ee

Structure-based screening of binding affinities via small-angle X-ray scattering

Protein–protein and protein–ligand interactions often involve conformational changes or structural rearrangements that can be quantified by solution small-angle X-ray scattering (SAXS). These scattering intensity measurements reveal structural details of the bound complex, the number of species involved and, additionally, the strength of interactions if carried out as a titration. Although a core part of structural biology workflows, SAXS-based titrations are not commonly used in drug discovery contexts. This is because prior knowledge of expected sample requirements, throughput and prediction accuracy is needed to develop reliable ligand screens. This study presents the use of the histidine-binding protein (26 kDa) and other periplasmic binding proteins to benchmark ligand screen performance. Sample concentrations and exposure times were varied across multiple screening trials at four beamlines to investigate the accuracy and precision of affinity prediction. The volatility ratio between titrated scattering curves and a common apo reference is found to most reliably capture the extent of structural and population changes. This obviates the need to explicitly model scattering intensities of bound complexes, which can be strongly ligand-dependent. Where the dissociation constant is within 102 of the protein concentration and the total exposure times exceed 20 s, the titration protocol presented at 0.5 mg ml−1 yields affinities comparable to isothermal titration calorimetry measurements. Estimated throughput ranges between 20 and 100 ligand titrations per day at current synchrotron beamlines, with the limiting step imposed by sample handling and cleaning procedures.




ee

Visualization Bench for the screening of crystallization assays and the automation of in situ experiments




ee

Structural and thermodynamic analysis of interactions between death-associated protein kinase 1 and anthraquinones

Death-associated protein kinase 1 (DAPK1) was found to form a complex with purpurin and the crystal structure of the complex was determined. Purpurin may be a good lead compound for for the discovery of inhibitors of DAPK1.




ee

Poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper]: a three-dimensional copper(I) coordination polymer

The reaction of ligand 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine (L) with CuI lead to the formation of a three-dimensional coordination polymer, incorporating the well known [CuxIx]n staircase motif (x = 4). These polymer [Cu4I4]n chains are linked via the N and S atoms of the ligand to form the three-dimensional coordination polymer poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper], [Cu4I4(C8H8N2S2)]n (I). The asymmetric unit is composed of half a ligand mol­ecule, with the pyrazine ring located about a center of symmetry, and two independent copper(I) atoms and two independent I− ions forming the staircase motif via centers of inversion symmetry. The framework is consolidated by C—H⋯I hydrogen bonds.




ee

5-MeO-DALT: the freebase of N,N-diallyl-5-meth­oxy­tryptamine

The title compound {systematic name: N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]-N-(prop-2-en-1-yl)prop-2-en-1-amine), C17H22N2O, has a single tryptamine mol­ecule in the asymmetric unit. The mol­ecules are linked by strong N—H⋯N hydrogen bonds into zigzag chains with graph-set notation C(7) along the [010] direction.





ee

The crystal structure of (RS)-7-chloro-2-(2,5-di­meth­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure

In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-di­meth­oxy­phenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links mol­ecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of mol­ecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




ee

The crystal structures of {LnCu5}3+ (Ln = Gd, Dy and Ho) 15-metallacrown-5 complexes and a reevaluation of the isotypic EuIII analogue

Three new isotypic heteropolynuclear complexes, namely penta­aqua­carbonato­penta­kis­(glycinehydroxamato)nitrato­penta­copper(II)lanthanide(III) x-hydrate, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5]·xH2O (GlyHA2− is glycine­hydrox­amate, N-hy­droxy­glycinamidate or amino­aceto­hydroxamate, C2H4N2O22−), with lanthanide(III) (LnIII) = gadolinium (Gd, 1, x = 3.5), dysprosium (Dy, 2, x = 3.28) and holmium (Ho, 3, x = 3.445), within a 15-metallacrown-5 class were obtained on reaction of lanthanide(III) nitrate, copper(II) acetate and sodium glycinehydroxamate. Complexes 1–3 contain five copper(II) ions and five bridging GlyHA2− anions, forming a [CuGlyHA]5 metallamacrocyclic core. The LnIII ions are coordinated to the metallamacrocycle through five O-donor hydroxamates. The electroneutrality of complexes 1–3 is achieved by a bidentate carbonate anion coordinated to the LnIII ion and a monodentate nitrate anion coordinated apically to one of the copper(II) ions of the metallamacrocycle. The lattice parameters of complexes 1–3 are similar to those previously reported for an EuIII–CuII 15-metallacrown-5 complex with glycine­hydroxamate of proposed composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O [Stemmler et al. (1999). Inorg. Chem. 38, 2807–2817]. High-quality X-ray data obtained for 1–3 have allowed a re-evaluation of the X-ray data solution proposed earlier for the EuCu5 complex and suggest that the formula is actually [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O.




ee

A molybdenum tris­(di­thiol­ene) complex coordinates to three bound cobalt centers in three different ways

The synthesis and structural characterization of the mol­ecular compound (μ3-benzene-1,2-di­thiol­ato)hexa­carbonyl­bis­(μ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum, [Co3Mo(C4F6S2)2(C6H4S2)(CO)6] or Mo(tfd)2(bdt)(Co(CO)2)3 (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-di­thiol­ate), are reported. The structure of the mol­ecule contains the molybdenum tris­(di­thiol­ene) complex Mo(tfd)2(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with Co⋯Mo distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) Å. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different di­thiol­enes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris­)di­thiol­ene complex that coordinates to cobalt. The F atoms of two of the –CF3 groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2).




ee

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.




ee

Crystal structures of three hexakis­(fluoroar­yloxy)cyclo­triphosphazenes

The syntheses and crystal structures of three cyclo­triphosphazenes, all with fluorinated ar­yloxy side groups that generate different steric characteristics, viz. hexa­kis­(penta­fluoro­phen­oxy)cyclo­triphosphazene, N3P3(OC6F5)6, 1, hexa­kis­[4-(tri­fluoro­methyl)­phen­oxy]cyclo­triphosphazene, N3P3[OC6H4(CF3)]6, 2 and hexa­kis­[3,5-bis(­tri­fluoro­methyl)­phen­oxy]cyclo­triphosphazene, N3P3[OC6H3(CF3)2]6 3, are reported. Specifically, each phospho­rus atom bears either two penta­fluoro­phen­oxy, 4-tri­fluoro­methyl­phen­oxy, or 3,5-tri­fluoro­methyl­phen­oxy groups. The central six-membered phosphazene rings display envelope pucker conformations in each case, albeit to varying degrees. The maximum displacement of the `flap atom' from the plane through the other ring atoms [0.308 (5) Å] is seen in 1, in a mol­ecule that is devoid of hydrogen atoms and which exhibits a `wind-swept' look with all the aromatic rings displaced in the same direction. In 3 an intra­molecular C—H(aromatic)⋯F inter­action is observed. All the –CF3 groups in 2 and 3 exhibit positional disorder over two rotated orientations in close to statistical ratios. The extended structures of 2 and 3 are consolidated by C—H⋯F inter­actions of two kinds: (a) linear chains, and (b) cyclic between mol­ecules related by inversion centers. In both 1 and 3, one of the six substituted phenyl rings has a parallel-displaced aromatic π–π stacking inter­action with its respective symmetry mate with slippage values of 2.2 Å in 1 and 1.0 Å in 3. None of the structures reported here have solvent voids that could lead to clathrate formation.




ee

Crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les

Three title compounds, namely, 2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole, C26H19ClN4S, (I), 2-(4-chloro­benz­yl)-6-(4-fluoro­phen­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18ClFN4S, (II), and 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18BrClN4S, (III), have been prepared using a reductive condensation of indole with the corresponding 6-aryl-2-(4-chloro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehydes (aryl = phenyl, 4-fluoro­phenyl or 4-bromo­phen­yl), and their crystal structures have been determined. The asymmetric unit of compound (I) consists of two independent mol­ecules and one of the mol­ecules exhibits disorder of the 4-chloro­benzyl substituent with occupancies 0.6289 (17) and 0.3711 (17). Each type of mol­ecule forms a C(8) chain motif built from N—H⋯N hydrogen bonds, which for the fully ordered mol­ecule is reinforced by C—H⋯π inter­actions. In compound (II), the chloro­benzyl unit is again disordered, with occupancies 0.822 (6) and 0.178 (6), and the mol­ecules form C(8) chains similar to those in (I), reinforced by C—H⋯π inter­actions involving only the major disorder component. The chloro­benzyl unit in compound (III) is also disordered with occupancies of 0.839 (5) and 0.161 (5). The mol­ecules are linked by a combination of one N—H⋯N hydrogen bond and four C—H⋯π inter­actions, forming a three-dimensional framework.




ee

Syntheses and crystal structures of three [M(acac)2(TMEDA)] complexes (M = Mn, Fe and Zn)

The complexes bis­(acetyl­acetonato-κ2O,O')(N,N,N',N'-tetra­methyl­ethylenedi­amine-κ2N,N')manganese(II), [Mn(C5H7O2)2(C6H16N2)], bis­(acetyl­acetonato-κ2O,O')(N,N,N',N'-tetra­methyl­ethylenedi­amine-κ2N,N')iron(II), [Fe(C5H7O2)2(C6H16N2)], and bis­(acetyl­acetonato-κ2O,O')(N,N,N',N'-tetra­methyl­ethylenedi­amine-κ2N,N')zinc(II), [Zn(C5H7O2)2(C6H16N2)], were synthesized from the reaction of the corresponding metal acetyl­acetonates [M(acac)2(H2O)2] with N,N,N',N'-tetra­methyl­ethylenedi­amine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octa­hedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N2O4 coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds 1–3 are different and thus the crystal structures are not isotypic.




ee

The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmeth­yl)ethanedi­amide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study

The crystal and mol­ecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide mol­ecule has a (+)-anti­periplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid mol­ecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds between the benzoic acid mol­ecules and the pyridyl residues of the di­amide leads to a three-mol­ecule aggregate. Centrosymmetrically related aggregates assemble into a six-mol­ecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supra­molecular tape via amide-N—H⋯O(carbon­yl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methyl­ene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbon­yl). These inter­actions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces.




ee

The first coordination compound of deprotonated 2-bromo­nicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex

A copper(II) dimer with the deprotonated anion of 2-bromo­nicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(­II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromo­nicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxyl­ate O atoms in the basal plane and the water mol­ecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromo­nicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster mol­ecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetra­meric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the inter­molecular contacts in the structure of 1.




ee

[Se(CH2C(O)CH3)3][B12F11NH3]: The first selenium cation with three β-ketone substituents

The reaction of [Se8][B12F11NH3]2 with acetone and subsequent crystallization from acetone/diethyl ether yielded the selenium cation [Se(CH2C(O)CH3)3]+ as a by-product, which is stabilized by the weakly coordinating undeca­fluorinated anion [B12F11NH3]−. While attempting to crystallize pure [Se8][B12F11NH3]2, the structure of the isolated product, namely, tris­(2-oxoprop­yl)selenium 1-ammonio­undeca­fluoro­dodeca­borate, was surprising. The cation [Se(CH2C(O)CH3)3]+ represents the first example for a cationic selenium compound with three ketone functional groups located in the β-position with respect to the selenium atom. The cation possesses almost trigonal–pyramidal C3 symmetry and forms hydrogen bonds to the ammonio group of the anion.




ee

Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis­(pyridin-4-ylmeth­yl)ethane­diamide and 4-chloro­benzoic acid

The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol­ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in general positions. Each 4LH2 mol­ecule has a (+)anti­periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol­ecules. The anti conformation of the carbonyl groups enables the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol­ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol­ecule aggregates are formed via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding. These are connected into a supra­molecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions. As revealed by a more detailed analysis of the mol­ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter­actions which provide inter­action energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supra­molecular tape.




ee

Conversion of di­aryl­chalcones into 4,5-di­hydro­pyrazole-1-carbo­thio­amides: mol­ecular and supra­molecular structures of two precursors and three products

Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides using a cyclo­condensation reaction with thio­semicarbazide. The chalcones 1-(4-chloro­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromo­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their mol­ecules are linked into sheets by two independent C—H⋯π(arene) inter­actions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chloro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16ClN3OS, (IV), (RS)-3-(4-bromo­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16BrN3OS, (V), and (RS)-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-yn­yloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their mol­ecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The mol­ecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds.




ee

Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane anions in different degrees of deprotonation

The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis­(3-carboxyl­ato­prop­yl)tetra­methyl­disiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carb­oxy­prop­yl)di­methyl­sil­yl]­oxy}di­methyl­sil­yl)butano­ato-κ2O:O'] per­chlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxyl­ate in a slightly tetra­gonally distorted trans-NiN4O2 octa­hedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxyl­ate O atoms, thus forming a three-dimensional supra­molecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carb­oxy­lic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane.




ee

Crystal structures of the recreational drug N-(4-meth­oxy­phen­yl)piperazine (MeOPP) and three of its salts

Crystal structures are reported for N-(4-meth­oxy­phen­yl)piperazine (MeOPP), (I), and for its 3,5-di­nitro­benzoate, 2,4,6-tri­nitro­phenolate (picrate) and 4-amino­benzoate salts, (II)–(IV), the last of which crystallizes as a monohydrate. In MeOPP, C11H16N2O, (I), the 4-meth­oxy­phenyl group is nearly planar and it occupies an equatorial site on the piperazine ring: the mol­ecules are linked into simple C(10) chains by N—H⋯O hydrogen bonds. In each of the salts, i.e., C11H17N2O+·C7H3N2O6−, (II), C11H17N2O+·C6H2N3O7−, (III), and C11H17N2O+·C7H6NO2−·H2O, (IV), the effectively planar 4-meth­oxy­phenyl substituent again occupies an equatorial site on the piperazine ring. In (II), two of the nitro groups are disordered over two sets of atomic sites and the bond distances in the anion indicate considerable delocalization of the negative charge over the C atoms of the ring. The ions in (II) are linked by two N—H⋯O hydrogen bonds to form a cyclic, centrosymmetric four-ion aggregate; those in (III) are linked by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to form sheets; and the components of (IV) are linked by N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




ee

Different packing motifs in the crystal structures of three mol­ecular salts containing the 2-amino-5-carb­oxy­anilinium cation: C7H9N2O2+·Cl−, C7H9N2O2+·Br− and C7H9N2O2+·NO3−·H2O

The syntheses and crystal structures of three mol­ecular salts of protonated 3,4-di­amino­benzoic acid, viz. 2-amino-5-carb­oxy­anilinium chloride, C7H9N2O2+·Cl−, (I), 2-amino-5-carb­oxy­anilinium bromide, C7H9N2O2+·Br−, (II), and 2-amino-5-carb­oxy­anilinium nitrate monohydrate, C7H9N2O2+·NO3−·H2O, (III), are described. The cation is protonated at the meta-N atom (with respect to the carb­oxy group) in each case. In the crystal of (I), carb­oxy­lic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds are seen and each N—H group forms a hydrogen bond to a chloride ion to result in (100) undulating layers of chloride ions bridged by the inversion dimers into a three-dimensional network. The extended structure of (II) features O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds: the last of these generates C(7) chains of cations. Overall, the packing in (II) features undulating (100) sheets of bromide ions alternating with the organic cations. Inter­molecular inter­actions in the crystal of (III) include O—H⋯O, O—H⋯(O,O), N—H⋯O, N—H⋯N and O—H⋯N links. The cations are linked into (001) sheets, and the nitrate ions and water mol­ecules form undulating chains. Taken together, alternating (001) slabs of organic cations plus anions/water mol­ecules result. Hirshfeld surfaces and fingerprint plots were generated to give further insight into the inter­molecular inter­actions in these structures. The crystal used for the data collection of (II) was twinned by rotation about [100] in reciprocal space in a 0.4896 (15):0.5104 (15) ratio.




ee

Norpsilocin: freebase and fumarate salt

The solid-state structures of the naturally occurring psychoactive tryptamine norpsilocin {4-hy­droxy-N-methyl­tryptamine (4-HO-NMT); systematic name: 3-[2-(methyl­amino)­eth­yl]-1H-indol-4-ol}, C11H14N2O, and its fumarate salt (4-hy­droxy-N-methyl­tryptammonium fumarate; systematic name: bis­{[2-(4-hy­droxy-1H-indol-3-yl)eth­yl]methyl­aza­nium} but-2-enedioate), C11H15N2O+·0.5C4H2O42−, are reported. The freebase of 4-HO-NMT has a single mol­ecule in the asymmetric unit joined together by N—H⋯O and O—H⋯O hydrogen bonds in a two-dimensional network parallel to the (100) plane. The ethyl­amine arm of the tryptamine is modeled as a two-component disorder with a 0.895 (3) to 0.105 (3) occupancy ratio. The fumarate salt of 4-HO-NMT crystallizes with a tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The ions are joined together by N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional framework, as well as π–π stacking between the six-membered rings of inversion-related indoles (symmetry operation: 2 − x, 1 − y, 2 – z).




ee

Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185.




ee

Screening topological materials with a CsCl-type structure in crystallographic databases

CsCl-type materials have many outstanding characteristics, i.e. simple in structure, ease of synthesis and good stability at room temperature, thus are an excellent choice for designing functional materials. Using high-throughput first-principles calculations, a large number of topological semimetals/metals (TMs) were designed from CsCl-type materials found in crystallographic databases and their crystal and electronic structures have been studied. The CsCl-type TMs in this work show rich topological character, ranging from triple nodal points, type-I nodal lines and critical-type nodal lines, to hybrid nodal lines. The TMs identified show clean topological band structures near the Fermi level, which are suitable for experimental investigations and future applications. This work provides a rich data set of TMs with a CsCl-type structure.




ee

Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder

Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.




ee

Symmetry-mode analysis for intuitive observation of structure–property relationships in the lead-free antiferroelectric (1−x)AgNbO3–xLiTaO3

Functional materials are of critical importance to electronic and smart devices. A deep understanding of the structure–property relationship is essential for designing new materials. In this work, instead of utilizing conventional atomic coordinates, a symmetry-mode approach is successfully used to conduct structure refinement of the neutron powder diffraction data of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics. This provides rich structural information that not only clarifies the controversial symmetry assigned to pure AgNbO3 but also explains well the detailed structural evolution of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics, and builds a comprehensive and straightforward relationship between structural distortion and electrical properties. It is concluded that there are four relatively large-amplitude major modes that dominate the distorted Pmc21 structure of pure AgNbO3, namely a Λ3 antiferroelectric mode, a T4+ a−a−c0 octahedral tilting mode, an H2 a0a0c+/a0a0c− octahedral tilting mode and a Γ4− ferroelectric mode. The H2 and Λ3 modes become progressively inactive with increasing x and their destabilization is the driving force behind the composition-driven phase transition between the Pmc21 and R3c phases. This structural variation is consistent with the trend observed in the measured temperature-dependent dielectric properties and polarization–electric field (P-E) hysteresis loops. The mode crystallography applied in this study provides a strategy for optimizing related properties by tuning the amplitudes of the corresponding modes in these novel AgNbO3-based (anti)ferroelectric materials.




ee

Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF

The structural dimension of metal–organic frameworks (MOFs) is of great importance in defining their properties and thus applications. In particular, 2D layered MOFs are of considerable interest because of their useful applications, which are facilitated by unique structural features of 2D materials, such as a large number of open active sites and high surface areas. Herein, this work demonstrates a methodology for the selective synthesis of a 2D layered MOF in the presence of the competitive formation of a 3D MOF. The ratio of the reactants, metal ions and organic building blocks used during the reaction is found to be critical for the selective formation of a 2D MOF, and is associated with its chemical composition. In addition, the well defined and uniform micro-sized 2D MOF particles are successfully synthesized in the presence of an ultrasonic dispersion. Moreover, the laminated 2D MOF layers are directly synthesized via a modified bottom-up lamination method, a combination of chemical and physical stimuli, in the presence of surfactant and ultrasonication.




ee

Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography

Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed.




ee

Why is interoperability between the two fields of chemical crystallography and protein crystallography so difficult?

The interoperability of chemical and biological crystallographic data is a key challenge to research and its application to pharmaceutical design. Research attempting to combine data from the two disciplines, small-molecule or chemical crystallography (CX) and macromolecular crystallography (MX), will face unique challenges including variations in terminology, software development, file format and databases which differ significantly from CX to MX. This perspective overview spans the two disciplines and originated from the investigation of protein binding to model radiopharmaceuticals. The opportunities of interlinked research while utilizing the two databases of the CSD (Cambridge Structural Database) and the PDB (Protein Data Bank) will be highlighted. The advantages of software that can handle multiple file formats and the circuitous route to convert organometallic small-molecule structural data for use in protein refinement software will be discussed. In addition some pointers to avoid being shipwrecked will be shared, such as the care which must be taken when interpreting data precision involving small molecules versus proteins.




ee

Engineering a surrogate human heteromeric α/β glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein

Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/β glycine receptor.




ee

DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps

In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a `local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed.




ee

Crystal engineering of exemestane to obtain a co-crystal with enhanced urease inhibition activity

Co-crystallization is a phenomenon widely employed to enhance the physio-chemical and biological properties of active pharmaceutical ingredients (APIs). Exemestane, or 6-methyl­ideneandrosta-1,4-diene-3,17-dione, is an anabolic steroid used as an irreversible steroidal aromatase inhibitor, which is in clinical use to treat breast cancer. The present study deals with the synthesis of co-crystals of exemestane with thio­urea by liquid-assisted grinding. The purity and homogeneity of the exemestane–thio­urea (1:1) co-crystal were confirmed by single-crystal X-ray diffraction followed by thermal stability analysis on the basis of differential scanning calorimetry and thermogravimetric analysis. Detailed geometric analysis of the co-crystal demonstrated that a 1:1 co-crystal stoichiometry is sustained by N—H⋯O hydrogen bonding between the amine (NH2) groups of thio­urea and the carbonyl group of exemestane. The synthesized co-crystal exhibited potent urease inhibition activity in vitro (IC50 = 3.86 ± 0.31 µg ml−1) compared with the API (exemestane), which was found to be inactive, and the co-former (thio­urea) (IC50 = 21.0 ± 1.25 µg ml−1), which is also an established tested standard for urease inhibition assays in vitro. The promising results of the present study highlight the significance of co-crystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients. Furthermore, the role of various hydrogen bonds in the crystal stability is successfully analysed quantitatively using Hirshfeld surface analysis.




ee

Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states

Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the `straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development.




ee

Structure of the MICU1–MICU2 heterodimer provides insights into the gatekeeping threshold shift

Mitochondrial calcium uptake proteins 1 and 2 (MICU1 and MICU2) mediate mitochondrial Ca2+ influx via the mitochondrial calcium uniporter (MCU). Its molecular action for Ca2+ uptake is tightly controlled by the MICU1–MICU2 heterodimer, which comprises Ca2+ sensing proteins which act as gatekeepers at low [Ca2+] or facilitators at high [Ca2+]. However, the mechanism underlying the regulation of the Ca2+ gatekeeping threshold for mitochondrial Ca2+ uptake through the MCU by the MICU1–MICU2 heterodimer remains unclear. In this study, we determined the crystal structure of the apo form of the human MICU1–MICU2 heterodimer that functions as the MCU gatekeeper. MICU1 and MICU2 assemble in the face-to-face heterodimer with salt bridges and me­thio­nine knobs stabilizing the heterodimer in an apo state. Structural analysis suggests how the heterodimer sets a higher Ca2+ threshold than the MICU1 homodimer. The structure of the heterodimer in the apo state provides a framework for understanding the gatekeeping role of the MICU1–MICU2 heterodimer.





ee

Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68

Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.




ee

Open-access and free articles in Acta Crystallographica Section D: Biological Crystallography




ee

Three differently coloured polymorphs of 3,6-bis­(4-chloro­phenyl)-2,5-di­propyl-2,5-di­hydro­pyrrolo­[3,4-c]pyrrole-1,4-dione

In this paper, the conformational polymorphism of a chlorinated diketo­pyrrolo­pyrrole (DPP) dye having flexible substituents in a non-hydrogen-bonding system is reported. The propyl-substituted DPP derivative (PR3C) has three polymorphic forms, each showing a different colour (red, orange and yellow). All polymorphs could be obtained concomitantly under various crystallization conditions. The results of the crystal structure analysis indicate that PR3C adopts different conformations in each polymorph. The packing effect caused by the difference in the arrangement of neighbouring molecules was found to play an important role in the occurrence of the observed polymorphism. The thermodynamic stability relationship between the three polymorphs was identified by thermal analysis and indicates that the yellow polymorph is the thermally stable form. The results indicate that the yellow form and orange form are enantiotropically related, and the other polymorph is monotropically related to the others.