i

Bridge output circuit, motor driving device using the same, and electronic apparatus

A bridge output circuit includes an output terminal, a high side transistor, a low side transistor, a high side driver for controlling a gate voltage of the high side transistor, a low side driver for controlling a gate voltage of the low side transistor, and a controller for controlling the high side and low side drivers. The low side driver includes a first current source, a second current source, and a first assist circuit. The controller is configured to control the turning-on and turning-off states of the first current source, the second current source and the first assist circuit.




i

Input buffer circuit

There is provided an input buffer circuit having hysteresis characteristics. The input buffer circuit includes: a first operating unit performing a NOR operation on an input signal and a first signal; a second operating unit performing a NAND operation on the input signal and a second signal; and an inverting unit inverting outputs of the first and second operating units to generate a second signal and a first signal, respectively, wherein reference levels of the first and second operating units determining a high or low level of the input signal are set to be different.




i

System and method to actively drive the common mode voltage of a receiver termination network

An active termination circuit for a differential receiver includes a first receiver element configured to receive a first component of a differential signal, a second receiver element configured to receive a second component of a differential signal, a common mode measurement element configured to receive the differential signal and generate a transmit common mode signal (Vcm) representing an average value of the differential signal, and a receiver (RX) common mode signal node. The termination circuit also comprises an active element configured to receive the transmit common mode signal (Vcm) and provide an output to the receiver common mode signal node, the output configured to drive the value of the signal at the receiver common mode signal node to the value of the transmit common mode signal (Vcm), and a capacitive element coupled to the receiver common mode signal node in parallel with the active element.




i

Multi-threshold flash NCL circuitry

Multi-threshold flash Null Convention Logic (NCL) includes one or more high threshold voltage transistors within a flash NCL gate to reduce power consumption due to current leakage by transistors of the NCL gate. High-threshold voltage transistors may be added and/or may be used in place of one or more lower voltage threshold transistors of the NCL gate. A high-Vt device is included in the pull-up path to reduce power when the flash NCL logic gate is in the null state.




i

Nonvolatile logic circuit architecture and method of operation

Magnetoelectronic (ME) logic circuits and methods of operating the same are disclosed. Microsystems of different circuits made from different types of ME devices can be constructed and employed in applications such as sensors, smart dust, etc.




i

Architectural floorplan for a structured ASIC manufactured on a 28 NM CMOS process lithographic node or smaller

A floorplan for a Structured ASIC chip is shown having a core region containing memory and VCLB logic cells surrounded by a plurality of IO connection fabrics that include a first IO connection fabric comprising IO sub-banks connecting the core of the chip to pins for external signals to the core, a first high-speed routing fabric disposed along the east-west vertical top of the core and connects the core to high-speed IO such as SerDes; a network-aware connection fabric connects the core to a microcontroller primarily for testing and repair of the memory in the core; and a second-high speed routing fabric is disposed on the north-south vertical sides of the core and communicates with the IO sub-banks. The VCLB Structured ASIC chip is manufactured on a 28 nm CMOS process lithographic node or smaller, having several metal layers and preferably is programmed on a single via layer.




i

Circuit and layout techniques for flop tray area and power otimization

Techniques for reducing scan overhead in a scannable flop tray are described herein. In one embodiment, a scan circuit for a flop tray comprises a tri-state circuit configured to invert an input data signal and output the inverted data signal to an input of a flip-flop of the flop tray in a normal mode, and to block the data signal from the input of the flip-flop in a scan mode. The scan circuit also comprises a pass gate configured to pass a scan signal to the input of the flip-flop in the scan mode, and to block the scan signal from the input of the flip-flop in the normal mode.




i

Method and apparatus for passive equalization and slew-rate control

A device for passive equalization and slew-rate control of a signal includes a first branch and a second branch. The first branch includes a first driver coupled in series with an equalization capacitor. The second branch includes a second driver coupled in series with a resistor. The second branch may be coupled in parallel to the first branch. The first branch may be configurable to enable either passive equalization or slew-rate control of the signal based on a mode control signal.




i

Driving circuit with zero current shutdown and a driving method thereof

Methods and circuits related to a driving circuit with zero current shutdown are disclosed. In one embodiment, a driving circuit with zero current shutdown can include: a linear regulating circuit that receives an input voltage source, and outputs an output voltage; a start-up circuit having a threshold voltage, the start-up circuit receiving an external enable signal; a first power switch receiving both the output voltage of the linear regulating circuit and the external enable signal, and that generates an internal enable signal, the internal enable signal being configured to drive a logic circuit; when the external enable signal is lower than a threshold voltage, the driving circuit is not effective; when the external enable signal is higher than the threshold voltage, the start-up circuit outputs a first current; and where the output voltage at the first output terminal is generated by the linear regulating circuit based on the first current.




i

Glitch free clock multiplexer

Apparatus for glitch-free switching between two clock sources on an integrated circuit. Clock gaters provide a clock from a single source that can be turned on and off without causing partial pulses to be created. Control circuitry going to the individual clock gaters provides the ability to shut all clocks off for a period of time equal to the longest clock period. By combining the clocks with an OR gate and gating all clocks off before switching from one clock to another, a glitch-free train of clock pulses can be created from individual clock inputs. Since clock glitches can cause erratic behavior in integrated circuits, this invention allows one to switch between different (unrelated) clocks without causing erratic behavior.




i

Semiconductor integrated circuit

A semiconductor integrated circuit includes: a main-interconnect to which supply voltage or reference voltage is applied; a plurality of sub-interconnects; a plurality of circuit cells configured to be connected to the plurality of sub-interconnects; a power supply switch cell configured to control, in accordance with an input control signal, connection and disconnection between the main-interconnect and the sub-interconnect to which a predetermined one of the circuit cells is connected, of the plurality of sub-interconnects; and an auxiliary interconnect configured to connect the plurality of sub-interconnects to each other.




i

Method and apparatus for clock transmission

Apparatus and methods are provided for an extraction circuit. In one configuration, an apparatus includes: an edge extraction circuit for receiving a first clock signal and outputting a second clock signal, wherein a duty cycle of the second clock is substantially smaller than a duty cycle of the first clock; a transistor for receiving the second clock signal and outputting a current signal; a transmission line for receiving the current signal on a first end and transmitting the current signal to a second end; a termination circuit for receiving the current signal at the second end and converting the current signal into a voltage signal; and an edge detection circuit for outputting a third clock by detecting an edge of the voltage signal. In one embodiment, the edge detection circuit comprises an inverter. In another embodiment, the edge detection circuit comprises a comparator.




i

Multi power supply type level shifter

There is provided a multi power supply type level shifter. The provided multi power supply type level shifter includes a first level shifter and a second level shifter in a two-stage architecture so as to selectively receive first to third power supplies and change a signal level, even when the first to third power supplies are applied in a different sequence from a normal power-on sequence. Output voltages are output without a change in level, and short-circuit currents are not generated in the first and second level shifters.




i

System and methods for generating unclonable security keys in integrated circuits

A system and methods that generates a physical unclonable function (“PUF”) security key for an integrated circuit (“IC”) through use of equivalent resistance variations in the power distribution system (“PDS”) to mitigate the vulnerability of security keys to threats including cloning, misappropriation and unauthorized use.




i

Methods and apparatus for providing redundancy on multi-chip devices

A multi-chip package may include first and second integrated circuit dies that are each partitioned into multiple logic regions. The logic regions of the first and second dies may be coupled via interconnects. Each integrated circuit die may include at least one spare logic region. Multiple logic groups may be formed with each logic group including logic regions from the first and second integrated circuit dies and the interconnects that couple those logic regions. The logic groups may be evaluated to identify defective logic groups. In response to identifying a defective logic group, the defective logic group may be repaired by configuring the first and second integrated circuit dies to stop using the defective logic group and to use a spare logic group. The spare logic group may include spare logic regions of the first and second dies that are coupled by spare logic region interconnects.




i

Intelligent current drive for bus lines

An intelligent current drive is disclosed that couples an active current source to a bus line to increase the rate of pull-up and decouples the active current source from the bus line prior to reaching the desired pull-up voltage.




i

Impedance tuning circuit and integrated circuit including the same

An impedance tuning circuit includes a calibration unit and a post-processing unit. The calibration unit generates an initial pull-up code and an initial pull-down code by performing a calibration operation using an external resistor during an initial impedance tuning operation. The post-processing unit outputs the initial pull-up code and the initial pull-down code as a final pull-up code and a final pull-down code during the initial impedance tuning operation, and generates the final pull-up code and the final pull-down code by using the initial pull-up code and the initial pull-down code during a subsequent impedance tuning operation.




i

Heterogeneous programmable device and configuration software adapted therefor

A method of configuring a programmable integrated circuit device with a user logic design includes analyzing the user logic design to identify unidirectional logic paths within the user logic design and cyclic logic paths within the user logic design, assigning the cyclic logic paths to logic in a first portion of the programmable integrated circuit device that operates at a first data rate, assigning the unidirectional logic paths to logic in a second portion of the programmable integrated circuit device that operates at a second data rate lower than the first data rate, and pipelining the unidirectional data paths in the second portion of the programmable integrated circuit device to compensate for the lower second data rate. A programmable integrated circuit device adapted to carry out such method may have logic regions operating at different rates, including logic regions with programmably selectable data rates.




i

Isolator circuit and semiconductor device

An isolator circuit capable of two-way electrical disconnection and a semiconductor device including the isolator circuit are provided. A data holding portion is provided in an isolator circuit without the need for additional provision of a data holding portion outside the isolator circuit, and data which is to be input to a logic circuit that is in an off state at this moment is stored in the data holding portion. The data holding portion may be formed using a transistor with small off-state current and a buffer. The buffer can include an inverter circuit and a clocked inverter circuit.




i

Semiconductor device having serializer converting parallel data into serial data to output serial data from output buffer circuit

Disclosed herein is a device that includes first and second buffer circuits connected to a data terminal and a first control circuit controlling the first and second buffer circuits. The first control circuit receives n pairs of first and second internal data signals complementary to each other from 2n input signal lines and outputs a pair of third and fourth internal data signals complementary to each other to first and second output signal lines, where n is a natural number more than one. The first and second buffer circuits are controlled based on the third and fourth internal data signals such that one of the first and second buffer circuits turns on and the other of the first and second buffer circuits turns off.




i

Time division multiplexed limited switch dynamic logic

A limited switch dynamic logic (LSDL) circuit includes a dynamic logic circuit and a static logic circuit. The dynamic logic circuit includes a precharge device configured to precharge a dynamic node during a precharge phase of a first evaluation clock signal and a second evaluation clock signal. A first evaluation tree is configured to evaluate the dynamic node to a first logic value in response to one or more first input signals during an evaluation phase of the first evaluation clock signal. A second evaluation tree is configured to evaluate the dynamic node to a second logic value in response to one or more second input signals during an evaluation phase of the second evaluation clock signal. A static logic circuit is configured to provide an output of the LSDL circuit in response to the dynamic node according to an output latch clock signal.




i

Time division multiplexed limited switch dynamic logic

A method for increasing performance in a limited switch dynamic logic (LSDL) circuit includes precharging a dynamic node during a precharge phase of a first and second evaluation clock signal. The dynamic node is evaluated to a first logic value in response to one or more first input signals of a first evaluation tree during an evaluation phase of the first evaluation clock signal. The dynamic node is evaluated to a second logic value in response one or more second input signals of a second evaluation tree during an evaluation phase of the second evaluation clock signal. A signal of the LSDL circuit is outputted in response to the dynamic node according to an output latch clock signal.




i

Level shifter with output spike reduction

A level shifter, or method, producing a final output from a driver supplied by a high-side source driver providing VDD or common, and a low-side source driver providing common or VSS. A delay is introduced to prevent a source driver output at common from beginning to transition toward a supply rail until a delaying source driver at a rail begins transitioning toward common. The level shifter may be single-ended or differential, and the delaying source driver may be coupled to the same final output driver as is the delayed source driver, or may be coupled to a different final output driver. The level shifter may have a second level shifter front end stage, which may have high-side and low-side intermediate source driver outputs coupled by a capacitor, and/or may couple one of the supplies to all intermediate source drivers via a common impedance or current limit Zs.




i

Level shift circuit

There is provided a level shift circuit free from malfunction. The level shift circuit converts a signal of a first power supply voltage of a first supply terminal, which is supplied to an input terminal, into a signal of a second power supply voltage of a second supply terminal and outputs the converted signal to an output terminal. The level shift circuit has a control circuit that detects when the first power supply voltage reduces below a predetermined voltage. The voltage of the output terminal of the level shift circuit is fixed to the second power supply voltage or a ground voltage according to a detection signal of the control circuit.




i

Gate driver, driving circuit, and LCD

There is disclosed a gate driver, a driving circuit, and a liquid crystal display (LCD), wherein the gate driver comprises input terminals for inputting a CPV signal, an OE signal, and an STV signal, and output terminals for outputting a CKV signal and a CKVB signal, and a processing circuit is connected between the input terminals and the output terminals for processing the CPV signal, the OE signal, and the STV signal such that a preset time interval is present between the falling edge of the CKV signal and the rising edge of the CKVB signal during one period of the CKV signal, or a preset time interval is present between the rising edge of the CKV signal and the falling edge of the CKVB signal during one period of the CKVB signal.




i

Semiconductor device and power supply control method of the semiconductor device

A semiconductor device includes an internal circuit, a power supply control circuit which controls supply of a power supply to the internal circuit upon receipt of a first control signal, and a control signal generation circuit which outputs the first control signal upon receipt of a second control signal. The control signal generation circuit does not deactivate the first control signal when an inactive period of the second control signal is equal to or less than a first period and deactivates the first control signal when the inactive period of the second control signal is more than the first period.




i

Massively parallel interconnect fabric for complex semiconductor devices

An embodiment of this invention uses a massive parallel interconnect fabric (MPIF) at the flipped interface of a core die substrate (having the core logic blocks) and a context die (used for in circuit programming/context/customization of the core die substrate), to produce ASIC-like density and FPGA-like flexibility/programmability, while reducing the time and cost for development and going from prototyping to production, reducing cost per die, reducing or eliminating NRE, and increasing performance. Other embodiments of this invention enable debugging complex SoC through large contact points provided through the MPIF, provide for multi-platform functionality, and enable incorporating FGPA core in ASIC platform through the MPIF. Various examples are also given for different implementations.




i

Level shifter with low voltage loss

A system and method are disclosed for level shifting a DDC bus with a low voltage loss. A pull up circuit includes an NMOS transistor, a PMOS transistor and resistor. An NMOS pull up gate is also included in line with the DDC bus. When powered, the level shifter adjusts the voltage of transmitted signals to match the voltage of a receiving device. The resulting adjusted is slightly lower due to a threshold voltage lost across one or more transistors. Additionally, when unpowered, the level shifter releases the signal transmission line. Unadjusted signals can then be transmitted without consumption of power by the level shifter.




i

High-speed low power stacked transceiver

A transceiver includes a transmitter and receiver that form a series current path between two power-supply nodes. Powering both the transmitter and receiver with the same supply current saves power. The transmitter functions as a resistive load for the receiver, and thus performs useful work with power that would otherwise be dissipated as waste heat.




i

Method and apparatus for reducing power consumption in a digital circuit by controlling the clock

A method and apparatus that controls the clock of a digital circuit, and therefore power consumption, without substantially comprising performance is provided. The apparatus may include monitoring the utilization of a First in First Out (FIFO) buffer. For example in a systems and methods according to the invention, clock speed may be reduced when the FIFO is relatively empty and increased when the FIFO is relatively full. The clock speed may be controlled by a phase locked loop, a clock divider, a clock masking device or a combination of more than one of these methods. Power reduction may also be obtained by controlling the clocking of different stages of a pipelined device. One or more aspects of the inventions may be implemented in combination with other aspects of the invention to further reduce power use.




i

Standard cell connection for circuit routing

Embodiments described herein provide approaches for improving a standard cell connection for circuit routing. Specifically, provided is an IC device having a plurality of cells, a first metal layer (M1) pin coupled to a contact bar extending from a first cell of the plurality of cells, and a second metal layer (M2) wire coupled to the contact bar, wherein the contact bar extends across at least one power rail. By extending the contact bar into an open area between the plurality of cells to couple the M1 pin and the M2 wire, routing efficiency and chip scaling are improved.




i

Method for downloading a configuration file in a programmable circuit, and apparatus comprising said component

The present invention relates to a method for downloading a binary configuration file in a programmable circuit implemented in a device. The device comprises at least one central processing unit, a plurality of connectors, and a programmable circuit enabling all or a part of the signals received by said connectors to be processed and transmitted to at least one other circuit of the device. The device analyzes the signals present on the connectors in order to define what other devices are connected and whether the connections are operational. Then, a configuration file is selected from among a set of configuration files according to the operational connections and is downloaded from a memory of the device into the programmable circuit. The invention also relates to a device having a component programmed according to the method previously described.




i

Sequential state elements in triple-mode redundant (TMR) state machines

The disclosure relates generally to triple-redundant sequential state (TRSS) machines formed as integrated circuits on a semiconductor substrate, such as CMOS, and computerized methods and systems of designing the triple-redundant sequential state machines. Of particular focus in this disclosure are sequential state elements (SSEs) used to sample and hold bit states. The sampling and holding of bits states are synchronized by a clock signal thereby allowing for pipelining in the TRSS machines. In particular, the clock signal may oscillate between a first clock state and a second clock state to synchronize the operation of the SSE according to the timing provided by the clock states. The SSEs has a self-correcting mechanism to protect against radiation induced soft errors. The SSE may be provided in a pipeline circuit of a TRSS machine to receive and store a bit state of bit signal generated by combinational circuits within the pipeline circuit.




i

Placement of storage cells on an integrated circuit

A method for configuring the placement of a plurality of storage cells on an integrated circuit includes grouping the plurality of storage cells into a plurality of words, where each of the plurality of words is protected by an error control mechanism. The method also includes placing each of the storage cells on the integrated circuit such that a distance between any two of the storage cells belonging to one of the plurality of words is greater than a minimum distance. The minimum distance is configured such that a probability of any of the plurality of words experiencing multiple radiation induced errors is below a threshold value.




i

Operational time extension

An integrated circuit (IC) with a novel configurable routing fabric is provided. The configurable routing fabric has signal paths that propagate signals between user registers on user clock cycles. Each signal path includes a set of configurable storage elements and a set of configurable logic elements. Each configurable storage element in the path is reconfigurable on every sub-cycle of the user clock cycle to either store an incoming signal or to pass the incoming signal transparently.




i

Partial reconfiguration and in-system debugging

Embedded logic is implemented in a partially reconfigurable programmable logic device (PLD), thus allowing debugging of implemented instantiations of logic after partial reconfiguration. Several instantiations of logic are received at the PLD. One instantiation of logic is implemented in a reconfigurable region of logic within the PLD. The instantiation of logic includes a port that provides a constant interface between the reconfigurable region of logic and a fixed region of logic within the PLD. The port may receive signals from probe points implemented within the reconfigurable region of logic. The port may provide the signals to a signal interface implemented within a fixed region of logic. Furthermore, an embedded logic analyzer may be implemented in either the reconfigurable region of logic or the fixed region of logic. The embedded logic analyzer receives signals from the probe points and provides signal visibility to an external computing system.




i

Semiconductor integrated circuit having a switch, an electrically-conductive electrode line and an electrically-conductive virtual line

A semiconductor integrated circuit including: a circuit block having an internal voltage line; an annular rail line forming a closed annular line around the circuit block and supplied with one of a power supply voltage and a reference voltage; and a plurality of switch blocks arranged around the circuit block along the annular rail line, the plurality of switch blocks each including a voltage line segment forming a part of the annular rail line and a switch for controlling connection and disconnection between the voltage line segment and the internal voltage line.




i

Liquid crystal display device and electronic device

To provide a circuit used for a shift register or the like. The basic configuration includes first to fourth transistors and four wirings. The power supply potential VDD is supplied to the first wiring and the power supply potential VSS is supplied to the second wiring. A binary digital signal is supplied to each of the third wiring and the fourth wiring. An H level of the digital signal is equal to the power supply potential VDD, and an L level of the digital signal is equal to the power supply potential VSS. There are four combinations of the potentials of the third wiring and the fourth wiring. Each of the first transistor to the fourth transistor can be turned off by any combination of the potentials. That is, since there is no transistor that is constantly on, deterioration of the characteristics of the transistors can be suppressed.




i

Single ended configurable multi-mode driver

Embodiments of the invention are generally directed to a single-ended configurable multi-mode driver. An embodiment of an apparatus includes an input to receive an input signal, an output to transmit a driven signal generated from the input signal on a communication channel, a mechanism for independently configuring a termination resistance of the driver apparatus, and a mechanism for independently configuring a voltage swing of the driven signal without modifying a supply voltage for the apparatus.




i

Oscillation frequency adjusting circuit

According to one embodiment, a first oscillator has an oscillation frequency that is changed depending on a temperature. A second oscillator has different temperature characteristics from the first oscillator. An on-chip heater heats the first oscillator and the second oscillator. A counter counts a first oscillation signal of the first oscillator. An ADPLL generates a third oscillation signal on the basis of a second oscillation signal of the second oscillator and corrects the frequency of the third oscillation signal on the basis of a count value of the counter.




i

Single differential-inductor VCO with implicit common-mode resonance

A circuit for a single differential-inductor oscillator with common-mode resonance may include a tank circuit formed by coupling a first inductor with a pair of first capacitors; a cross-coupled transistor pair coupled to the tank circuit; and one or more second capacitors coupled to the tank circuit and the cross-coupled transistors. The single differential-inductor oscillator may be configured such that a common mode (CM) resonance frequency (FCM) associated with the single differential-inductor oscillator is at twice a differential resonance frequency (FD) associated with the single differential-inductor oscillator.




i

Circuit, device and method in a circuit

A method in a circuit comprises providing a first clock by a resistor-capacitor (RC) oscillator; demodulating a plurality of input signals to form a plurality of demodulated input signals; discriminating frequency ranges of the plurality of demodulated input signals according to the first clock; determining whether a first predetermined number of consecutive demodulated input signals among the plurality of demodulated input signals fall into a first predetermined frequency range; triggering a crystal oscillator to provide a second clock to calibrate the first clock if the first predetermined number of consecutive input signals fall into the first predetermined frequency range.




i

Circuit for measuring the resonant frequency of nanoresonators

The present disclosure relates to nanoresonator oscillators or NEMS (nanoelectromechanical system) oscillators. A circuit for measuring the oscillation frequency of a resonator is provided, comprising a first phase-locked feedback loop locking the frequency of a controlled oscillator at the resonant frequency of the resonator, this first loop comprising a first phase comparator. Furthermore, a second feedback loop is provided which searches for and stores the loop phase shift introduced by the resonator and its amplification circuit when they are locked at resonance by the first loop. The first and the second loops operate during a calibration phase. A third self-oscillation loop is set up during an operation phase. It directly links the output of the controllable phase shifter to the input of the resonator. The phase shifter receives the phase-shift control stored by the second loop.




i

Resonator element, resonator, electronic device, electronic apparatus, and mobile object

A resonator element includes a substrate including a first principal surface and a second principal surface respectively forming an obverse surface and a reverse surface of the substrate, and vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on the first principal surface, and a second excitation electrode disposed on the second principal surface, and being larger than the first excitation electrode in a plan view, the first excitation electrode is disposed so as to fit into an outer edge of the second excitation electrode in the plan view, and the energy trap confficient M fulfills 15.5≦M≦36.7.




i

Resonator element, resonator, electronic device, electronic apparatus, and mobile object

A resonator element includes a substrate vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on one principal surface of the substrate, and has a shape obtained by cutting out four corners of a quadrangle, and a second excitation electrode disposed on the other principal surface of the substrate, and a ratio (S2/S1) between the area S1 of the quadrangle and the area S2 of the first excitation electrode fulfills 87.7%≦(S2/S1)




i

Oscillating device, oscillating element and electronic apparatus

An oscillating device includes a temperature compensated oscillator that compensates a frequency temperature characteristic in a temperature compensation range including apart of a first temperature range, and a temperature control circuit that includes a heater and controls a temperature of a quartz crystal resonator of the temperature compensated oscillator into a second temperature range included in the temperature compensation range. Further, the temperature compensation range of the temperature compensated oscillator may include a part of the first temperature range in which compensation can be performed by first-order approximation.




i

Current reused stacked ring oscillator and injection locked divider, injection locked multiplier

A phase locked loop includes a voltage controlled oscillator and a frequency divider or frequency multiplier. The voltage controlled oscillator and the frequency divider/multiplier are coupled together in a stacked configuration. A drive current is supplied to the voltage controlled oscillator. The drive current passes from the voltage controlled oscillator to the frequency divider/multiplier, thereby driving the frequency divider/multiplier with the same drive current that was supplied to the voltage controlled oscillator.




i

Accumulator-type fractional N-PLL synthesizer and control method thereof

There are provided an accumulator-type fractional N-PLL synthesizer for suppressing the fractional spurious caused by periodically switching a frequency division number of a fractional frequency divider, and a control method thereof. In an accumulator-type fractional N-PLL synthesizer (100), a pulse signal proportional to a fractional phase error occurring between a reference signal and an output signal of a fractional divider (112) for feeding back an output of a VCO (115) of an output stage to a preceding stage is generated using an error signal from an accumulator (120). Through the use of the pulse signal, pulse widths of a UP signal and a DN signal output from a phase detector (140) are controlled so as to reduce a fractional phase error occurring between the UP signal and the DN signal. Thus, the fractional spurious caused by periodically switching the frequency division number of the fractional divider (112) is suppressed.




i

Digitally controlled oscillator and digital PLL including the same

A digitally controlled oscillator has a high-order ΔΣ modulator configured to be of at least an order higher than a first order and configured to input a digital control signal and output a pseudorandom digital output signal, a first-order ΔΣ modulator configured to input the pseudorandom digital output signal and generate a control pulse signal including a pulse width corresponding to the pseudorandom digital output signal, a low pass filter configured to pass a low frequency component of the control pulse signal, and an oscillator configured to generate a high-frequency output signal whose frequency is controlled based on the control pulse signal outputted by the low pass filter so as to be a frequency corresponding to the digital control signal.




i

Integrated circuit with an internal RC-oscillator and method for calibrating an RC-oscillator

An integrated circuit (10) has an internal RC-oscillator (20) for providing an internal clock signal (CLI) having an adjustable oscillator frequency. The integrated circuit (10) further comprises terminals (101, 102) for connecting an external LC tank (30) having a resonance frequency and a calibration circuit (40) which is configured to adjust the oscillator frequency based on the resonance frequency of the LC tank (30) connected during operation of the integrated circuit (10). An internal auxiliary oscillator (46) is connected to the terminals (101, 102) in a switchable fashion and is configured to generate an auxiliary clock signal (CLA) based on the resonance frequency. The calibration circuit (40) comprises a frequency comparator (47) which is configured to determine a trimming word (TRW) based on a frequency comparison of the internal clock signal (CLI) and the auxiliary clock signal (CLA). The LC tank (30) to be connected is an antenna for receiving a radio signal.