ee Earth's North Magnetic Pole Keeps Drifting towards Siberia, Latest World Magnetic Model Shows | Geophysics, Geoscience - Sci-News.com By www.sci-news.com Published On :: Fri, 27 Dec 2019 08:00:00 GMT Earth's North Magnetic Pole Keeps Drifting towards Siberia, Latest World Magnetic Model Shows | Geophysics, Geoscience Sci-News.com Full Article
ee Geoenergy Observatory to go ahead in Cheshire - The Engineer By www.theengineer.co.uk Published On :: Mon, 08 Jul 2019 07:00:00 GMT Geoenergy Observatory to go ahead in Cheshire The Engineer Full Article
ee Oil workers in North Sea feel effects of earthquake, with platform 'shaking' - Evening Telegraph By www.eveningtelegraph.co.uk Published On :: Wed, 25 Sep 2019 07:00:00 GMT Oil workers in North Sea feel effects of earthquake, with platform 'shaking' Evening Telegraph Full Article
ee 'Several people' feel shaking as 4.2 magnitude earthquake strikes 190 miles from Dundee - The Courier By www.thecourier.co.uk Published On :: Wed, 25 Sep 2019 07:00:00 GMT 'Several people' feel shaking as 4.2 magnitude earthquake strikes 190 miles from Dundee The Courier Full Article
ee BGS Mineral Planning Factsheet updated - Agg-Net By www.agg-net.com Published On :: Mon, 08 Jul 2019 07:00:00 GMT BGS Mineral Planning Factsheet updated Agg-Net Full Article
ee Coronavirus: the week explained - 10 April - The Guardian By www.theguardian.com Published On :: Fri, 10 Apr 2020 11:11:36 GMT Coronavirus: the week explained - 10 April The Guardian Full Article
ee Why the UK's streets have turned silent during coronavirus lockdown - Express.co.uk By www.express.co.uk Published On :: Wed, 29 Apr 2020 07:00:00 GMT Why the UK's streets have turned silent during coronavirus lockdown Express.co.uk Full Article
ee UK sees notable reduction in seismic noise caused by human activity – experts - Aberdeen Evening Express By www.eveningexpress.co.uk Published On :: Fri, 24 Apr 2020 07:00:00 GMT UK sees notable reduction in seismic noise caused by human activity – experts Aberdeen Evening Express Full Article
ee Ancient underwater landslides help predict tsunami risk - Aberdeen Evening Express By www.eveningexpress.co.uk Published On :: Thu, 23 Apr 2020 07:00:00 GMT Ancient underwater landslides help predict tsunami risk Aberdeen Evening Express Full Article
ee Research Centre Finance Administrator job with UNIVERSITY OF LEEDS | 206139 - Times Higher Education (THE) By www.timeshighereducation.com Published On :: Thu, 07 May 2020 05:09:11 GMT Research Centre Finance Administrator job with UNIVERSITY OF LEEDS | 206139 Times Higher Education (THE) Full Article
ee Fossil believed to show squid-like creature attacking fish 200 million years ago - Aberdeen Evening Express By www.eveningexpress.co.uk Published On :: Wed, 06 May 2020 15:01:00 GMT Fossil believed to show squid-like creature attacking fish 200 million years ago Aberdeen Evening Express Full Article
ee Did the earth move for you? British Geological Survey has asked if Cumbrians felt an earth tremor last week - News & Star By www.newsandstar.co.uk Published On :: Sat, 02 May 2020 04:00:00 GMT Did the earth move for you? British Geological Survey has asked if Cumbrians felt an earth tremor last week News & Star Full Article
ee Structure-based screening of binding affinities via small-angle X-ray scattering By scripts.iucr.org Published On :: 2020-05-06 Protein–protein and protein–ligand interactions often involve conformational changes or structural rearrangements that can be quantified by solution small-angle X-ray scattering (SAXS). These scattering intensity measurements reveal structural details of the bound complex, the number of species involved and, additionally, the strength of interactions if carried out as a titration. Although a core part of structural biology workflows, SAXS-based titrations are not commonly used in drug discovery contexts. This is because prior knowledge of expected sample requirements, throughput and prediction accuracy is needed to develop reliable ligand screens. This study presents the use of the histidine-binding protein (26 kDa) and other periplasmic binding proteins to benchmark ligand screen performance. Sample concentrations and exposure times were varied across multiple screening trials at four beamlines to investigate the accuracy and precision of affinity prediction. The volatility ratio between titrated scattering curves and a common apo reference is found to most reliably capture the extent of structural and population changes. This obviates the need to explicitly model scattering intensities of bound complexes, which can be strongly ligand-dependent. Where the dissociation constant is within 102 of the protein concentration and the total exposure times exceed 20 s, the titration protocol presented at 0.5 mg ml−1 yields affinities comparable to isothermal titration calorimetry measurements. Estimated throughput ranges between 20 and 100 ligand titrations per day at current synchrotron beamlines, with the limiting step imposed by sample handling and cleaning procedures. Full Article text
ee Visualization Bench for the screening of crystallization assays and the automation of in situ experiments By journals.iucr.org Published On :: Full Article text
ee Structural and thermodynamic analysis of interactions between death-associated protein kinase 1 and anthraquinones By journals.iucr.org Published On :: Death-associated protein kinase 1 (DAPK1) was found to form a complex with purpurin and the crystal structure of the complex was determined. Purpurin may be a good lead compound for for the discovery of inhibitors of DAPK1. Full Article text
ee Poly[(μ4-5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetracopper]: a three-dimensional copper(I) coordination polymer By scripts.iucr.org Published On :: 2020-03-27 The reaction of ligand 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine (L) with CuI lead to the formation of a three-dimensional coordination polymer, incorporating the well known [CuxIx]n staircase motif (x = 4). These polymer [Cu4I4]n chains are linked via the N and S atoms of the ligand to form the three-dimensional coordination polymer poly[(μ4-5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetracopper], [Cu4I4(C8H8N2S2)]n (I). The asymmetric unit is composed of half a ligand molecule, with the pyrazine ring located about a center of symmetry, and two independent copper(I) atoms and two independent I− ions forming the staircase motif via centers of inversion symmetry. The framework is consolidated by C—H⋯I hydrogen bonds. Full Article text
ee 5-MeO-DALT: the freebase of N,N-diallyl-5-methoxytryptamine By scripts.iucr.org Published On :: 2020-04-17 The title compound {systematic name: N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-N-(prop-2-en-1-yl)prop-2-en-1-amine), C17H22N2O, has a single tryptamine molecule in the asymmetric unit. The molecules are linked by strong N—H⋯N hydrogen bonds into zigzag chains with graph-set notation C(7) along the [010] direction. Full Article text
ee Open-access and free articles in IUCrData By journals.iucr.org Published On :: Full Article Still image
ee The crystal structure of (RS)-7-chloro-2-(2,5-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure By scripts.iucr.org Published On :: 2019-05-21 In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-dimethoxyphenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links molecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of molecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds. Full Article text
ee The crystal structures of {LnCu5}3+ (Ln = Gd, Dy and Ho) 15-metallacrown-5 complexes and a reevaluation of the isotypic EuIII analogue By scripts.iucr.org Published On :: 2019-07-19 Three new isotypic heteropolynuclear complexes, namely pentaaquacarbonatopentakis(glycinehydroxamato)nitratopentacopper(II)lanthanide(III) x-hydrate, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5]·xH2O (GlyHA2− is glycinehydroxamate, N-hydroxyglycinamidate or aminoacetohydroxamate, C2H4N2O22−), with lanthanide(III) (LnIII) = gadolinium (Gd, 1, x = 3.5), dysprosium (Dy, 2, x = 3.28) and holmium (Ho, 3, x = 3.445), within a 15-metallacrown-5 class were obtained on reaction of lanthanide(III) nitrate, copper(II) acetate and sodium glycinehydroxamate. Complexes 1–3 contain five copper(II) ions and five bridging GlyHA2− anions, forming a [CuGlyHA]5 metallamacrocyclic core. The LnIII ions are coordinated to the metallamacrocycle through five O-donor hydroxamates. The electroneutrality of complexes 1–3 is achieved by a bidentate carbonate anion coordinated to the LnIII ion and a monodentate nitrate anion coordinated apically to one of the copper(II) ions of the metallamacrocycle. The lattice parameters of complexes 1–3 are similar to those previously reported for an EuIII–CuII 15-metallacrown-5 complex with glycinehydroxamate of proposed composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O [Stemmler et al. (1999). Inorg. Chem. 38, 2807–2817]. High-quality X-ray data obtained for 1–3 have allowed a re-evaluation of the X-ray data solution proposed earlier for the EuCu5 complex and suggest that the formula is actually [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O. Full Article text
ee A molybdenum tris(dithiolene) complex coordinates to three bound cobalt centers in three different ways By scripts.iucr.org Published On :: 2019-07-26 The synthesis and structural characterization of the molecular compound (μ3-benzene-1,2-dithiolato)hexacarbonylbis(μ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum, [Co3Mo(C4F6S2)2(C6H4S2)(CO)6] or Mo(tfd)2(bdt)(Co(CO)2)3 (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-dithiolate), are reported. The structure of the molecule contains the molybdenum tris(dithiolene) complex Mo(tfd)2(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with Co⋯Mo distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) Å. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different dithiolenes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris)dithiolene complex that coordinates to cobalt. The F atoms of two of the –CF3 groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2). Full Article text
ee Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in one, two and three dimensions By scripts.iucr.org Published On :: 2019-09-20 Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluorobenzoate, 4-chlorobenzoate and 4-bromobenzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-methoxyphenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hydroxybenzoate, pyridine-3-carboxylate and 2-hydroxy-3,5-dinitrobenzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) interactions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the trichloroacetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds. Full Article text
ee Crystal structures of three hexakis(fluoroaryloxy)cyclotriphosphazenes By scripts.iucr.org Published On :: 2019-09-27 The syntheses and crystal structures of three cyclotriphosphazenes, all with fluorinated aryloxy side groups that generate different steric characteristics, viz. hexakis(pentafluorophenoxy)cyclotriphosphazene, N3P3(OC6F5)6, 1, hexakis[4-(trifluoromethyl)phenoxy]cyclotriphosphazene, N3P3[OC6H4(CF3)]6, 2 and hexakis[3,5-bis(trifluoromethyl)phenoxy]cyclotriphosphazene, N3P3[OC6H3(CF3)2]6 3, are reported. Specifically, each phosphorus atom bears either two pentafluorophenoxy, 4-trifluoromethylphenoxy, or 3,5-trifluoromethylphenoxy groups. The central six-membered phosphazene rings display envelope pucker conformations in each case, albeit to varying degrees. The maximum displacement of the `flap atom' from the plane through the other ring atoms [0.308 (5) Å] is seen in 1, in a molecule that is devoid of hydrogen atoms and which exhibits a `wind-swept' look with all the aromatic rings displaced in the same direction. In 3 an intramolecular C—H(aromatic)⋯F interaction is observed. All the –CF3 groups in 2 and 3 exhibit positional disorder over two rotated orientations in close to statistical ratios. The extended structures of 2 and 3 are consolidated by C—H⋯F interactions of two kinds: (a) linear chains, and (b) cyclic between molecules related by inversion centers. In both 1 and 3, one of the six substituted phenyl rings has a parallel-displaced aromatic π–π stacking interaction with its respective symmetry mate with slippage values of 2.2 Å in 1 and 1.0 Å in 3. None of the structures reported here have solvent voids that could lead to clathrate formation. Full Article text
ee Crystal structures of three 6-aryl-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazoles By scripts.iucr.org Published On :: 2020-01-01 Three title compounds, namely, 2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole, C26H19ClN4S, (I), 2-(4-chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole, C26H18ClFN4S, (II), and 6-(4-bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole, C26H18BrClN4S, (III), have been prepared using a reductive condensation of indole with the corresponding 6-aryl-2-(4-chlorobenzyl)imidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehydes (aryl = phenyl, 4-fluorophenyl or 4-bromophenyl), and their crystal structures have been determined. The asymmetric unit of compound (I) consists of two independent molecules and one of the molecules exhibits disorder of the 4-chlorobenzyl substituent with occupancies 0.6289 (17) and 0.3711 (17). Each type of molecule forms a C(8) chain motif built from N—H⋯N hydrogen bonds, which for the fully ordered molecule is reinforced by C—H⋯π interactions. In compound (II), the chlorobenzyl unit is again disordered, with occupancies 0.822 (6) and 0.178 (6), and the molecules form C(8) chains similar to those in (I), reinforced by C—H⋯π interactions involving only the major disorder component. The chlorobenzyl unit in compound (III) is also disordered with occupancies of 0.839 (5) and 0.161 (5). The molecules are linked by a combination of one N—H⋯N hydrogen bond and four C—H⋯π interactions, forming a three-dimensional framework. Full Article text
ee Syntheses and crystal structures of three [M(acac)2(TMEDA)] complexes (M = Mn, Fe and Zn) By scripts.iucr.org Published On :: 2020-01-01 The complexes bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II), [Mn(C5H7O2)2(C6H16N2)], bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II), [Fe(C5H7O2)2(C6H16N2)], and bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II), [Zn(C5H7O2)2(C6H16N2)], were synthesized from the reaction of the corresponding metal acetylacetonates [M(acac)2(H2O)2] with N,N,N',N'-tetramethylethylenediamine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octahedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N2O4 coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds 1–3 are different and thus the crystal structures are not isotypic. Full Article text
ee The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The crystal and molecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide molecule has a (+)-antiperiplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid molecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hydroxy-O—H⋯N(pyridyl) hydrogen bonds between the benzoic acid molecules and the pyridyl residues of the diamide leads to a three-molecule aggregate. Centrosymmetrically related aggregates assemble into a six-molecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supramolecular tape via amide-N—H⋯O(carbonyl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methylene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbonyl). These interactions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces. Full Article text
ee The first coordination compound of deprotonated 2-bromonicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex By scripts.iucr.org Published On :: 2020-01-17 A copper(II) dimer with the deprotonated anion of 2-bromonicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromonicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxylate O atoms in the basal plane and the water molecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromonicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster molecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetrameric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the intermolecular contacts in the structure of 1. Full Article text
ee [Se(CH2C(O)CH3)3][B12F11NH3]: The first selenium cation with three β-ketone substituents By scripts.iucr.org Published On :: 2020-01-17 The reaction of [Se8][B12F11NH3]2 with acetone and subsequent crystallization from acetone/diethyl ether yielded the selenium cation [Se(CH2C(O)CH3)3]+ as a by-product, which is stabilized by the weakly coordinating undecafluorinated anion [B12F11NH3]−. While attempting to crystallize pure [Se8][B12F11NH3]2, the structure of the isolated product, namely, tris(2-oxopropyl)selenium 1-ammonioundecafluorododecaborate, was surprising. The cation [Se(CH2C(O)CH3)3]+ represents the first example for a cationic selenium compound with three ketone functional groups located in the β-position with respect to the selenium atom. The cation possesses almost trigonal–pyramidal C3 symmetry and forms hydrogen bonds to the ammonio group of the anion. Full Article text
ee Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and 4-chlorobenzoic acid By scripts.iucr.org Published On :: 2020-01-21 The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half molecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two molecules of 4-chlorobenzoic acid (CBA), each in general positions. Each 4LH2 molecule has a (+)antiperiplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 molecules. The anti conformation of the carbonyl groups enables the formation of intramolecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA molecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-molecule aggregates are formed via carboxylic acid-O—H⋯N(pyridyl) hydrogen bonding. These are connected into a supramolecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methylene-C—H⋯O(carbonyl) and CBA-C—H⋯O(amide) interactions. As revealed by a more detailed analysis of the molecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O interactions which provide interaction energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supramolecular tape. Full Article text
ee Conversion of diarylchalcones into 4,5-dihydropyrazole-1-carbothioamides: molecular and supramolecular structures of two precursors and three products By scripts.iucr.org Published On :: 2020-02-14 Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-dihydropyrazole-1-carbothioamides using a cyclocondensation reaction with thiosemicarbazide. The chalcones 1-(4-chlorophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their molecules are linked into sheets by two independent C—H⋯π(arene) interactions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chlorophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16ClN3OS, (IV), (RS)-3-(4-bromophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16BrN3OS, (V), and (RS)-3-(4-methoxyphenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-ynyloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their molecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The molecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds. Full Article text
ee Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane anions in different degrees of deprotonation By scripts.iucr.org Published On :: 2020-02-25 The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxylate in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxylate O atoms, thus forming a three-dimensional supramolecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carboxylic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane. Full Article text
ee Crystal structures of the recreational drug N-(4-methoxyphenyl)piperazine (MeOPP) and three of its salts By scripts.iucr.org Published On :: 2020-03-05 Crystal structures are reported for N-(4-methoxyphenyl)piperazine (MeOPP), (I), and for its 3,5-dinitrobenzoate, 2,4,6-trinitrophenolate (picrate) and 4-aminobenzoate salts, (II)–(IV), the last of which crystallizes as a monohydrate. In MeOPP, C11H16N2O, (I), the 4-methoxyphenyl group is nearly planar and it occupies an equatorial site on the piperazine ring: the molecules are linked into simple C(10) chains by N—H⋯O hydrogen bonds. In each of the salts, i.e., C11H17N2O+·C7H3N2O6−, (II), C11H17N2O+·C6H2N3O7−, (III), and C11H17N2O+·C7H6NO2−·H2O, (IV), the effectively planar 4-methoxyphenyl substituent again occupies an equatorial site on the piperazine ring. In (II), two of the nitro groups are disordered over two sets of atomic sites and the bond distances in the anion indicate considerable delocalization of the negative charge over the C atoms of the ring. The ions in (II) are linked by two N—H⋯O hydrogen bonds to form a cyclic, centrosymmetric four-ion aggregate; those in (III) are linked by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to form sheets; and the components of (IV) are linked by N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure. Comparisons are made with the structures of some related compounds. Full Article text
ee Different packing motifs in the crystal structures of three molecular salts containing the 2-amino-5-carboxyanilinium cation: C7H9N2O2+·Cl−, C7H9N2O2+·Br− and C7H9N2O2+·NO3−·H2O By scripts.iucr.org Published On :: 2020-03-13 The syntheses and crystal structures of three molecular salts of protonated 3,4-diaminobenzoic acid, viz. 2-amino-5-carboxyanilinium chloride, C7H9N2O2+·Cl−, (I), 2-amino-5-carboxyanilinium bromide, C7H9N2O2+·Br−, (II), and 2-amino-5-carboxyanilinium nitrate monohydrate, C7H9N2O2+·NO3−·H2O, (III), are described. The cation is protonated at the meta-N atom (with respect to the carboxy group) in each case. In the crystal of (I), carboxylic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds are seen and each N—H group forms a hydrogen bond to a chloride ion to result in (100) undulating layers of chloride ions bridged by the inversion dimers into a three-dimensional network. The extended structure of (II) features O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds: the last of these generates C(7) chains of cations. Overall, the packing in (II) features undulating (100) sheets of bromide ions alternating with the organic cations. Intermolecular interactions in the crystal of (III) include O—H⋯O, O—H⋯(O,O), N—H⋯O, N—H⋯N and O—H⋯N links. The cations are linked into (001) sheets, and the nitrate ions and water molecules form undulating chains. Taken together, alternating (001) slabs of organic cations plus anions/water molecules result. Hirshfeld surfaces and fingerprint plots were generated to give further insight into the intermolecular interactions in these structures. The crystal used for the data collection of (II) was twinned by rotation about [100] in reciprocal space in a 0.4896 (15):0.5104 (15) ratio. Full Article text
ee Norpsilocin: freebase and fumarate salt By scripts.iucr.org Published On :: 2020-03-27 The solid-state structures of the naturally occurring psychoactive tryptamine norpsilocin {4-hydroxy-N-methyltryptamine (4-HO-NMT); systematic name: 3-[2-(methylamino)ethyl]-1H-indol-4-ol}, C11H14N2O, and its fumarate salt (4-hydroxy-N-methyltryptammonium fumarate; systematic name: bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl]methylazanium} but-2-enedioate), C11H15N2O+·0.5C4H2O42−, are reported. The freebase of 4-HO-NMT has a single molecule in the asymmetric unit joined together by N—H⋯O and O—H⋯O hydrogen bonds in a two-dimensional network parallel to the (100) plane. The ethylamine arm of the tryptamine is modeled as a two-component disorder with a 0.895 (3) to 0.105 (3) occupancy ratio. The fumarate salt of 4-HO-NMT crystallizes with a tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The ions are joined together by N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional framework, as well as π–π stacking between the six-membered rings of inversion-related indoles (symmetry operation: 2 − x, 1 − y, 2 – z). Full Article text
ee Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185. By scripts.iucr.org Published On :: 2020-04-14 Full Article text
ee Screening topological materials with a CsCl-type structure in crystallographic databases By scripts.iucr.org Published On :: 2019-06-13 CsCl-type materials have many outstanding characteristics, i.e. simple in structure, ease of synthesis and good stability at room temperature, thus are an excellent choice for designing functional materials. Using high-throughput first-principles calculations, a large number of topological semimetals/metals (TMs) were designed from CsCl-type materials found in crystallographic databases and their crystal and electronic structures have been studied. The CsCl-type TMs in this work show rich topological character, ranging from triple nodal points, type-I nodal lines and critical-type nodal lines, to hybrid nodal lines. The TMs identified show clean topological band structures near the Fermi level, which are suitable for experimental investigations and future applications. This work provides a rich data set of TMs with a CsCl-type structure. Full Article text
ee Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder By scripts.iucr.org Published On :: 2019-06-20 Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation. Full Article text
ee Symmetry-mode analysis for intuitive observation of structure–property relationships in the lead-free antiferroelectric (1−x)AgNbO3–xLiTaO3 By scripts.iucr.org Published On :: 2019-06-21 Functional materials are of critical importance to electronic and smart devices. A deep understanding of the structure–property relationship is essential for designing new materials. In this work, instead of utilizing conventional atomic coordinates, a symmetry-mode approach is successfully used to conduct structure refinement of the neutron powder diffraction data of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics. This provides rich structural information that not only clarifies the controversial symmetry assigned to pure AgNbO3 but also explains well the detailed structural evolution of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics, and builds a comprehensive and straightforward relationship between structural distortion and electrical properties. It is concluded that there are four relatively large-amplitude major modes that dominate the distorted Pmc21 structure of pure AgNbO3, namely a Λ3 antiferroelectric mode, a T4+ a−a−c0 octahedral tilting mode, an H2 a0a0c+/a0a0c− octahedral tilting mode and a Γ4− ferroelectric mode. The H2 and Λ3 modes become progressively inactive with increasing x and their destabilization is the driving force behind the composition-driven phase transition between the Pmc21 and R3c phases. This structural variation is consistent with the trend observed in the measured temperature-dependent dielectric properties and polarization–electric field (P-E) hysteresis loops. The mode crystallography applied in this study provides a strategy for optimizing related properties by tuning the amplitudes of the corresponding modes in these novel AgNbO3-based (anti)ferroelectric materials. Full Article text
ee Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF By scripts.iucr.org Published On :: 2019-06-12 The structural dimension of metal–organic frameworks (MOFs) is of great importance in defining their properties and thus applications. In particular, 2D layered MOFs are of considerable interest because of their useful applications, which are facilitated by unique structural features of 2D materials, such as a large number of open active sites and high surface areas. Herein, this work demonstrates a methodology for the selective synthesis of a 2D layered MOF in the presence of the competitive formation of a 3D MOF. The ratio of the reactants, metal ions and organic building blocks used during the reaction is found to be critical for the selective formation of a 2D MOF, and is associated with its chemical composition. In addition, the well defined and uniform micro-sized 2D MOF particles are successfully synthesized in the presence of an ultrasonic dispersion. Moreover, the laminated 2D MOF layers are directly synthesized via a modified bottom-up lamination method, a combination of chemical and physical stimuli, in the presence of surfactant and ultrasonication. Full Article text
ee Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography By scripts.iucr.org Published On :: 2019-06-23 Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed. Full Article text
ee Why is interoperability between the two fields of chemical crystallography and protein crystallography so difficult? By scripts.iucr.org Published On :: 2019-08-13 The interoperability of chemical and biological crystallographic data is a key challenge to research and its application to pharmaceutical design. Research attempting to combine data from the two disciplines, small-molecule or chemical crystallography (CX) and macromolecular crystallography (MX), will face unique challenges including variations in terminology, software development, file format and databases which differ significantly from CX to MX. This perspective overview spans the two disciplines and originated from the investigation of protein binding to model radiopharmaceuticals. The opportunities of interlinked research while utilizing the two databases of the CSD (Cambridge Structural Database) and the PDB (Protein Data Bank) will be highlighted. The advantages of software that can handle multiple file formats and the circuitous route to convert organometallic small-molecule structural data for use in protein refinement software will be discussed. In addition some pointers to avoid being shipwrecked will be shared, such as the care which must be taken when interpreting data precision involving small molecules versus proteins. Full Article text
ee Engineering a surrogate human heteromeric α/β glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein By scripts.iucr.org Published On :: 2019-09-04 Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/β glycine receptor. Full Article text
ee DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps By scripts.iucr.org Published On :: 2019-09-18 In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a `local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed. Full Article text
ee Crystal engineering of exemestane to obtain a co-crystal with enhanced urease inhibition activity By scripts.iucr.org Published On :: 2020-01-01 Co-crystallization is a phenomenon widely employed to enhance the physio-chemical and biological properties of active pharmaceutical ingredients (APIs). Exemestane, or 6-methylideneandrosta-1,4-diene-3,17-dione, is an anabolic steroid used as an irreversible steroidal aromatase inhibitor, which is in clinical use to treat breast cancer. The present study deals with the synthesis of co-crystals of exemestane with thiourea by liquid-assisted grinding. The purity and homogeneity of the exemestane–thiourea (1:1) co-crystal were confirmed by single-crystal X-ray diffraction followed by thermal stability analysis on the basis of differential scanning calorimetry and thermogravimetric analysis. Detailed geometric analysis of the co-crystal demonstrated that a 1:1 co-crystal stoichiometry is sustained by N—H⋯O hydrogen bonding between the amine (NH2) groups of thiourea and the carbonyl group of exemestane. The synthesized co-crystal exhibited potent urease inhibition activity in vitro (IC50 = 3.86 ± 0.31 µg ml−1) compared with the API (exemestane), which was found to be inactive, and the co-former (thiourea) (IC50 = 21.0 ± 1.25 µg ml−1), which is also an established tested standard for urease inhibition assays in vitro. The promising results of the present study highlight the significance of co-crystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients. Furthermore, the role of various hydrogen bonds in the crystal stability is successfully analysed quantitatively using Hirshfeld surface analysis. Full Article text
ee Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states By scripts.iucr.org Published On :: 2020-02-06 Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the `straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development. Full Article text
ee Structure of the MICU1–MICU2 heterodimer provides insights into the gatekeeping threshold shift By scripts.iucr.org Published On :: 2020-02-27 Mitochondrial calcium uptake proteins 1 and 2 (MICU1 and MICU2) mediate mitochondrial Ca2+ influx via the mitochondrial calcium uniporter (MCU). Its molecular action for Ca2+ uptake is tightly controlled by the MICU1–MICU2 heterodimer, which comprises Ca2+ sensing proteins which act as gatekeepers at low [Ca2+] or facilitators at high [Ca2+]. However, the mechanism underlying the regulation of the Ca2+ gatekeeping threshold for mitochondrial Ca2+ uptake through the MCU by the MICU1–MICU2 heterodimer remains unclear. In this study, we determined the crystal structure of the apo form of the human MICU1–MICU2 heterodimer that functions as the MCU gatekeeper. MICU1 and MICU2 assemble in the face-to-face heterodimer with salt bridges and methionine knobs stabilizing the heterodimer in an apo state. Structural analysis suggests how the heterodimer sets a higher Ca2+ threshold than the MICU1 homodimer. The structure of the heterodimer in the apo state provides a framework for understanding the gatekeeping role of the MICU1–MICU2 heterodimer. Full Article text
ee Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68 By scripts.iucr.org Published On :: 2019-07-02 Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin. Full Article text
ee Open-access and free articles in Acta Crystallographica Section D: Biological Crystallography By journals.iucr.org Published On :: Full Article Still image
ee Three differently coloured polymorphs of 3,6-bis(4-chlorophenyl)-2,5-dipropyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione By scripts.iucr.org Published On :: 2019-05-23 In this paper, the conformational polymorphism of a chlorinated diketopyrrolopyrrole (DPP) dye having flexible substituents in a non-hydrogen-bonding system is reported. The propyl-substituted DPP derivative (PR3C) has three polymorphic forms, each showing a different colour (red, orange and yellow). All polymorphs could be obtained concomitantly under various crystallization conditions. The results of the crystal structure analysis indicate that PR3C adopts different conformations in each polymorph. The packing effect caused by the difference in the arrangement of neighbouring molecules was found to play an important role in the occurrence of the observed polymorphism. The thermodynamic stability relationship between the three polymorphs was identified by thermal analysis and indicates that the yellow polymorph is the thermally stable form. The results indicate that the yellow form and orange form are enantiotropically related, and the other polymorph is monotropically related to the others. Full Article text