal and configured to insulate the electrode terminal from the cap plate. The battery also includes a connection tab disposed over the electrode terminal, and a safety device having a portion positioned under the connection tab and electrically connected to the electrode terminal via the connection tab. The safety device has at least one of electric conductivity and thermal conductivity greater than that of the connection tab, and at least a part of the safety device is seated on the insulating member.




ba

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 μm to 1 μm, and a 50% cumulative particle size D50 of 1 μm to 10 μm, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.




ba

POSITIVE ELECTRODE FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

The positive electrode as an embodiment includes a positive electrode current collector mainly composed of aluminum, a positive electrode mixture layer containing a lithium-containing transition metal oxide and disposed above the positive electrode current collector, and a protective layer disposed between the positive electrode current collector and the positive electrode mixture layer. The protective layer contains inorganic particles, an electro-conductive material, and a binding material; is mainly composed of the inorganic particles; and is disposed on the positive electrode current collector to cover the positive electrode current collector in approximately the entire area where the positive electrode mixture layer is disposed and at least a part of the exposed portion of the positive electrode current collector where the positive electrode mixture layer is not disposed on the surface of the positive electrode current collector.




ba

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




ba

CARBON MATERIAL, METHOD FOR PRODUCING CARBON MATERIAL, AND NON-AQUEOUS SECONDARY BATTERY USING CARBON MATERIAL

A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 μm to 1 μm of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 μm to 1 μm in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.




ba

INEXPENSIVE METAL-FREE ORGANIC REDOX FLOW BATTERY (ORBAT) FOR GRID-SCALE STORAGE

A flow battery includes a positive electrode, a positive electrode electrolyte, a negative electrode, a negative electrode electrolyte, and a polymer electrolyte membrane interposed between the positive electrode and the negative electrode. The positive electrode electrolyte includes water and a first redox couple. The first redox couple includes a first organic compound which includes a first moiety in conjugation with a second moiety. The first organic compound is reduced during discharge while during charging the reduction product of the first organic compound is oxidized to the first organic compound. The negative electrode electrolyte includes water and a second redox couple. The second couple includes a second organic compound including a first moiety in conjugation with a second moiety. The reduction product of the second organic compound is oxidized to the second organic compound during discharge.




ba

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING METHYL (2,2,3,3,-TETRAFLUOROPROPYL) CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight of methyl (2,2,3,3-tetrafluoropropyl) carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and other carbonate solvents. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.




ba

CERAMIC-POLYMER COMPOSITE ELECTROLYTES FOR LITHIUM POLYMER BATTERIES

Composites of lithium-ion-conducting ceramic and polymeric materials make superior separators and electrolytes for use in lithium batteries. The ceramic material provides a high conductivity pathway for lithium-ions, enhancing the properties of the less conductive polymeric material. The polymeric material provides flexibility, binding, and space-filling properties, mitigating the tendency of rigid ceramic materials to break or delaminate. The interface between the polymer and ceramic can be made to have a low ionic resistance through the use of additives and coatings.




ba

LITHIUM ION SECONDARY BATTERY

A lithium ion secondary battery including: a positive electrode including a positive electrode active material capable of intercalating and deintercalating a lithium ion; a negative electrode including a negative electrode active material capable of intercalating and deintercalating a lithium ion; and a non-aqueous electrolytic solution, wherein the positive electrode active material includes a Mn-based spinel-type composite oxide and an additional active material, and the content of the Mn-based spinel-type composite oxide based on the whole of the positive electrode active material is 60% by mass or less, and the negative electrode active material includes a first graphite particle containing natural graphite and a second graphite particle containing artificial graphite, and the content of the second graphite particle based on the sum total of the first graphite particle and the second graphite particle is in the range of 1 to 30% by mass.




ba

POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERIES, PRODUCTION METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY INCLUDING SAID MATERIAL

Provided is a positive electrode active material that can be used to fabricate a nonaqueous electrolyte secondary battery having excellent output characteristics not only in an environment at normal temperature but also in all temperature environments from extremely low to high temperatures. A positive electrode active material for nonaqueous electrolyte secondary batteries, the positive electrode active material includes a boron compound and lithium-nickel-cobalt-manganese composite oxide of general formula (1) having a layered hexagonal crystal structure. The lithium-nickel-cobalt-manganese composite oxide includes secondary particles composed of agglomerated primary particles. The boron compound is present on at least part of the surface of the primary particles, and contains lithium. Li1+sNixCoyMnzMotMwO2 (1)




ba

SOLID ELECTROLYTE AND LITHIUM BATTERY INCLUDING THE SAME

A solid electrolyte for an all-solid secondary battery, the solid electrolyte including: Li, S, P, an M1 element, and an M2 element, wherein the M1 element is at least one element selected from Na, K, Rb, Sc, Fr, and the M2 element is at least one element selected from F, Cl, Br, I, molar amounts of lithium and the M1 element satisfy 0




ba

GARNET MATERIALS FOR LI SECONDARY BATTERIES AND METHODS OF MAKING AND USING GARNET MATERIALS

Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (




ba

ELECTROLYTE SOLUTION COMPRISING SULFUR DIOXIDE-BASED IONIC LIQUID ELECTROLYTE, AND SODIUM-SULFUR DIOXIDE SECONDARY BATTERY HAVING SAME

The described technology relates to an electrolyte solution comprising a sulfur dioxide-based ionic liquid electrolyte, and a sodium-sulfur dioxide (Na—SO2) secondary battery having same, one purpose of the described technology being to enhance the storage characteristics of sulfur dioxide gas in an electrolyte solution. The sodium-sulfur dioxide secondary battery includes a negative electrode which is formed from an inorganic material and which contains sodium. The battery also includes a positive electrode which is formed from a carbon material and a sulfur dioxide-based inorganic electrolyte solution. Here, the electrolyte solution contains a sulfur dioxide-based ionic liquid electrolyte prepared by injecting SO2 gas in an ionic liquid.




ba

LITHIUM SECONDARY BATTERY

A lithium secondary battery includes: a negative electrode, a positive electrode, and an electrolyte disposed between the negative electrode and the positive electrode, wherein the negative electrode includes a silicon composite including silicon, a silicon oxide of the formula SiOx wherein 0




ba

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING ETHYL (2,2,3,3-TETRAFLUOROPROPYL) CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight of ethyl (2,2,3,3-tetrafluoropropyl) carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and either or both of diethyl carbonate and ethyl methyl carbonate. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.




ba

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING (2,2-DIFLUOROETHYL) ETHYL CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight N of (2,2-difluoroethyl) ethyl carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and other carbonate solvents. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.




ba

LITHIUM SECONDARY BATTERY

A lithium secondary battery includes a case, a jelly roll housed in the case, the jelly roll including a plurality of electrode plates and a separation film disposed between the plurality of electrode plates, and a heat conduction plate disposed on both sides of the jelly roll and housed in the case together with the jelly roll.




ba

Method for Operating a Rechargeable Battery

The invention relates to a method for operating a secondary battery (1, 4) which comprises multiple interconnected, bridgeable battery subunits (A, B) and is situated in a compartment (3) of an electrically driven vehicle, in particular a watercraft, characterized in that the accessibility of each battery subunit (A, B) is detected, and the battery subunits (A, B) are activated in accordance with the accessibility of the particular battery subunits.




ba

ADDITIVE FORMULATION AND COMPOSITION FOR LITHIUM ION BATTERY AND LITHIUM ION BATTERY COMPRISING THE SAME

An additive formulation for a lithium ion battery is provided, which includes an ionic conductor and a compound having a maleimide structure. An electrode slurry composition is also provided, which includes an active material, a conductive additive, an adhesive, and an additive formulation containing an ionic conductor and a compound having a maleimide structure modified by a compound having a barbituric acid structure.




ba

BATTERY SYSTEM OF AN ELECTRIC VEHICLE

A battery system for an electric vehicle includes a container having a lid and a plurality of battery cells housed in the container. Each battery cell of the plurality of battery cells may include a pair of tabs to electrically connect to the battery cell, a printed circuit board housed in the container, and a pair of contact elements. The printed circuit board may include circuitry adapted to monitor at least one battery cell. And, each contact element may be attached to the printed circuit board and configured to separably contact a tab of the at least one battery cell to electrically connect the at least one battery cell to the printed circuit board.




ba

Battery cell having a detection interface

A system and method for a battery cell having an anode and a cathode, and a separator disposed between the anode and the cathode. A conductive layer disposed in the separator facilitates detection of dendrite growth from the anode into the separator, the detection correlative with a reduction in voltage between the anode and the conductive layer. A detection interface component coupled to the conductive layer is configured to facilitate routing of a signal from the conductive layer to a circuit external to the battery cell, the signal indicative of the detection. The battery cell may be part of a battery or battery pack which may be utilized by an electronic device.




ba

BATTERY PACK

A battery pack has a battery pack housing that defines an interior region, and a battery module that is disposed in the interior region. The battery module has a first battery cell, and a first heat exchanger defining a first flow path portion therethrough. The battery pack further includes a first electric fan and a thermally conductive housing that are disposed in the interior region. The thermally conductive housing has a first housing portion, and at least first and second cooling fins defining a second flow path portion therebetween. At least a portion of the second flow path portion is substantially in-line with the first flow path portion. The first electric fan urges air to flow through an inlet aperture, the first flow path portion, the second flow path portion, and through the first electric fan to a first outlet aperture to cool the battery module.




ba

BATTERY MODULE AND METHOD OF MANUFACTURING THE SAME

A battery module and a method of manufacturing the same are provided. The battery module includes a case providing an internal space, a plurality of battery cells disposed in the internal space of the case, and at least one cooling unit interposed between the battery cells to be in surface contact with the battery cells and dissipating heat generated by the battery cells externally.




ba

BATTERY AND THERMAL MANAGEMENT DEVICE THEREOF, AND UAV HAVING THE BATTERY

A battery, a thermal management device of the battery, and an unmanned aerial vehicle having the battery are provided. The thermal management device comprises a heat conducting housing having a receiving cavity and configured to divide the receiving cavity into a plurality of cell compartments for receiving cells, and a heat conducting shelf mounted within the receiving cavity and configured to be in contact with at least one of the cells to conduct heat generated by the at least one of the cells. The heat conducting shelf is thermally connected with an inner wall of the receiving cavity and configured to conduct heat in the heat conducting shelf to the heat conducting housing.




ba

HOUSING FOR ACCOMMODATION OF A PLURALITY OF BATTERY CELLS HAVING A COOLING DEVICE INTEGRATED IN THE HOUSING

The invention relates to a housing (10) for accommodating a plurality of battery cells (20), in particular lithium-ion battery cells, wherein the housing (10), in particular a plastic housing, comprises a cooling device with an inlet point (30) and an outlet point (40) for an air stream (22) for cooling the battery cells (20). In addition, the housing (10) is designed as a single piece together with the cooling device integrated in the housing (10), and the cooling device additionally has spacers (34; 34a, 34b) for arranging all accommodated battery cells (20) with an intermediate space (23) for guiding air between the battery cells (20), by which means an air channel (25) is provided for the air stream (22) between the battery cells (20). The invention further relates to a battery pack (50) and to a motor vehicle comprising such a battery pack (50).




ba

Cellulose-based fiber, and tire cord comprising the same

The present invention provides cellulose-based fibers including cellulose and at least one polymer selected from the group consisting of a polysiloxane, a polyacrylic acid, a polyacrylamide, an m-aramid, and a polyvinylalcohol/polystyrene copolymer, and a tire cord including the same. Furthermore, the cellulose-based fibers of the present invention have an advantage in superior elongation and tenacity of the prior cellulose fibers by blending at least one polymer having a functional group that is capable of a hydrogen bond with a hydroxyl group of a cellulose molecule.




ba

Method for harvesting bast plants

A method for harvesting bast plants that have stalks, husks, and seeds. The method includes cutting the bast stalks from the bast plants and receiving the bast stalks onto a first belt. The method then orients at least a portion of the bast stalks on the first belt by moving a bar back and forth across the first belt in a direction generally perpendicular to the direction the first belt is moving, the bar elevated above the first belt and having spaced tines extending toward the first belt, the longitudinal axis of the at least a portion of the bast stalks being generally oriented in the direction the first belt is moving. The husks and seeds may be removed from the bast stalks. The bast stalks may be packaged.




ba

Processing line of bast fiber

A processing line of bast fiber is provided. The processing line is comprised of various devices for carding, cutting, degumming, high temperature washing, separating and water washing, softening, drying, batching and applying oil, permeating and reconditioning, stretching-breaking carding, and combing and sorting. The processing line of bast fiber can improve production efficiency, and improve the yield of long hemp fibers. Moreover, the produced fiber has stable quality and is convenient for post-processing.




ba

Counterband tape

A counterband tape for use in the heat setting tunnel of a carpet yarn heat setting machine. The tape is constructed from polyphenylene sulfide yarns. The counterband tape may be formed as a single layer woven fabric with a twill weave construction. The tape also may include a herringbone pattern.




ba

BAGGING STATION SUPPORT FRAME AND METHOD OF FORMING THE SAME

Disclosed is a bagging station support frame that includes a bagging station holder and a rail coupler coupled to the bagging station holder. The bagging station holder holds a bagging station. A bagging station holds a plurality of shopping bags ready to receive products purchased by a customer. The rail coupler couples the bagging station support frame to a rail. Rails are common fixtures throughout retail stores. The bagging station support frame can be coupled to a rail at various locations throughout the retail store. A bagging station coupled to the bagging station support frame will be available for customers to bag their purchases wherever the bagging station support frame with bagging station is mounted. By mounting bagging station support frames with bagging stations throughout the retail store, customers can easily bag their purchases as they shop, without having to find a checkout counter to obtain shopping bags.




ba

BASE MOUNTING ASSEMBLY AND DISPLAY DEVICE

A base mounting assembly and a display device are provided. The base mounting assembly includes a main support on a side of a first device, a base including a pedestal part below the first device and a support post connected with the pedestal part and opposite to the main support, the support post including a first end away from the pedestal part and a second end connecting with the pedestal part, and a cushion block movably provided between the support post and the main support. A distance between the support post and the main support is gradually reduced from the first end to the second end so that when the cushion block is moved between the first end and the second end, a position of the support post relative to the main support is changed, causing a change of a position of the pedestal part relative to the first device.




ba

GIMBAL SYSTEM HAVING PRELOADED ISOLATION

A gimbal system, including apparatus and methods, with one or more gimbals having non-preloaded or preloaded vibration isolators, a biased preloading compensation mechanism, sag compensation, and/or lateral snubbing.




ba

Backboard for an automated CPR system

A backboard for an automated cardio pulmonary resuscitation system, said backboard comprising a board element, the board element defining a plane and having a top edge, a bottom edge a first side edge and a second side edge; a set of connectors adapted for connection of the backboard to an automated cardio pulmonary resuscitation unit, said connectors being provided at said side edges; and at least one set of stabilizing elements extending away from an edge and transversely to said plane.




ba

Baby crib

A baby crib includes an upright segment having a lower end portion and an upper end portion, a base connected with the lower end portion of the upright segment, an elongated support structure extending along a horizontal plane above the base and connected with the upper end portion, and a bassinet assembled with the support structure and having an inner space adapted to receive the placement of a baby therein. The bassinet has a sidewall provided with a side opening communicating with the inner space. The support structure is operable to displace the bassinet horizontally to modify a distance between the bassinet and the upright segment.




ba

Infant care accessory comprising combination diaper bag and changing mat with fluid barrier

An infant care accessory comprising a combination diaper bag and changing mat. The accessory comprises a body having a two side panels and a center panel. When the side panels are upright, the body forms a diaper bag. When the side panels are opened flat with the center panel, the body forms a diaper changing mat. The inside surface of the body is made of fluid impermeable material, and a fluid barrier is positioned along the center panel. The fluid barrier may be a strip of absorbent material. When a baby is placed lengthwise on the opened out body with the center panel positioned at about the baby's waist, urine and other body fluids will be blocked or absorbed by the fluid barrier and will not travel up under the baby's back and head. A removable accessory pouch may be included for carrying diapers, lotion, powder, and other changing essentials.




ba

Distributed Sensing Systems nad Methods with I/Q Data Balancing Based on Ellipse Fitting

A system includes an optical fiber and an interrogator to provide source light to the optical fiber. The system also includes a receiver coupled to the optical fiber. The receiver includes at least one fiber optic coupler that receives backscattered light and that produces optical interferometry signals from the backscattered light. The receiver also includes photo-detectors that produce an electrical signal for each of said optical interferometry signals. The system also includes at least one digitizer that digitizes the electrical signals. The system also includes at least one processing unit that calculates I/Q data from the digitized electrical signals, corrects the I/Q data based on ellipse fitting, determines phase values based on the corrected I/Q data, and determines distributed sensing parameter values based on the phase values.




ba

SECURE SHORT-DISTANCE-BASED COMMUNICATION AND VALIDATION SYSTEM FOR ZONE-BASED VALIDATION

A secure short-distance-based communication and validation system validates users in a validation area. The system may include multiple zones in the validation area and beacons in each zone. A run-time mobile device identifier and keys that may be location-specific, device-specific and time-specific are generated and utilized for secure communication between mobile devices and a zone computer in a zone. The validation area may be in a vehicle, and validation may include deducting a fare.




ba

WIRELESS ACCESS CONTROL SYSTEM INCLUDING CLOSED DOOR POSITION AND INTERIOR AREA REMOTE ACCESS WIRELESS COMMUNICATIONS DEVICE BASED LOCK SWITCHING AND RELATED METHODS

A wireless access control system may include a remote access wireless communications device and a lock assembly to be mounted on a door. The lock assembly may include a lock, a door position sensor, interior and exterior directional antennas, lock wireless communications circuitry, a touch sensor, and a lock controller. The lock controller may be configured to unlock the lock based upon the touch sensor, determine when the door is closed after being opened based upon the door position sensor, determine whether the remote access wireless device is in an interior or an exterior based upon the directional antennas, switch the lock to the locked position when the door is closed and when the remote access wireless device is in the interior, and not switch the lock to the locked position when the door is closed and when the remote access wireless device is in the exterior.




ba

WIRELESS ACCESS CONTROL SYSTEM INCLUDING CLOSED DOOR POSITION AND EXTERIOR AREA REMOTE ACCESS WIRELESS COMMUNICATIONS DEVICE BASED LOCK SWITCHING AND RELATED METHODS

A wireless access control system may include a remote access wireless communications device and a lock assembly to be mounted on a door. The lock assembly may include a lock, a door position sensor, interior and exterior directional antennas, lock wireless communications circuitry, and a lock controller. The lock controller determine whether the lock is manually unlocked, determine when the door is closed after being opened based upon the door position sensor, and determine whether the remote access wireless device is in an interior or an exterior based upon the directional antennas. The lock controller may also switch the lock to the locked position when the door is closed and when the remote access wireless device is in the exterior, and not switch the lock to the locked position when the door is closed and when the remote access wireless device is in the interior.




ba

SYSTEMS AND METHODS TO GENERATE HAPTIC FEEDBACK FOR SKIN-MEDIATED INTERACTIONS

A system includes a sensor configured to sense an input at a skin surface, a processor configured to receive an output signal from the sensor and generate a haptic control signal based on the output signal, and a haptic output device configured to generate a haptic effect based on the haptic control signal.




ba

Security Prejudgment based on Characteristic Information

An example method of security prejudgment based on characteristic information include receiving characteristic information of a monitored party from the monitored party, calculating security status information of the monitored party based on a probability of danger that has been stored and corresponds to the characteristic information of the monitored party, determining that the security status information is greater than a first threshold, performing an appropriate operation based on the determination. Accordingly, the technical solution of the present disclosure solves a problem that presetting of monitoring conditions cannot cover potential surrounding risks that result in a safety hazard. Further, the technical solution can monitor risks that are not reflected by spatial information. After identifying and warning based on the characteristic information, potential risks may be avoided before occurring without wasting data traffic.