com

The works of that famous chirurgeon Ambrose Parey / translated out of Latin ; and compared with the French, by Th. Johnson ; together with three tractates concerning the veins, arteries, and nerves: exemplified with large anatomical figures. Translated

London : Printed by Mary Clark, and are to be sold by John Clark, at Mercers Chappel at the Lower End of Cheapside, MDCLXXVIII. [1678]




com

A new orchard, and garden: or, the best way for planting, grafting, and to make any ground good, for a rich orchard: : particularly in the north and generally for the whole common-wealth as in nature, reason, situation, and all probability, may and doth a

London : printed by W. Wilson, for E. Brewster, and George Sawbridge, at the Bible on Ludgate-Hill, neere Fleet-bridge, 1653.




com

Conquering fat logic : how to overcome what we tell oursleves about diets, weight, and metabolism / Nadja Hermann.

London : Scribe, 2019.




com

Winter weather, associated with the struggle of high art against competition from lowlife artists. Etching by P. Testa, 1641.

Si stampano in Roma (alla Pace ; all'insegna di Parigi) : per Giovan Jacomo Rossi, [1641?]




com

Poseidippus of Cassandreia, writer of comedies. Steel engraving by J.B.H. Bourgois after J.A.D. Ingres, 1808.




com

First report of the British Association Committee on the treatment and utilization of sewage : drawn up at the request of the Committee / by Dr. Benjamin H. Paul.

London : Longmans, Green, Reader and Dyer, 1870.




com

Report of the Committee on the treatment and utilization of sewage : reappointed at Exeter, 1869.

London : [Published not identified], 1871.




com

Report of the Committee on the treatment and utilization of sewage : reappointed at Liverpool, 1870.

London : [Published not identified], 1872.




com

Report of the Committee on the treatment and utilization of sewage : reappointed at Edinburgh, 1871.

London : [Published not identified], 1873.




com

Fifth report of the Committee on the treatment and utilization of sewage : reappointed at Brighton, 1872.

London : [Published not identified], 1874.




com

Sixth report of the Committee on the treatment and utilization of sewage : reappointed at Bradford, 1873.

London : [Published not identified], 1875.




com

Seventh report of the Committee on the treatment and utilization of sewage : reappointed at Belfast, 1874.

London : [Published not identified], 1876.




com

Are Schools Prepared to Respond to Sex Abuse? Latest Probe Reveals Shortcomings

A federal investigation of Chicago's failures to respond to sexual violence in schools raises troubling questions for school districts nationwide.




com

Could 'Redshirting' Become A Thing of the Past in Illinois?

Lawmakers in Illinois are considering a bill that would require children to start kindergarten if they are 5 on or before May 31, with exceptions for summer birthdays.




com

NBCSN’s Hockey Happy Hour: The Comeback on Katella

'The Comeback on Katella' was complete when Corey Perry scored the winning goal in double overtime to give the Ducks a 4-3 victory and 3-2 series lead.




com

How late Blackhawks owner Bill Wirtz helped Michael Jordan become an NHL owner

Ted Leonsis, owner of the Washington Capitals, told ESPN's Greg Wyshynski about the time Jordan had a lengthy interview with the board of governors executive committee, in which late Blackhawks owner Bill Wirtz was a member of, to become the newest owner of an NHL franchise at a Palm Beach resort in December of 2000.




com

NBCSN’s Hockey Happy Hour: Gagne starts Flyers’ historic comeback

The win was the first of four straight for the Flyers, culminating in a historic comeback over the Bruins.




com

Capitals cut ties with Leipsic after disparaging comments

The Washington Capitals on Friday placed Brendan Leipsic on unconditional waivers to terminate his contract after he made disparaging comments about women and teammates in a private social media chat. In a conversation involving his brother and Florida Panthers minor leaguer Jack Rodewald, Leipsic commented on the physical appearances of Vancouver forward Tanner Pearson's wife and Edmonton captain Connor McDavid's girlfriend. The NHL called it ''inexcusable conduct'' and said it would address the matter with the Capitals and Panthers.




com

Capitals dump Leipsic after vulgar comments

The Washington Capitals decided to part ways with forward Brendan Leipsic on Friday after he made vulgar and disparaging comments on an social media chat group. The 25-year old Canadian was placed on waivers by the NHL club after his Instagram group chat messages were leaked earlier this week. The chat included inappropriate remarks about Edmonton Oilers forward Connor McDavid's girlfriend and the wife of Vancouver Canucks player Tanner Pearson.




com

Capitals cutting Leipsic after 'offensive' comments

Washington announced it is terminating the contract of forward Brendan Leipsic after his mysogynistic comments on Instagram were leaked.




com

More Than Phonics: How to Boost Comprehension for Early Readers

Learning how to decode words is essential to becoming a reader. But research shows that building a strong vocabulary and knowledge-base is crucial as well.




com

Missouri State School Board Rehires Fired Commissioner

Former Missouri education Commissioner Margie Vandeven, who was fired by by the state's board of education, has been rehired.




com

Call for Racial Equity Training Leads to Threats to Superintendent, Resistance from Community

Controversy over an intiative aimed a reducing inequities in Lee's Summit, Mo., schools led the police department to provide security protection for the district's first African-American superintendent. Now the school board has reversed course.




com

Mémoire sur l'empoisonnement par la strychnine : contenant la relation médico-légale complète de l'affaire Palmer / Ambroise Tardieu.

Paris, [France] : J.B. Baillière, Libraire de l'Académie Impériale de Médicine, 1857.




com

Wheel of the Year | Complete Series | Zine

2019




com

Tuberculosis statistics : summary of the report / addressed by Dr. S. Rosenfeld (Vienna) to the Health Committee of the Leage of Nations.

England : League of Nations, 1925.




com

Oh Luna Fortuna : the story of how the ethics of polyamory helped my rescue dog and me heal from trauma / graphic memoir comic by Stacy Bias.

London : Stacy Bias, 2019.




com

Compulsory treatment of drug abuse : research and clinical practice / editors, Carl G. Leukefeld, Frank M. Tims.

Rockville, Maryland : National Institute on Drug Abuse, 1988.




com

The therapeutic community : study of effectiveness : social and psychological adjustment of 400 dropouts and 100 graduates from the Phoenix House Therapeutic Community / by George De Leon.

Rockville, Maryland : National Institute on Drug Abuse, 1984.




com

Professional and paraprofessional drug abuse counselors : three reports / Leonard A. LoSciuto, Leona S. Aiken, Mary Ann Ausetts ; [compiled, written, and prepared for publication by the Institute for Survey Research, Temple University].

Rockville, Maryland : National Institute on Drug Abuse, 1979.




com

National polydrug collaborative project : treatment manual I : medical treatment for complications of polydrug abuse.

Rockville, Maryland : National Institute on Drug Abuse, 1978.




com

The incidence of driving under the influence of drugs, 1985 : an update of the state of knowledge / [Richard P. Compton and Theodore E. Anderson].

Springfield, Virginia : National Technical Information Service, 1985.




com

Survey of drug information needs and problems associated with communications directed to practicing physicians : part III : remedial ad survey / [Arthur Ruskin, M.D.]

Springfield, Virginia : National Technical Information Service, 1974.




com

Co-ordinating drugs services : the role of regional and district drug advisory committees : a preliminary study for the Department of Health / by Peter Baker and Dorothy Runnicles.

London : London Research Centre, 1991.




com

Herbert Compton diaries, 17 May – 29 July 1973




com

NCAA women's hoops committee moves away from RPI to NET

The women's basketball committee will start using the NCAA Evaluation Tool instead of RPI to help evaluate teams for the tournament starting with the upcoming season. “It’s an exciting time for the game as we look to the future,” said Nina King, senior deputy athletics director and chief of staff at Duke, who chair the Division I Women’s Basketball Committee next season. “We felt after much analysis that the women’s basketball NET, which will be determined by who you played, where you played, how efficiently you played and the result of the game, is a more accurate tool and should be used by the committee going forward.”




com

Consistent model selection criteria and goodness-of-fit test for common time series models

Jean-Marc Bardet, Kare Kamila, William Kengne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.

Abstract:
This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test.




com

Perspective maximum likelihood-type estimation via proximal decomposition

Patrick L. Combettes, Christian L. Müller.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 207--238.

Abstract:
We introduce a flexible optimization model for maximum likelihood-type estimation (M-estimation) that encompasses and generalizes a large class of existing statistical models, including Huber’s concomitant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled lasso, support vector machine regression, and penalized estimation with structured sparsity. The model, termed perspective M-estimation, leverages the observation that convex M-estimators with concomitant scale as well as various regularizers are instances of perspective functions, a construction that extends a convex function to a jointly convex one in terms of an additional scale variable. These nonsmooth functions are shown to be amenable to proximal analysis, which leads to principled and provably convergent optimization algorithms via proximal splitting. We derive novel proximity operators for several perspective functions of interest via a geometrical approach based on duality. We then devise a new proximal splitting algorithm to solve the proposed M-estimation problem and establish the convergence of both the scale and regression iterates it produces to a solution. Numerical experiments on synthetic and real-world data illustrate the broad applicability of the proposed framework.




com

On the predictive potential of kernel principal components

Ben Jones, Andreas Artemiou, Bing Li.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1--23.

Abstract:
We give a probabilistic analysis of a phenomenon in statistics which, until recently, has not received a convincing explanation. This phenomenon is that the leading principal components tend to possess more predictive power for a response variable than lower-ranking ones despite the procedure being unsupervised. Our result, in its most general form, shows that the phenomenon goes far beyond the context of linear regression and classical principal components — if an arbitrary distribution for the predictor $X$ and an arbitrary conditional distribution for $Yvert X$ are chosen then any measureable function $g(Y)$, subject to a mild condition, tends to be more correlated with the higher-ranking kernel principal components than with the lower-ranking ones. The “arbitrariness” is formulated in terms of unitary invariance then the tendency is explicitly quantified by exploring how unitary invariance relates to the Cauchy distribution. The most general results, for technical reasons, are shown for the case where the kernel space is finite dimensional. The occurency of this tendency in real world databases is also investigated to show that our results are consistent with observation.




com

Computing the degrees of freedom of rank-regularized estimators and cousins

Rahul Mazumder, Haolei Weng.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1348--1385.

Abstract:
Estimating a low rank matrix from its linear measurements is a problem of central importance in contemporary statistical analysis. The choice of tuning parameters for estimators remains an important challenge from a theoretical and practical perspective. To this end, Stein’s Unbiased Risk Estimate (SURE) framework provides a well-grounded statistical framework for degrees of freedom estimation. In this paper, we use the SURE framework to obtain degrees of freedom estimates for a general class of spectral regularized matrix estimators—our results generalize beyond the class of estimators that have been studied thus far. To this end, we use a result due to Shapiro (2002) pertaining to the differentiability of symmetric matrix valued functions, developed in the context of semidefinite optimization algorithms. We rigorously verify the applicability of Stein’s Lemma towards the derivation of degrees of freedom estimates; and also present new techniques based on Gaussian convolution to estimate the degrees of freedom of a class of spectral estimators, for which Stein’s Lemma does not directly apply.




com

Rate optimal Chernoff bound and application to community detection in the stochastic block models

Zhixin Zhou, Ping Li.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1302--1347.

Abstract:
The Chernoff coefficient is known to be an upper bound of Bayes error probability in classification problem. In this paper, we will develop a rate optimal Chernoff bound on the Bayes error probability. The new bound is not only an upper bound but also a lower bound of Bayes error probability up to a constant factor. Moreover, we will apply this result to community detection in the stochastic block models. As a clustering problem, the optimal misclassification rate of community detection problem can be characterized by our rate optimal Chernoff bound. This can be formalized by deriving a minimax error rate over certain parameter space of stochastic block models, then achieving such an error rate by a feasible algorithm employing multiple steps of EM type updates.




com

A Low Complexity Algorithm with O(√T) Regret and O(1) Constraint Violations for Online Convex Optimization with Long Term Constraints

This paper considers online convex optimization over a complicated constraint set, which typically consists of multiple functional constraints and a set constraint. The conventional online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the potentially high computation complexity of the projection operation. In this paper, we relax the functional constraints by allowing them to be violated at each round but still requiring them to be satisfied in the long term. This type of relaxed online convex optimization (with long term constraints) was first considered in Mahdavi et al. (2012). That prior work proposes an algorithm to achieve $O(sqrt{T})$ regret and $O(T^{3/4})$ constraint violations for general problems and another algorithm to achieve an $O(T^{2/3})$ bound for both regret and constraint violations when the constraint set can be described by a finite number of linear constraints. A recent extension in Jenatton et al. (2016) can achieve $O(T^{max{ heta,1- heta}})$ regret and $O(T^{1- heta/2})$ constraint violations where $ hetain (0,1)$. The current paper proposes a new simple algorithm that yields improved performance in comparison to prior works. The new algorithm achieves an $O(sqrt{T})$ regret bound with $O(1)$ constraint violations.




com

Generalized probabilistic principal component analysis of correlated data

Principal component analysis (PCA) is a well-established tool in machine learning and data processing. The principal axes in PCA were shown to be equivalent to the maximum marginal likelihood estimator of the factor loading matrix in a latent factor model for the observed data, assuming that the latent factors are independently distributed as standard normal distributions. However, the independence assumption may be unrealistic for many scenarios such as modeling multiple time series, spatial processes, and functional data, where the outcomes are correlated. In this paper, we introduce the generalized probabilistic principal component analysis (GPPCA) to study the latent factor model for multiple correlated outcomes, where each factor is modeled by a Gaussian process. Our method generalizes the previous probabilistic formulation of PCA (PPCA) by providing the closed-form maximum marginal likelihood estimator of the factor loadings and other parameters. Based on the explicit expression of the precision matrix in the marginal likelihood that we derived, the number of the computational operations is linear to the number of output variables. Furthermore, we also provide the closed-form expression of the marginal likelihood when other covariates are included in the mean structure. We highlight the advantage of GPPCA in terms of the practical relevance, estimation accuracy and computational convenience. Numerical studies of simulated and real data confirm the excellent finite-sample performance of the proposed approach.




com

GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing

We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. The Apache 2.0 license has been adopted by GluonCV and GluonNLP to allow for software distribution, modification, and usage.




com

Distributed Feature Screening via Componentwise Debiasing

Feature screening is a powerful tool in processing high-dimensional data. When the sample size N and the number of features p are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of 'divide-and-conquer', the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments m. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the centralized estimator in terms of the probability convergence bound and the mean squared error rate; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples.




com

Tensor Train Decomposition on TensorFlow (T3F)

Tensor Train decomposition is used across many branches of machine learning. We present T3F—a library for Tensor Train decomposition based on TensorFlow. T3F supports GPU execution, batch processing, automatic differentiation, and versatile functionality for the Riemannian optimization framework, which takes into account the underlying manifold structure to construct efficient optimization methods. The library makes it easier to implement machine learning papers that rely on the Tensor Train decomposition. T3F includes documentation, examples and 94% test coverage.




com

On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent

Dual first-order methods are essential techniques for large-scale constrained convex optimization. However, when recovering the primal solutions, we need $T(epsilon^{-2})$ iterations to achieve an $epsilon$-optimal primal solution when we apply an algorithm to the non-strongly convex dual problem with $T(epsilon^{-1})$ iterations to achieve an $epsilon$-optimal dual solution, where $T(x)$ can be $x$ or $sqrt{x}$. In this paper, we prove that the iteration complexity of the primal solutions and dual solutions have the same $Oleft(frac{1}{sqrt{epsilon}} ight)$ order of magnitude for the accelerated randomized dual coordinate ascent. When the dual function further satisfies the quadratic functional growth condition, by restarting the algorithm at any period, we establish the linear iteration complexity for both the primal solutions and dual solutions even if the condition number is unknown. When applied to the regularized empirical risk minimization problem, we prove the iteration complexity of $Oleft(nlog n+sqrt{frac{n}{epsilon}} ight)$ in both primal space and dual space, where $n$ is the number of samples. Our result takes out the $left(log frac{1}{epsilon} ight)$ factor compared with the methods based on smoothing/regularization or Catalyst reduction. As far as we know, this is the first time that the optimal $Oleft(sqrt{frac{n}{epsilon}} ight)$ iteration complexity in the primal space is established for the dual coordinate ascent based stochastic algorithms. We also establish the accelerated linear complexity for some problems with nonsmooth loss, e.g., the least absolute deviation and SVM.




com

Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis

This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution.




com

Unique Sharp Local Minimum in L1-minimization Complete Dictionary Learning

We study the problem of globally recovering a dictionary from a set of signals via $ell_1$-minimization. We assume that the signals are generated as i.i.d. random linear combinations of the $K$ atoms from a complete reference dictionary $D^*in mathbb R^{K imes K}$, where the linear combination coefficients are from either a Bernoulli type model or exact sparse model. First, we obtain a necessary and sufficient norm condition for the reference dictionary $D^*$ to be a sharp local minimum of the expected $ell_1$ objective function. Our result substantially extends that of Wu and Yu (2015) and allows the combination coefficient to be non-negative. Secondly, we obtain an explicit bound on the region within which the objective value of the reference dictionary is minimal. Thirdly, we show that the reference dictionary is the unique sharp local minimum, thus establishing the first known global property of $ell_1$-minimization dictionary learning. Motivated by the theoretical results, we introduce a perturbation based test to determine whether a dictionary is a sharp local minimum of the objective function. In addition, we also propose a new dictionary learning algorithm based on Block Coordinate Descent, called DL-BCD, which is guaranteed to decrease the obective function monotonically. Simulation studies show that DL-BCD has competitive performance in terms of recovery rate compared to other state-of-the-art dictionary learning algorithms when the reference dictionary is generated from random Gaussian matrices.




com

Community-Based Group Graphical Lasso

A new strategy for probabilistic graphical modeling is developed that draws parallels to community detection analysis. The method jointly estimates an undirected graph and homogeneous communities of nodes. The structure of the communities is taken into account when estimating the graph and at the same time, the structure of the graph is accounted for when estimating communities of nodes. The procedure uses a joint group graphical lasso approach with community detection-based grouping, such that some groups of edges co-occur in the estimated graph. The grouping structure is unknown and is estimated based on community detection algorithms. Theoretical derivations regarding graph convergence and sparsistency, as well as accuracy of community recovery are included, while the method's empirical performance is illustrated in an fMRI context, as well as with simulated examples.