ga Parce que, travestis et transgenres, notre regard sur le mode et les autres se veut teinté de respect et de douceur / Hommefleur. By search.wellcomelibrary.org Published On :: Châtillon, France : Association Hommefleur, [date of publication not identified] Full Article
ga Discover Asylum the radical mental health magazine By search.wellcomelibrary.org Published On :: Full Article
ga Health education news / editor: Michael Jacob ; reporter: Ruth Garland. By search.wellcomelibrary.org Published On :: London : Health Education Council, 1985. Full Article
ga World Health Organization : 1948-1988 / [World Health Organization] By search.wellcomelibrary.org Published On :: Geneva, Switzerland : World Health Organization, 1988. Full Article
ga Scissors and Glue Zine collage/vegan/art By search.wellcomelibrary.org Published On :: Full Article
ga Report on Harrogate visit / by L. S. P. Davidson. By search.wellcomelibrary.org Published On :: England : Harrogate Corporation, Wells and Baths Department, 1945. Full Article
ga Geschichte der Appendizitis : von der Entdeckung des Organs bis hin zur minimalinvasiven Appendektomie / Mali Kallenberger. By search.wellcomelibrary.org Published On :: Berlin : Peter Lang [2019] Full Article
ga Cigarette smoking as a dependence process / editor: Norman A. Krasnegor. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1979. Full Article
ga Cocaine use in America : epidemiologic and clinical perspectives / editors, Nicholas J. Kozel, Edgar H. Adams. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1985. Full Article
ga Drug abuse treatment client characteristics and pretreatment behaviors : 1979-1981 TOPS admission cohorts / Robert L. Hubbard, Robert M. Bray, Elizabeth R. Cavanaugh, J. Valley Rachal, S. Gail Craddock, James J. Collins, Margaret Allison ; Research Triang By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1986. Full Article
ga Suicide and depression among drug abusers / Margaret Allison, Robert L. Hubbard, Harold M. Ginzburg. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1985. Full Article
ga Drug and alcohol abuse : implications for treatment / edited by Stephen E. Gardner. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1981. Full Article
ga Treatment process in methadone, residential, and outpatient drug free programs / Margaret Allison, Robert L. Hubbard, J. Valley Rachal. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1985. Full Article
ga Drug use before and during drug abuse treatment : 1979-1981 TOPS admission cohorts / S. Gail Craddock, Robert M. Bray, Robert L. Hubbard. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1985. Full Article
ga Drug dependence in pregnancy : clinical management of mother and child / [editor, Lorreta P. Finnegan]. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1979. Full Article
ga National drug/alcohol collaborative project : issues in multiple substance abuse / edited by Stephen E. Gardner. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1980. Full Article
ga Psychosocial characteristics of drug-abusing women / by Marvin R. Burt, principal investigator ; Thomas J. Glynn, Barbara J. Sowder ; Burt Associates, Inc. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1979. Full Article
ga Swimming upstream : trends and prospects in education for health / Margaret Whitehead. By search.wellcomelibrary.org Published On :: London : King's Fund Institute, 1989. Full Article
ga O problema do abuso de drogas prevenção através investigação, pesquisa e educação / Murillo de Macedo Pereira, Vera Kühn de Macedo Pereira. By search.wellcomelibrary.org Published On :: São Paulo : Governo do Estado de Sao Paulo, Secretaria da Segurança Pública, 1975. Full Article
ga A pesquisa sobre o problema do abuso de drogas / Murillo de Macedo Pereira. By search.wellcomelibrary.org Published On :: São Paulo : Serviço Grafíco da Secretaria da Segurança Pública, 1976. Full Article
ga Collection 03: Gaye Chapman picture book artwork, 2005-2015 By feedproxy.google.com Published On :: 29/09/2015 12:00:00 AM Full Article
ga Series 03: Negatives of suburbs of Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:48:12 AM Full Article
ga Echelet picumne and echelet grimpeur, male / by Jean Gabriel Prêtre, 1824 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
ga Top three Satou Sabally moments: Sharpshooter's 33-point game in Pullman was unforgettable By sports.yahoo.com Published On :: Fri, 03 Apr 2020 19:40:06 GMT Since the day she stepped on campus, Satou Sabally's game has turned heads — and for good reason. She's had many memorable moments in a Duck uniform, including a standout performance against the USA Women in Nov. 2019, a monster game against Cal in Jan. 2020 and a career performance in Pullman in Jan. 2019. Full Article video News
ga Kobe, Duncan, Garnett headline Basketball Hall of Fame class By sports.yahoo.com Published On :: Sat, 04 Apr 2020 16:12:32 GMT Kobe Bryant was already immortal. Bryant and fellow NBA greats Tim Duncan and Kevin Garnett headlined a nine-person group announced Saturday as this year’s class of enshrinees into the Naismith Memorial Basketball Hall of Fame. Two-time NBA champion coach Rudy Tomjanovich finally got his call, as did longtime Baylor women’s coach Kim Mulkey, 1,000-game winner Barbara Stevens of Bentley and three-time Final Four coach Eddie Sutton. Full Article article Sports
ga Gamecocks’ Boston wins Leslie Award as nation’s best center By sports.yahoo.com Published On :: Tue, 07 Apr 2020 03:32:53 GMT COLUMBIA, S.C. (AP) -- South Carolina freshman Aliyah Boston has won the Lisa Leslie Award given to the top center in women’s college basketball. Full Article article Sports
ga Natalie Chou on why she took a stand against anti-Asian racism in wake of coronavirus By sports.yahoo.com Published On :: Tue, 05 May 2020 16:24:25 GMT During Wednesday's "Pac-12 Perspective" podcast, Natalie Chou shared why she is using her platform to speak out against racism she sees in her community related to the novel coronavirus. Full Article video News
ga Statistical convergence of the EM algorithm on Gaussian mixture models By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Ruofei Zhao, Yuanzhi Li, Yuekai Sun. Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.Abstract: We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum. Full Article
ga Gaussian field on the symmetric group: Prediction and learning By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT François Bachoc, Baptiste Broto, Fabrice Gamboa, Jean-Michel Loubes. Source: Electronic Journal of Statistics, Volume 14, Number 1, 503--546.Abstract: In the framework of the supervised learning of a real function defined on an abstract space $mathcal{X}$, Gaussian processes are widely used. The Euclidean case for $mathcal{X}$ is well known and has been widely studied. In this paper, we explore the less classical case where $mathcal{X}$ is the non commutative finite group of permutations (namely the so-called symmetric group $S_{N}$). We provide an application to Gaussian process based optimization of Latin Hypercube Designs. We also extend our results to the case of partial rankings. Full Article
ga Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.Abstract: The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations. Full Article
ga Bayesian variance estimation in the Gaussian sequence model with partial information on the means By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Gianluca Finocchio, Johannes Schmidt-Hieber. Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.Abstract: Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study. Full Article
ga Target Propagation in Recurrent Neural Networks By Published On :: 2020 Recurrent Neural Networks have been widely used to process sequence data, but have long been criticized for their biological implausibility and training difficulties related to vanishing and exploding gradients. This paper presents a novel algorithm for training recurrent networks, target propagation through time (TPTT), that outperforms standard backpropagation through time (BPTT) on four out of the five problems used for testing. The proposed algorithm is initially tested and compared to BPTT on four synthetic time lag tasks, and its performance is also measured using the sequential MNIST data set. In addition, as TPTT uses target propagation, it allows for discrete nonlinearities and could potentially mitigate the credit assignment problem in more complex recurrent architectures. Full Article
ga Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data By Published On :: 2020 A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for the local inferences; these weakened priors may not provide enough regularization for each separate computation, thus eliminating one of the key advantages of Bayesian methods. To resolve this dilemma while still retaining the generalizability of the underlying local inference method, we apply the idea of expectation propagation (EP) as a framework for distributed Bayesian inference. The central idea is to iteratively update approximations to the local likelihoods given the state of the other approximations and the prior. The present paper has two roles: we review the steps that are needed to keep EP algorithms numerically stable, and we suggest a general approach, inspired by EP, for approaching data partitioning problems in a way that achieves the computational benefits of parallelism while allowing each local update to make use of relevant information from the other sites. In addition, we demonstrate how the method can be applied in a hierarchical context to make use of partitioning of both data and parameters. The paper describes a general algorithmic framework, rather than a specific algorithm, and presents an example implementation for it. Full Article
ga Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables By Published On :: 2020 We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models. Full Article
ga Skill Rating for Multiplayer Games. Introducing Hypernode Graphs and their Spectral Theory By Published On :: 2020 We consider the skill rating problem for multiplayer games, that is how to infer player skills from game outcomes in multiplayer games. We formulate the problem as a minimization problem $arg min_{s} s^T Delta s$ where $Delta$ is a positive semidefinite matrix and $s$ a real-valued function, of which some entries are the skill values to be inferred and other entries are constrained by the game outcomes. We leverage graph-based semi-supervised learning (SSL) algorithms for this problem. We apply our algorithms on several data sets of multiplayer games and obtain very promising results compared to Elo Duelling (see Elo, 1978) and TrueSkill (see Herbrich et al., 2006).. As we leverage graph-based SSL algorithms and because games can be seen as relations between sets of players, we then generalize the approach. For this aim, we introduce a new finite model, called hypernode graph, defined to be a set of weighted binary relations between sets of nodes. We define Laplacians of hypernode graphs. Then, we show that the skill rating problem for multiplayer games can be formulated as $arg min_{s} s^T Delta s$ where $Delta$ is the Laplacian of a hypernode graph constructed from a set of games. From a fundamental perspective, we show that hypernode graph Laplacians are symmetric positive semidefinite matrices with constant functions in their null space. We show that problems on hypernode graphs can not be solved with graph constructions and graph kernels. We relate hypernode graphs to signed graphs showing that positive relations between groups can lead to negative relations between individuals. Full Article
ga Conjugate Gradients for Kernel Machines By Published On :: 2020 Regularized least-squares (kernel-ridge / Gaussian process) regression is a fundamental algorithm of statistics and machine learning. Because generic algorithms for the exact solution have cubic complexity in the number of datapoints, large datasets require to resort to approximations. In this work, the computation of the least-squares prediction is itself treated as a probabilistic inference problem. We propose a structured Gaussian regression model on the kernel function that uses projections of the kernel matrix to obtain a low-rank approximation of the kernel and the matrix. A central result is an enhanced way to use the method of conjugate gradients for the specific setting of least-squares regression as encountered in machine learning. Full Article
ga Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis By Published On :: 2020 This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution. Full Article
ga High-dimensional Gaussian graphical models on network-linked data By Published On :: 2020 Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits. Full Article
ga GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning By Published On :: 2020 When the data is distributed across multiple servers, lowering the communication cost between the servers (or workers) while solving the distributed learning problem is an important problem and is the focus of this paper. In particular, we propose a fast, and communication-efficient decentralized framework to solve the distributed machine learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM) framework. The key novelty in GADMM is that it solves the problem in a decentralized topology where at most half of the workers are competing for the limited communication resources at any given time. Moreover, each worker exchanges the locally trained model only with two neighboring workers, thereby training a global model with a lower amount of communication overhead in each exchange. We prove that GADMM converges to the optimal solution for convex loss functions, and numerically show that it converges faster and more communication-efficient than the state-of-the-art communication-efficient algorithms such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM (D-GADMM), a variant of GADMM, and prove its convergence under the time-varying network topology of the workers. Full Article
ga Access thousands of newspapers and magazines with PressReader By feedproxy.google.com Published On :: Mon, 04 May 2020 03:40:42 +0000 Want to access thousands of newspapers and magazines wherever you are? Full Article
ga Stein characterizations for linear combinations of gamma random variables By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Benjamin Arras, Ehsan Azmoodeh, Guillaume Poly, Yvik Swan. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 394--413.Abstract: In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear combinations of (not necessarily independent) gamma distributed random variables. The connection with Malliavin calculus for random variables in the second Wiener chaos is detailed. An application to McKay Type I random variables is also outlined. Full Article
ga Application of weighted and unordered majorization orders in comparisons of parallel systems with exponentiated generalized gamma components By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Abedin Haidari, Amir T. Payandeh Najafabadi, Narayanaswamy Balakrishnan. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 150--166.Abstract: Consider two parallel systems, say $A$ and $B$, with respective lifetimes $T_{1}$ and $T_{2}$ wherein independent component lifetimes of each system follow exponentiated generalized gamma distribution with possibly different exponential shape and scale parameters. We show here that $T_{2}$ is smaller than $T_{1}$ with respect to the usual stochastic order (reversed hazard rate order) if the vector of logarithm (the main vector) of scale parameters of System $B$ is weakly weighted majorized by that of System $A$, and if the vector of exponential shape parameters of System $A$ is unordered mojorized by that of System $B$. By means of some examples, we show that the above results can not be extended to the hazard rate and likelihood ratio orders. However, when the scale parameters of each system divide into two homogeneous groups, we verify that the usual stochastic and reversed hazard rate orders can be extended, respectively, to the hazard rate and likelihood ratio orders. The established results complete and strengthen some of the known results in the literature. Full Article
ga Documenting rebellions : a study of four lesbian and gay archives in queer times By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Sheffield, Rebecka Taves, author.Callnumber: CD 3021 S45 2020ISBN: 9781634000918 paperback Full Article
ga Scalar-on-function regression for predicting distal outcomes from intensively gathered longitudinal data: Interpretability for applied scientists By projecteuclid.org Published On :: Tue, 05 Nov 2019 22:03 EST John J. Dziak, Donna L. Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul Shiffman, Mariya P. Shiyko. Source: Statistics Surveys, Volume 13, 150--180.Abstract: Researchers are sometimes interested in predicting a distal or external outcome (such as smoking cessation at follow-up) from the trajectory of an intensively recorded longitudinal variable (such as urge to smoke). This can be done in a semiparametric way via scalar-on-function regression. However, the resulting fitted coefficient regression function requires special care for correct interpretation, as it represents the joint relationship of time points to the outcome, rather than a marginal or cross-sectional relationship. We provide practical guidelines, based on experience with scientific applications, for helping practitioners interpret their results and illustrate these ideas using data from a smoking cessation study. Full Article
ga Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns. (arXiv:2005.02589v2 [cs.LG] UPDATED) By arxiv.org Published On :: Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification. Full Article
ga How many modes can a constrained Gaussian mixture have?. (arXiv:2005.01580v2 [math.ST] UPDATED) By arxiv.org Published On :: We show, by an explicit construction, that a mixture of univariate Gaussians with variance 1 and means in $[-A,A]$ can have $Omega(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai [IEEE Trans. Inform. Theory, Apr. 2020], who showed that such a mixture can have at most $O(A^2)$ modes and surmised that the upper bound could be improved to $O(A)$. Our result holds even if an additional variance constraint is imposed on the mixing distribution. Extending the result to higher dimensions, we exhibit a mixture of Gaussians in $mathbb{R}^d$, with identity covariances and means inside $[-A,A]^d$, that has $Omega(A^{2d})$ modes. Full Article
ga A bimodal gamma distribution: Properties, regression model and applications. (arXiv:2004.12491v2 [stat.ME] UPDATED) By arxiv.org Published On :: In this paper we propose a bimodal gamma distribution using a quadratic transformation based on the alpha-skew-normal model. We discuss several properties of this distribution such as mean, variance, moments, hazard rate and entropy measures. Further, we propose a new regression model with censored data based on the bimodal gamma distribution. This regression model can be very useful to the analysis of real data and could give more realistic fits than other special regression models. Monte Carlo simulations were performed to check the bias in the maximum likelihood estimation. The proposed models are applied to two real data sets found in literature. Full Article
ga A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED) By arxiv.org Published On :: Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Full Article