ga

Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease]

Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC.




ga

Australian public service's 'gap in capability' to deal with digital revolution

State of the Service report outlines the major hurdle to digital reform.




ga

How federal government departments are protecting Australians' data against cyber hack

Cyber Security Minister Dan Tehan says the government can't rule out vulnerabilities to cyber threats.




ga

Tax time IT problems strike again at Australian Taxation Office

Slow internet is causing headaches during a busy time at the Tax Office.




ga

Construction of mega new IT data storage centre under way in Fyshwick

Fyshwick is set to get another massive IT data storage facility from 2018.




ga

Faster NBN connections should go to all Canberra homes: Labor's Gai Brodtmann

Canberra Labor MP calls for fibre-to-the-curb and fibre-to-the-premises for whole of Canberra.




ga

Webinar: Coordinating the Fight Against Financial Crime

Corporate Members Event Webinar

1 July 2020 - 5:00pm to 6:00pm
Add to Calendar

Che Sidanius, Global Head of Regulation & Industry Affairs, Refinitiv

Patricia Sullivan, Global Co-Head, Financial Crime Compliance, Standard Chartered

Dame Sara Thornton, Independent Anti-Slavery Commissioner, UK

Chair: Tom Keatinge, Director, Centre for Financial Crime and Security Studies, RUSI

 

Illicit finance not only threatens financial stability and inclusion but also provides support for terrorism and is a primary incentive for human trafficking, the illegal wildlife trade and narcotics smuggling. Frequently, actors capitalize on loopholes and inefficiencies resulting from the lack of a coordinated response to financial crime and an underpowered global system for tracking illicit financial flows. Enhanced public-private partnerships, in addition to investment in tackling financial crime from governments, international bodies and private industries, are necessary to develop regulatory frameworks, effective responses and valuable coordination between law enforcement, policymakers, regulators and financial institutions. But how should businesses structure their efforts so that their business interests are protected and the work they do is of use to others fighting financial crime?

This webinar will explore solutions to enable public-private partnerships to work together to combat financial crime. What do successful partnerships need from each side to ensure that the work being done is efficient and effective? How can the industry’s internal effectiveness impact the ‘real-world’ victims? And what barriers impede public-private partnerships operating as a force for good? 

This event is part of a fortnightly series of 'Business in Focus' webinars reflecting on the impact of COVID-19 on areas of particular professional interest for our corporate members and giving circles.

Not a corporate member? Find out more.




ga

A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice

Chelsea DeLeon
May 1, 2020; 61:767-777
Research Articles




ga

UK Tech Weekly Podcast - Episode Six: The Internet of Board Games (IoBG) + The Budget & AlphaGo

In this week's UK Tech Weekly Podcast host Matt Egan is joined by first time podder Tamlin Magee (1:50), online editor at ComputerworldUK.com, to discuss the UK tech implications of this year's Budget, including rural broadband and driverless cars. Then Christina Mercer, assistant online editor at Techworld.com, chats AlphaGo (10:00) and board games following the AI's historic win over world Go champion Lee Sedol. Later, resident Virtual Reality (VR) enthusiast and PCAdvisor.co.uk staff writer Lewis Painter discussed "the big three" VR headset release dates, pricing and features from HTC, Sony Playstation and Oculus Rift (19:00). Finally, UKTW Podcast regular David Price, acting editor at Macworld.co.uk chats about Apple's big upcoming event (28:45).  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 14 - The Internet of Cleaning Products in the Sky (IoCPitS): games, nVidia, EE vs Three

In this week's fiery episode host Matt Egan talks war and gaming with Macworld UK's David Price, the greatest graphics ever with Christopher Minasians of PC Advisor and Macworld UK (14:21), and the best networks in the UK with fellow PCA and MWUK stalwart Henry Burrell (25:23). Expect songs and laughter, and tech ever after.  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 17 - The Internet of Not Terrible Windows Phones (IoNTWP) - VR games & phones at gigs

This week host Matt Egan is joined by PC Advisor staff writer Chris Minasians to chat about the AMD Radeon RX 480 graphics card and what this could mean for the future of virtual reality games. Fellow staff writer at PC Advisor Henry Burrell jumps in to talk about the "not terrible" Windows 10 phone as he starts using the Microsoft Lumia 950 and can't see what everyone's beef with it is (13:00). Finally Ashleigh Allsopp, engagement editor at Macworld UK chats about using your technology at concerts (24:30).  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 18 - The Internet of the EU (IoEU) Website crashes, Oculus games & WWDC

Host Matt Egan is joined this week by Henry Burrell, staff writer at Macworld UK to talk about the EU referendum website crashing Lewis Painter, staff writer at PC Advisor, jumps in to chat about Oculus Rift games and how immersive they are. Finally regular David Price comes on to talk about Apple's upcoming WWDC software developer conference and what we can (and cannot) expect.  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 26 - The Internet of Small Hands Big Phones (IoSHBP) Galaxy Note7, GDS & Instagram stories

Matt Egan is back in the hosting chair to chat with producer Chris about the Samsung Galaxy Note 7 and how we feel about phablets. Techworld.com editor Charlotte Jee comes in to explain what is going on at the GDS (government digital service) and why we should care (13:00). Then online editor at Techworld.com Scott Carey chats Instagram stories, why it is a blatant rip off of Snapchat stories and how the social media giant can get away with being so brazen (22:00).  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 28 - The Internet of Gamescom (IoG) Blackberry security and plane hacks

David Price is in the host chair this week and is joined by Lewis Painter, staff writer at PC Advisor and Macworld UK to discuss all the news coming out of Gamescom, including No Man's Sky, Metal Gear, Final Fantasy and Battlefield. Henry Burrell, staff writer at PC Advisor and Macworld UK jumps in to chat Blackberry and its trumped up security claims (15:00). Finally, Charlotte Jee, editor at Techworld.com talks about hacking planes, trains and automobiles (26:30).  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 29 - The Internet of Wildcats (IoW) Android Nougat, Deliveroo strikes & Playstation rumours

Henry Burrell is the master of ceremonies this week, dropping beats on the hottest tech topics. First up, producer Chris joins to chat about the latest Android OS: Nougat. Then staff writer at Techworld.com Scott Carey jumps in to chat about the Deliveroo strikes this week and what this means for sharing economy companies like Uber and Airbnb in general (15:30). Finally, staff writer at Tech Advisor Lewis Painter has some Playstation console rumours to discuss (27:00).  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 49 - The Internet of Beans and Dickens (IoBaD) Samsung Galaxy S8, billionaire bunkers and Resident Evil 7

Matt Egan hosts as we delve into the tech headlines of the week. Senior Staff Writer at PC Advisor Henry Burrell talks the gang through the latest on Samsung's upcoming smartphone and why it's been delayed, plus another brand comes back from the brink. Online Editor at Techworld Tamlin Magee then explores the strange but true story of Silicon Valley billionaires buying private islands with underground bunkers in case everything really does go Pete Tong. Finally Staff Writer at Macworld UK and PC Advisor Dominic Preston talks us through the frights of the latest Resident Evil game while everyone agrees they can be more terrifying than most horror films.  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 64 - The Internet of Hype (IoH) Apple Special, again!

June means WWDC, and boy did Apple deliver this year. HomePod! iPad! Software! It's all here. Join the Macworld massive David Price, Ashleigh Macro, Dom Preston and Henry Burrell as they rifle through 40 minutes of on-the-nose critiques of Apple's latest announcements. With the new iMac Pro, iPad 10.5in and HomePod, the company introduced hardware for the first time since 2013, while the introduction of iOS 11 sets us up for the iPhone 8 in September. To the orchard!  


See acast.com/privacy for privacy and opt-out information.




ga

Episode 84 - The Internet of Porn (IoP) Nectome, Galaxy S9 and UK porn age checks

The gang returns with an eclectic mix of tech chat. Can Nectome really download your thoughts - while killing you - to preserve your memories forever in the cloud? We didn't make this up.


Then we discuss the brand new Samsung Galaxy S9, phone cameras and crap AR before discussing how the UK should go about contracting a company to age check porn site users.

 

See acast.com/privacy for privacy and opt-out information.




ga

Legal Provision for Crisis Preparedness: Foresight not Hindsight

21 April 2020

Dr Patricia Lewis

Research Director, Conflict, Science & Transformation; Director, International Security Programme
COVID-19 is proving to be a grave threat to humanity. But this is not a one-off, there will be future crises, and we can be better prepared to mitigate them.

2020-04-21-Nurse-COVID-Test

Examining a patient while testing for COVID-19 at the Velocity Urgent Care in Woodbridge, Virginia. Photo by Chip Somodevilla/Getty Images.

A controversial debate during COVID-19 is the state of readiness within governments and health systems for a pandemic, with lines of the debate drawn on the issues of testing provision, personal protective equipment (PPE), and the speed of decision-making.

President Macron in a speech to the nation admitted French medical workers did not have enough PPE and that mistakes had been made: ‘Were we prepared for this crisis? We have to say that no, we weren’t, but we have to admit our errors … and we will learn from this’.

In reality few governments were fully prepared. In years to come, all will ask: ‘how could we have been better prepared, what did we do wrong, and what can we learn?’. But after every crisis, governments ask these same questions.

Most countries have put in place national risk assessments and established processes and systems to monitor and stress-test crisis-preparedness. So why have some countries been seemingly better prepared?

Comparing different approaches

Some have had more time and been able to watch the spread of the disease and learn from those countries that had it first. Others have taken their own routes, and there will be much to learn from comparing these different approaches in the longer run.

Governments in Asia have been strongly influenced by the experience of the SARS epidemic in 2002-3 and - South Korea in particular - the MERS-CoV outbreak in 2015 which was the largest outside the Middle East. Several carried out preparatory work in terms of risk assessment, preparedness measures and resilience planning for a wide range of threats.

Case Study of Preparedness: South Korea

By 2007, South Korea had established the Division of Public Health Crisis Response in Korea Centers for Disease Control and Prevention (KCDC) and, in 2016, the KCDC Center for Public Health Emergency Preparedness and Response had established a round-the-clock Emergency Operations Center with rapid response teams.

KCDC is responsible for the distribution of antiviral stockpiles to 16 cities and provinces that are required by law to hold and manage antiviral stockpiles.

And, at the international level, there are frameworks for preparedness for pandemics. The International Health Regulations (IHR) - adopted at the 2005 World Health Assembly and binding on member states - require countries to report certain disease outbreaks and public health events to the World Health Organization (WHO) and ‘prevent, protect against, control and provide a public health response to the international spread of disease in ways that are commensurate with and restricted to public health risks, and which avoid unnecessary interference with international traffic and trade’.

Under IHR, governments committed to a programme of building core capacities including coordination, surveillance, response and preparedness. The UN Sendai Framework for Disaster Risk highlights disaster preparedness for effective response as one of its main purposes and has already incorporated these measures into the Sustainable Development Goals (SDGs) and other Agenda 2030 initiatives. UN Secretary-General António Guterres has said COVID-19 ‘poses a significant threat to the maintenance of international peace and security’ and that ‘a signal of unity and resolve from the Council would count for a lot at this anxious time’.

Case Study of Preparedness: United States

The National Institutes of Health (NIH) and the Center for Disease Control (CDC) established PERRC – the Preparedness for Emergency Response Research Centers - as a requirement of the 2006 Pandemic and All-Hazards Preparedness Act, which required research to ‘improve federal, state, local, and tribal public health preparedness and response systems’.

The 2006 Act has since been supplanted by the 2019 Pandemic and All-Hazards Preparedness and Advancing Innovation Act. This created the post of Assistant Secretary for Preparedness and Response (ASPR) in the Department for Health and Human Services (HHS) and authorised the development and acquisitions of medical countermeasures and a quadrennial National Health Security Strategy.

The 2019 Act also set in place a number of measures including the requirement for the US government to re-evaluate several important metrics of the Public Health Emergency Preparedness cooperative agreement and the Hospital Preparedness Program, and a requirement for a report on the states of preparedness and response in US healthcare facilities.

This pandemic looks set to continue to be a grave threat to humanity. But there will also be future pandemics – whether another type of coronavirus or a new influenza virus – and our species will be threatened again, we just don’t know when.

Other disasters too will befall us – we already see the impacts of climate change arriving on our doorsteps characterised by increased numbers and intensity of floods, hurricanes, fires, crop failure and other manifestations of a warming, increasingly turbulent atmosphere and we will continue to suffer major volcanic eruptions, earthquakes and tsunamis. All high impact, unknown probability events.

Preparedness for an unknown future is expensive and requires a great deal of effort for events that may not happen within the preparers’ lifetimes. It is hard to imagine now, but people will forget this crisis, and revert to their imagined projections of the future where crises don’t occur, and progress follows progress. But history shows us otherwise.

Preparations for future crises always fall prey to financial cuts and austerity measures in lean times unless there is a mechanism to prevent that. Cost-benefit analyses will understandably tend to prioritise the urgent over the long-term. So governments should put in place legislation – or strengthen existing legislation – now to ensure their countries are as prepared as possible for whatever crisis is coming.

Such a legal requirement would require governments to report back to parliament every year on the state of their national preparations detailing such measures as:

  • The exact levels of stocks of essential materials (including medical equipment)
  • The ability of hospitals to cope with large influx of patients
  • How many drills, exercises and simulations had been organised – and their findings
  • What was being done to implement lessons learned & improve preparedness

In addition, further actions should be taken:

  • Parliamentary committees such as the UK Joint Committee on the National Security Strategy should scrutinise the government’s readiness for the potential threats outlined in the National Risk register for Civil Emergencies in-depth on an annual basis.
  • Parliamentarians, including ministers, with responsibility for national security and resilience should participate in drills, table-top exercises and simulations to see for themselves the problems inherent with dealing with crises.
  • All governments should have a minister (or equivalent) with the sole responsibility for national crisis preparedness and resilience. The Minister would be empowered to liaise internationally and coordinate local responses such as local resilience groups.
  • There should be ring-fenced budget lines in annual budgets specifically for preparedness and resilience measures, annually reported on and assessed by parliaments as part of the due diligence process.

And at the international level:

  • The UN Security Council should establish a Crisis Preparedness Committee to bolster the ability of United Nations Member States to respond to international crisis such as pandemics, within their borders and across regions. The Committee would function in a similar fashion as the Counter Terrorism Committee that was established following the 9/11 terrorist attacks in the United States.
  • States should present reports on their level of preparedness to the UN Security Council. The Crisis Preparedness Committee could establish a group of experts who would conduct expert assessments of each member state’s risks and preparedness and facilitate technical assistance as required.
  • Regional bodies such as the OSCE, ASEAN and ARF, the AU, the OAS, the PIF etc could also request national reports on crisis preparedness for discussion and cooperation at the regional level.

COVID-19 has been referred to as the 9/11 of crisis preparedness and response. Just as that shocking terrorist attack shifted the world and created a series of measures to address terrorism, we now recognise our security frameworks need far more emphasis on being prepared and being resilient. Whatever has been done in the past, it is clear that was nowhere near enough and that has to change.

Case Study of Preparedness: The UK

The National Risk Register was first published in 2008 as part of the undertakings laid out in the National Security Strategy (the UK also published the Biological Security Strategy in July 2018). Now entitled the National Risk Register for Civil Emergencies it has been updated regularly to analyse the risks of major emergencies that could affect the UK in the next five years and provide resilience advice and guidance.

The latest edition - produced in 2017 when the UK had a Minister for Government Resilience and Efficiency - placed the risk of a pandemic influenza in the ‘highly likely and most severe’ category. It stood out from all the other identified risks, whereas an emerging disease (such as COVID-19) was identified as ‘highly likely but with moderate impact’.

However, much preparatory work for an influenza pandemic is the same as for COVID-19, particularly in prepositioning large stocks of PPE, readiness within large hospitals, and the creation of new hospitals and facilities.

One key issue is that the 2017 NHS Operating Framework for Managing the Response to Pandemic Influenza was dependent on pre-positioned ’just in case’ stockpiles of PPE. But as it became clear the PPE stocks were not adequate for the pandemic, it was reported that recommendations about the stockpile by NERVTAG (the New and Emerging Respiratory Virus Threats Advisory Group which advises the government on the threat posed by new and emerging respiratory viruses) had been subjected to an ‘economic assessment’ and decisions reversed on, for example, eye protection.

The UK chief medical officer Dame Sally Davies, when speaking at the World Health Organization about Operation Cygnus – a 2016 three-day exercise on a flu pandemic in the UK – reportedly said the UK was not ready for a severe flu attack and ‘a lot of things need improving’.

Aware of the significance of the situation, the UK Parliamentary Joint Committee on the National Security Strategy launched an inquiry in 2019 on ‘Biosecurity and human health: preparing for emerging infectious diseases and bioweapons’ which intended to coordinate a cross-government approach to biosecurity threats. But the inquiry had to postpone its oral hearings scheduled for late October 2019 and, because of the general election in December 2019, the committee was obliged to close the inquiry.




ga

COVID-19 Crisis – Business as Usual for Gaza?

6 May 2020

Mohammed Abdalfatah

Asfari Foundation Academy Fellow
The COVID-19 pandemic has brought unprecedented challenges, economic collapse and strict lockdowns in many parts of the world. For the people of Gaza, this reality is nothing new.

2020-05-06-covid-19-gaza.jpg

Palestinians light fireworks above the rubble during the Muslim holy month of Ramadan amid concerns about the spread of the coronavirus disease (COVID-19), in Gaza City , 30 April 2020. Photo by Majdi Fathi/NurPhoto via Getty Images.

In August 2012, when the UN released its report Gaza in 2020: A liveable place?, they could not have imagined what the world would look like in 2020: cities under lockdown, restrictions on movement, border closures, widespread unemployment, economic collapse, fear and anxiety and, above all, uncertainty about what the future holds.

For Gaza’s population of 2 million people this reality is nothing new. The conditions that the rest of the world are currently experiencing as a result of the COVID-19 pandemic is similar to the tight blockade Gaza has been living under ever since Hamas took over in 2007. Israel has imposed severe restrictions on the movement of people and goods, youth unemployment has reached 60 per cent, and over 80 per cent of Gaza’s population are now dependent on international aid.

The people of Gaza are having to face the COVID-19 crisis already at a disadvantage, with poor infrastructure, limited resources and a shortage of the most basic services, such as water and power supply. It also has a fragile health system, with hospitals lacking essential medical supplies and equipment, as well as the capacity to deal with the outbreak as there are only 84 ICU beds and ventilators available.

 

Meanwhile, intra-Palestinian divisions have persisted and were evident in the initial reaction to the pandemic. When President Mahmoud Abbas announced a state of emergency, it took two days for the Hamas-led government in Gaza to follow suit and shut down schools and universities. They later made a separate emergency appeal to address the crisis and prepare for a COVID-19 response in Gaza. This lack of coordination is typical of the way the Palestinian Authority and Hamas approach crisis situations.

After the initial uncoordinated response, Hamas, as the de-facto ruler of Gaza, has asserted its ability to control Gaza’s borders by putting in place quarantine measures for everyone who enters the strip, whether through the Erez checkpoint with Israel or the Rafah border with Egypt. They have also assigned 21 hospitals, hotels, and schools as compulsory quarantine centres for all arrivals from abroad, who have to stay in quarantine for 21 days. In comparison, there are 20 quarantine centres in the West Bank.  These strict measures have prevented the spread of the virus in the community and confined it to the quarantine centres, with only 20 confirmed cases of COVID-19 as of 6 May. Gaza’s de-facto authorities have also been able to monitor markets and prices to ensure the availability of essential goods.

Faced with a major crisis, Al-Qassam Brigades – the armed wing of Hamas – have tried to play the role of a national army by participating in efforts to fight the pandemic. They have relatively good logistical capacity and have contributed to the construction of two quarantine facilities with a total capacity of 1,000 units to prepare for more arrivals into Gaza. At the local level, municipalities have been disinfecting public spaces and facilities in addition to disseminating information about the virus and related preventative and protective measures. Other precautionary measures put in place include closing the weekly open markets, and restricting social gatherings like weddings and funerals.

Despite COVID-19, it’s business as usual when it comes to international dealings with Gaza. The key parties in the conflict – Israel, Hamas and the Palestinian Authority – along with the main external actors – Egypt, the United Nations and Qatar – have continued to stick to their policies aimed at keeping the security situation under control and preventing further escalation. Although Israel has allowed entry of pharmaceutical supplies and medical equipment into Gaza during the pandemic, it has kept its restrictions on the movement of goods and people in place, while keeping a close eye on the development of the COVID-19 outbreak in Gaza – a major outbreak here would be a nightmare scenario for Israel.

Meanwhile, Qatar has continued to address the humanitarian and economic needs of Gaza in an attempt to ease the pressure and prevent further escalation. It has pledged $150 million over the next six months to help families in Gaza from poorer backgrounds. Gaza has also been discussed by the Middle East Quartet, as Nickolay Mladenov, the UN special coordinator for the Middle East Peace Process, expressed his concern about the risk of a disease outbreak in Gaza during a call with the members of the Quartet.

Amid the pandemic, threats are still being exchanged between Israel and Hamas. The Israeli defence minister, Naftali Bennett, requested that in return for providing humanitarian aid to Gaza, Hamas agrees to return the remains of two Israeli soldiers killed in the 2014 war. While openly rejecting Bennett's statement, the leader of Hamas in Gaza, Yahya Sinwar, has offered to move forward with a prisoner swap deal if Israel agrees to release elderly prisoners and detainees in addition to detained women and children. Though dealing with its own COVID-19 outbreak, Egypt has started to mediate between the two parties in an attempt to stabilize the situation and reach a prisoner swap deal.

In the wake of this pandemic, lessons should be learned and policies should be examined, by all parties. Firstly, Israel should re-evaluate its security measures towards Gaza by easing restrictions on movement and trade which would have a positive impact on living conditions for Gaza’s population. The current measures have proven to be unsustainable and have contributed to the endless cycle of violence. Secondly, the intra-Palestinian division should end, to save Palestinians from contradictory policies and insufficient capacity on both sides. In fact, all previous attempts have failed to end this self-destructive division and this is due to the absence of political will on both sides. Elections seem to be the only viable path towards unity. Finally, efforts by the international community should go beyond stabilizing the security situation and ongoing crisis inside Gaza, where disruption of normal life is the norm.

While the world has reacted to this pandemic with a whole host of new policies and emergency measures, it has remained business as usual when dealing with Gaza. Should COVID-19 spread in Gaza, its people – who have already paid the price of a continuous blockade and intra-Palestinian division for 13 years – will pay a heavy price yet again. However, this time it is not a crisis that they alone will have to face.




ga

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS [Research]

Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity due to the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor.




ga

Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2) [Research]

The human leucocyte antigen (HLA)-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with ankylosing spondylitis (AS), a chronic inflammatory spondyloarthropathy. This study examined the effect of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones and the peptides were identified using high throughput mass spectrometry analyses. The relative abundance of thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of antigen binding site of HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues, and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and P positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni. These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease.




ga

Flow-induced reorganization of laminin-integrin networks within the endothelial basement membrane uncovered by proteomics [Research]

The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 hours, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis.




ga

Organellar maps through proteomic profiling - a conceptual guide [Review]

Protein subcellular localization is an essential and highly regulated determinant of protein function. Major advances in mass spectrometry and imaging have allowed the development of powerful spatial proteomics approaches for determining protein localization at the whole cell scale. Here, a brief overview of current methods is presented, followed by a detailed discussion of organellar mapping through proteomic profiling. This relatively simple yet flexible approach is rapidly gaining popularity, due to its ability to capture the localizations of thousands of proteins in a single experiment. It can be used to generate high-resolution cell maps, and as a tool for monitoring protein localization dynamics. This review highlights the strengths and limitations of the approach, and provides guidance to designing and interpreting profiling experiments. 




ga

The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling [Research]

The cyclic GMP-AMP synthase (cGAS) protein is a pattern-recognition receptor of the mammalian innate immune system that is recognized as a main cytosolic sensor of pathogenic or damaged DNA. cGAS DNA binding initiates catalytic production of the second messenger, cyclic GMP-AMP, which activates the STING-TBK1-IRF3 signaling axis to induce cytokine expression. Post-translational modification (PTM) has started to be recognized as a critical component of cGAS regulation, yet the extent of these modifications remains unclear. Here, we report the identification and functional analysis of cGAS phosphorylations and acetylations in several cell types under basal and immune-stimulated conditions. cGAS was enriched by immunoaffinity purification from human primary fibroblasts prior to and after infection with herpes simplex virus type 1 (HSV-1), as well as from immune-stimulated STING-HEK293T cells. Six phosphorylations and eight acetylations were detected, of which eight PTMs were not previously documented. PTMs were validated by parallel reaction monitoring (PRM) mass spectrometry in fibroblasts, HEK293T cells, and THP-1 macrophage-like cells. Primary sequence and structural analysis of cGAS highlighted a subset of PTM sites with elevated surface accessibility and high evolutionary sequence conservation. To assess the functional relevance of each PTM, we generated a series of single-point cGAS mutations. Stable cell lines were constructed to express cGAS with amino acid substitutions that prevented phosphorylation (Ser-to-Ala) and acetylation (Lys-to-Arg) or that mimicked the modification state (Ser-to-Asp and Lys-to-Gln). cGAS-dependent apoptotic and immune signaling activities were then assessed for each mutation. Our results show that acetyl-mimic mutations at Lys384 and Lys414 inhibit the ability of cGAS to induce apoptosis. In contrast, the Lys198 acetyl-mimic mutation increased cGAS-dependent interferon signaling when compared to the unmodified charge-mimic. Moreover, targeted PRM quantification showed that Lys198 acetylation is decreased upon infections with two herpesviruses—HSV-1 and human cytomegalovirus (HCMV), highlighting this residue as a regulatory point during virus infection.




ga

Perlecan knockdown significantly alters extracellular matrix composition and organization during cartilage development [Research]

Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo. This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo. Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS.




ga

Russia and Georgia: A Dangerous Game

1 October 2008 , Number 3

Dilemmas and dangers abound for the west as it tries to come to terms with the ‘new’ Russia. There is a mood of defiance and injury, which can only be answered with firmness and prudence.

James Sherr

Head, Russia and Eurasia Programme, Chatham House




ga

Plasma membrane asymmetry of lipid organization: fluorescence lifetime microscopy and correlation spectroscopy analysis [Methods]

A fundamental feature of the eukaryotic cell membrane is the asymmetric arrangement of lipids in its two leaflets. A cell invests significant energy to maintain this asymmetry and uses it to regulate important biological processes, such as apoptosis and vesiculation. The dynamic coupling of the inner or cytoplasmic and outer or exofacial leaflets is a challenging open question in membrane biology. Here, we combined fluorescence lifetime imaging microscopy (FLIM) with imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) to differentiate the dynamics and organization of the two leaflets of live mammalian cells. We characterized the biophysical properties of fluorescent analogs of phosphatidylcholine, sphingomyelin, and phosphatidylserine in the plasma membrane of two mammalian cell lines (CHO-K1 and RBL-2H3). Because of their specific transverse membrane distribution, these probes allowed leaflet-specific investigation of the plasma membrane. We compared the results of the two methods having different temporal and spatial resolution. Fluorescence lifetimes of fluorescent lipid analogs were in ranges characteristic for the liquid ordered phase in the outer leaflet and for the liquid disordered phase in the inner leaflet. The observation of a more fluid inner leaflet was supported by free diffusion in the inner leaflet, with high average diffusion coefficients. The liquid ordered phase in the outer leaflet was accompanied by slower diffusion and diffusion with intermittent transient trapping. Our results show that the combination of FLIM and ITIR-FCS with specific fluorescent lipid analogs is a powerful tool for investigating lateral and transbilayer characteristics of plasma membrane in live cell lines.




ga

Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models [Research Articles]

Ceramides (Cers) with ultralong (~32-carbon) chains and -esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ~10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.




ga

Role of angiopoietin-like protein 3 in sugar-induced dyslipidemia in rhesus macaques: suppression by fish oil or RNAi [Research Articles]

Angiopoietin-like protein 3 (ANGPTL3) inhibits lipid clearance and is a promising target for managing cardiovascular disease. Here we investigated the effects of a high-sugar (high-fructose) diet on circulating ANGPTL3 concentrations in rhesus macaques. Plasma ANGPTL3 concentrations increased ~30% to 40% after 1 and 3 months of a high-fructose diet (both P < 0.001 vs. baseline). During fructose-induced metabolic dysregulation, plasma ANGPTL3 concentrations were positively correlated with circulating indices of insulin resistance [assessed with fasting insulin and the homeostatic model assessment of insulin resistance (HOMA-IR)], hypertriglyceridemia, adiposity (assessed as leptin), and systemic inflammation [C-reactive peptide (CRP)] and negatively correlated with plasma levels of the insulin-sensitizing hormone adropin. Multiple regression analyses identified a strong association between circulating APOC3 and ANGPTL3 concentrations. Higher baseline plasma levels of both ANGPTL3 and APOC3 were associated with an increased risk for fructose-induced insulin resistance. Fish oil previously shown to prevent insulin resistance and hypertriglyceridemia in this model prevented increases of ANGPTL3 without affecting systemic inflammation (increased plasma CRP and interleukin-6 concentrations). ANGPTL3 RNAi lowered plasma concentrations of ANGPTL3, triglycerides (TGs), VLDL-C, APOC3, and APOE. These decreases were consistent with a reduced risk of atherosclerosis. In summary, dietary sugar-induced increases of circulating ANGPTL3 concentrations after metabolic dysregulation correlated positively with leptin levels, HOMA-IR, and dyslipidemia. Targeting ANGPTL3 expression with RNAi inhibited dyslipidemia by lowering plasma TGs, VLDL-C, APOC3, and APOE levels in rhesus macaques.




ga

A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles]

Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women.­




ga

Problem Notes for SAS®9 - 65935: The UNICODE function does not support Numeric Character Representation (NCR) for a surrogate pair

Using the NCR form of a surrogate pair as an input string to the UNICODE function does not convert the string to the appropriate display character.




ga

Problem Notes for SAS®9 - 65903: You see a "java.lang.IllegalArgumentException" error in the log file when you use the IFRS9_Cycle workflow template in SAS Solution for IFRS 9

The problem occurs on a content release on the SAS Risk Governance Framework.




ga

Problem Notes for SAS®9 - 65872: You see a "java.lang.IllegalArgumentException" error in the log file when you use the CECL_Cycle workflow template in SAS Solution for CECL

The problem occurs on a content release on the SAS Risk Governance Framework.




ga

Problem Notes for SAS®9 - 65904: SAS Federation Server stops responding when you run queries against X_OBJECT_PRIVILEGES in SYSCAT and the queries run for hours

The select * from "SYSCAT"."SYSCAT"."X_EFFECTIVE_OBJECT_PRIVILEGES" query runs for hours. In this scenario, SAS Federation Server stops responding, making it unavailable for use. Restarting SAS Federation Server solves t




ga

Pagan working to develop off-speed pitches

As Emilio Pagan enters his first Spring Training with the Rays, he's looking to prove that he can perform well against hitters on either side of the plate.




ga

Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology]

Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.




ga

Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in {beta}-Cells

Obesity is a risk factor for type 2 diabetes (T2D), however not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from T2D and non-T2D (ND) especially obese donors (BMI ≥30 kg/m2). Islets from obese T2D donors had reduced insulin secretion, decreased β-cell exocytosis and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis and reduced granule docking. This was accompanied with reduced expression of the exocytotic proteins, SNAP25, STXBP1 and VAMP2, likely because CD36 induced down-regulation of the IRS proteins, suppressed insulin signaling PI3K-AKT pathway and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line, EndoC-βH1, increased IRS1 and exocytotic protein levels, improved granule docking and enhanced insulin secretion. Our results demonstrate that β-cells from obese T2D donors have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity.




ga

Pharmacologic PPAR-{gamma} Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes

Mobilization of hematopoietic stem/progenitor cells (HSPCs) from the bone marrow (BM) is impaired in diabetes. Excess oncostatin M (OSM) produced by M1 macrophages in the diabetic BM signals through p66Shc to induce Cxcl12 in stromal cells and retain HSPCs. BM adipocytes are another source of CXCL12 that blunts mobilization. We tested a strategy of pharmacologic macrophage reprogramming to rescue HSPC mobilization. In vitro, PPAR- activation with pioglitazone switched macrophages from M1 to M2, reduced Osm expression, and prevented transcellular induction of Cxcl12. In diabetic mice, pioglitazone treatment downregulated Osm, p66Shc and Cxcl12 in the hematopoietic BM, restored the effects of granulocyte-colony stimulation factor (G-CSF), and partially rescued HSPC mobilization, but it increased BM adipocytes. Osm deletion recapitulated the effects of pioglitazone on adipogenesis, which was p66Shc-independent, and double knockout of Osm and p66Shc completely rescued HSPC mobilization. In the absence of OSM, BM adipocytes produced less CXCL12, being arguably devoid of HSPC-retaining activity, whereas pioglitazone failed to downregulate Cxcl12 in BM adipocytes. In diabetic patients under pioglitazone therapy, HSPC mobilization after G-CSF was partially rescued. In summary, pioglitazone reprogrammed BM macrophages and suppressed OSM signaling, but sustained Cxcl12 expression by BM adipocytes could limit full recovery of HSPC mobilization.




ga

Necrostatin-1 Mitigates Cognitive Dysfunction in Prediabetic Rats With no Alteration in Insulin Sensitivity

Previous studies show that 12-week of high-fat diet (HFD) consumption caused not only prediabetes, but also cognitive decline and brain pathologies. Recently, necrostatin-1 (nec-1), a necroptosis inhibitor, showed beneficial effects in brain against stroke. However, the comparative effects of nec-1 and metformin on cognition and brain pathologies in prediabetes have not been investigated. We hypothesized that nec-1 and metformin equally attenuated cognitive decline and brain pathologies in prediabetic rats. Rats (n=32) were fed with either normal diet (ND) or high-fat diet (HFD) for 20 weeks. At week 13, ND-fed rats were given a vehicle (n=8) and HFD-fed rats were randomly assigned into 3 subgroups (n=8/subgroup) with vehicle, nec-1 or metformin for 8 weeks. Metabolic parameters, cognitive function, brain insulin receptor function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, Alzheimer’s protein, and cell death were determined. HFD-fed rats exhibited prediabetes, cognitive decline, and brain pathologies. Nec-1 and metformin equally improved cognitive function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, reduced hyperphosphorylated-tau and necroptosis in HFD-fed rats. Interestingly metformin, but not nec-1, improved brain insulin sensitivity in those rats. In conclusion, necroptosis inhibition directly improved cognition in prediabetic rats without alteration in insulin sensitivity.




ga

The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism]

Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.




ga

An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding]

Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.




ga

Targeting the polyamine pathway&#x2014;&#x201C;a means&#x201D; to overcome chemoresistance in triple-negative breast cancer [Cell Biology]

Triple-negative breast cancer (TNBC) is characterized by its aggressive biology, early metastatic spread, and poor survival outcomes. TNBC lacks expression of the targetable receptors found in other breast cancer subtypes, mandating use of cytotoxic chemotherapy. However, resistance to chemotherapy is a significant problem, encountered in about two-thirds of TNBC patients, and new strategies are needed to mitigate resistance. In this issue of the Journal of Biological Chemistry, Geck et al. report that TNBC cells are highly sensitive to inhibition of the de novo polyamine synthesis pathway and that inhibition of this pathway sensitizes cells to TNBC-relevant chemotherapy, uncovering new opportunities for addressing chemoresistance.




ga

Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics]

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.




ga

The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology]

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.




ga

An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding]

Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.




ga

Sugar, Uric Acid, and the Etiology of Diabetes and Obesity

Richard J. Johnson
Oct 1, 2013; 62:3307-3315
Perspectives in Diabetes




ga

Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors

Mariam Alatrach
Apr 1, 2020; 69:681-688
Pathophysiology




ga

The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism

Juli Bai
Jun 1, 2019; 68:1099-1108
Perspectives in Diabetes




ga

Is Sugar Addictive?

George A. Bray
Jul 1, 2016; 65:1797-1799
Commentaries