or A monoclinic polymorph of chlorothiazide By journals.iucr.org Published On :: 2024-06-28 A new polymorph of the diuretic chlorothiazide, 6-chloro-1,1-dioxo-2H-1,2,4-benzothiazine-7-sulfonamide, C7H6ClN3O4S2, is described. Crystallized from basic aqueous solution, this monoclinic polymorph is found to be less thermodynamically favoured than the known triclinic polymorph and to feature only N—H⋯O type intermolecular hydrogen bonds as opposed to the N—H⋯O and N—H⋯N type hydrogen bonds found in the P1 form. Full Article text
or Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexakis(nitrato-κ2O,O')thorate(IV) By journals.iucr.org Published On :: 2024-07-05 Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosahedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations interact via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important interactions are O⋯H/H⋯O hydrogen-bonding interactions, which represent a 55.2% contribution. Full Article text
or Structural determination of oleanane-28,13β-olide and taraxerane-28,14β-olide fluorolactonization products from the reaction of oleanolic acid with SelectfluorTM By journals.iucr.org Published On :: 2024-07-15 The X-ray crystal structure data of 12-α-fluoro-3β-hydroxyolean-28,13β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (1), and 12-α-fluoro-3β-hydroxytaraxer-28,14β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (2), are described. The fluorolactonization of oleanolic acid using SelectfluorTM yielded a mixture of the six-membered δ-lactone (1) and the unusual seven-membered γ-lactone (2) following a 1,2-shift of methyl C-27 from C-14 to C-13. Full Article text
or Synthesis, molecular and crystal structures of 4-amino-3,5-difluorobenzonitrile, ethyl 4-amino-3,5-difluorobenzoate, and diethyl 4,4'-(diazene-1,2-diyl)bis(3,5-difluorobenzoate) By journals.iucr.org Published On :: 2024-07-19 The crystal structures of two intermediates, 4-amino-3,5-difluorobenzonitrile, C7H4F2N2 (I), and ethyl 4-amino-3,5-difluorobenzoate, C9H9F2NO2 (II), along with a visible-light-responsive azobenzene derivative, diethyl 4,4'-(diazene-1,2-diyl)bis(3,5-difluorobenzoate), C18H14F4N2O4 (III), obtained by four-step synthetic procedure, were studied using single-crystal X-ray diffraction. The molecules of I and II demonstrate the quinoid character of phenyl rings accompanied by the distortion of bond angles related to the presence of fluorine substituents in the 3 and 5 (ortho) positions. In the crystals of I and II, the molecules are connected by N—H⋯N, N—H⋯F and N—H⋯O hydrogen bonds, C—H⋯F short contacts, and π-stacking interactions. In crystal of III, only stacking interactions between the molecules are found. Full Article text
or Crystal structures of seven gold(III) complexes of the form LAuX3 (L = substituted pyridine, X = Cl or Br) By journals.iucr.org Published On :: 2024-07-31 The structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methylpyridines or dimethylpyridines, X = Cl or Br) are presented: trichlorido(2-methylpyridine)gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tribromido(2-methylpyridine)gold(III), [AuBr3(C6H7N)], 2; tribromido(3-methylpyridine)gold(III), [AuBr3(C6H7N)], 3; tribromido(2,4-dimethylpyridine)gold(III), [AuBr3(C7H9N)], 4; trichlorido(3,5-dimethylpyridine)gold(III), [AuCl3(C7H9N)], 5; tribromido(3,5-dimethylpyridine)gold(III), [AuBr3(C7H9N)], 6, and trichlorido(2,6-dimethylpyridine)gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z' = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z' = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the ‘HKLF 5’ method. The largest interplanar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au—N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au—X)2, with antiparallel Au—X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary interactions (Au⋯X or X⋯X contacts, `weak' C—H⋯X hydrogen bonds) to form chain, double chain (`ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C—H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 1–8. Full Article text
or [SnF(bipy)(H2O)]2[SnF6], a mixed-valent inorganic tin(II)–tin(IV) compound By journals.iucr.org Published On :: 2024-08-06 In the title compound, bis[aqua(2,2'-bipyridine)fluoridotin(II)] hexafluoridotin(IV), [SnF(C10H8N2)(H2O)]2[SnF6], an ionic mixed-valent tin(II)–tin(IV) compound, the bivalent tin atom is the center atom of the cation and the tetravalent tin atom is the center atom of the anion. With respect to the first coordination sphere, the cation is monomeric, with the tin(II) atom having a fourfold seesaw coordination with a fluorine atom in an equatorial position, a water molecule in an axial position and the two nitrogen atoms of the chelating 2,2'-bipyridine ligand in the remaining axial and equatorial positions. The bond lengths and angles of this hypervalent first coordination sphere are described by 2c–2e and 3c–4e bonds, respectively, all of which are based on the orthogonal 5p orbitals of the tin atom. In the second coordination sphere, which is based on an additional, very long tin–fluorine bond that leads to dimerization of the cation, the tin atom is trapezoidal–pyramidally coordinated. The tetravalent tin atom of the centrosymmetric anion has an octahedral coordination. The differences in its tin–fluorine bond lengths are attributed to hydrogen bonding, as the two of the four fluorine atoms are each involved in two hydrogen bonds, linking anions and cations together to form strands. Full Article text
or Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O)potassium-μ-oxalato-triphenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of triphenyloxalatostannate By journals.iucr.org Published On :: 2024-08-13 The title complex, (1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether molecule and the two oxygen atoms of the oxalatotriphenylstannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain interactions are van der Waals forces. Full Article text
or Puckering effects of 4-hydroxy-l-proline isomers on the conformation of ornithine-free Gramicidin S By journals.iucr.org Published On :: 2024-08-09 The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hydroxyprolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anticipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by interactions between the hydroxyl groups of hydroxyproline, the solvent molecules, and peptides. Full Article text
or Crystal structure and Hirshfeld surface analysis of dichlorido[2-(3-cyclopentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) dimethylformamide monosolvate By journals.iucr.org Published On :: 2024-08-16 This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclopentyl-1,2,4-triazol-5-yl)pyridine] and one molecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, molecules are linked by intermolecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H interactions is somewhat smaller, amounting to 12.4% and 5%, respectively. Full Article text
or Foreword to the AfCA collection: celebrating work published by African researchers in IUCr journals By journals.iucr.org Published On :: 2024-09-30 Full Article text
or Crystal structure, Hirshfeld surface analysis, DFT and the molecular docking studies of 3-(2-chloroacetyl)-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one By journals.iucr.org Published On :: 2024-08-30 In the title compound, C33H29ClN2O2, the two piperidine rings of the diazabicyclo moiety adopt distorted-chair conformations. Intermolecular C—H⋯π interactions are mainly responsible for the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, revealing that H⋯H interactions contribute most to the crystal packing (52.3%). The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined molecular structure in the solid state. Full Article text
or Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aquabis(μ3-carbamoylcyanonitrosomethanido)barium] monohydrate] and its thermal decomposition By journals.iucr.org Published On :: 2024-08-30 In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water molecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water molecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coordination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water molecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoylcyanonitrosomethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyanonitroso anions can be utilized as bridging ligands for the supramolecular synthesis of MOF solids. Such an outcome may be anticipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K. Full Article text
or Crystal structure, Hirshfeld surface analysis, and calculations of intermolecular interaction energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)-benzimidazol-2-one By journals.iucr.org Published On :: 2024-09-30 The benzimidazole moiety in the title molecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure. There are no π–π interactions present but two weak C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) interactions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound. Full Article text
or Color center creation by dipole stacking in crystals of 2-methoxy-5-nitroaniline By journals.iucr.org Published On :: 2024-09-10 This work describes the X-ray structure of orange–red crystals of 2-methoxy-5-nitroaniline, C7H8N2O3. The compound displays concentration-dependent UV-Vis spectra, which is attributed to dipole-induced aggregation, and light absorption arising from an intermolecular charge-transfer process that decreases in energy as the degree of aggregation increases. The crystals display π-stacking where the dipole moments align antiparallel. Stacked molecules interact with the next stack via hydrogen bonds, which is a state of maximum aggregation. Light absorption by charge transfer can be compared to colored inorganic semiconductors such as orange–red CdS, with a band gap of 2.0–2.5 eV. Full Article text
or Coupling between 2-pyridylselenyl chloride and phenylselenocyanate: synthesis, crystal structure and non-covalent interactions By journals.iucr.org Published On :: 2024-09-17 A new pyridine-fused selenodiazolium salt, 3-(phenylselanyl)[1,2,4]selenadiazolo[4,5-a]pyridin-4-ylium chloride dichloromethane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridylselenenyl chloride and phenylselenocyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) interactions. Non-covalent interactions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of selenodiazolium moieties arranged in a head-to-tail fashion surrounding disordered dichloromethane molecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C interactions. Full Article text
or Crystal structure of bis(μ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] By journals.iucr.org Published On :: 2024-09-17 Crystallization of 5-nonanoyl-8-hydroxyquinoline in the presence of InCl3 in acetonitrile yields a dinuclear InIII complex crystallizing in the space group Poverline{1}. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water molecule and two 8-quinolinolate ions. The crystal of the title complex is composed of two-dimensional supramolecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts. Full Article text
or Crystal structures of the (η2:η2-cycloocta-1,5-diene)(η6-toluene)iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinomethyl)anthraquinone ligands By journals.iucr.org Published On :: 2024-09-30 When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cycloocta-1,5-diene) and 2 equivalents of 2-(di-tert-butylphosphinito)anthraquinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cycloocta-1,5-diene)(η6-toluene)iridium(I) tri-μ-chlorido-bis({3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group Poverline{1}. The cation and anion are linked via weak C—H⋯O interactions. The stronger intermolecular attractions are likely the offset parallel π–π interactions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthraquinone moieties, the latter of which are capped by toluene solvate molecules, making for π-stacks of four molecules each. The related ligand, 2-(di-tert-butylphosphinomethyl)-anthraquinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloroform, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis(carbonyl{3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group Poverline{1}. Offset parallel π–π interactions between anthraquinone groups of adjacent molecules link the molecules in one dimension. Full Article text
or Crystal structures of seven mixed-valence gold compounds of the form [(R1R2R3PE)2AuI]+[AuIIIX4]− (R = tert-butyl or isopropyl, E = S or Se, and X = Cl or Br) By journals.iucr.org Published On :: 2024-09-30 During our studies of the oxidation of gold(I) complexes of trialkylphosphane chalcogenides, general formula R1R2R3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis(trialkylphosphane chalcogenido)gold(I) tetrahalogenidoaurates(III) [(R1R2R3PE)2Au]+[AuX4]−. These correspond to the addition of one halogen atom per gold atom of the AuI precursor. Compound 1, bis(triisopropylphosphane sulfide)gold(I) tetrachloridoaurate(III), [Au(C9H21PS)2][AuCl4] or [(iPr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis(tert-butyldiisopropylphosphane sulfide)gold(I) tetrachloridoaurate(III), [Au(C10H23PS)2][AuCl4] or [(tBuiPr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis(tri-tert-butylphosphane sulfide)gold(I) tetrachloridoaurate(III), [Au(C12H27PS)2][AuCl4] or [(tBu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis(tert-butyldiisopropylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C10H23PS)2][AuBr4] or [(tBuiPr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis(tert-butyldiisopropylphosphane selenide)gold(I) tetrabromidoaurate(III), [Au(C10H23PSe)2][AuBr4] or [(tBuiPr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis(tri-tert-butylphosphane selenide)gold(I) tetrabromidoaurate(III), [Au(C12H27PSe)2][AuBr4] or [(tBu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are antiperiplanar to each other across the S⋯S vectors. There are several short intramolecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P—S = 2.0322, P—Se = 2.1933, S—Au = 2.2915, and Se—Au = 2.4037. The complex three-dimensional packing of 1 involves two short C—Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C—Hmethine⋯Cl interactions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a ‘chalcogen bond’. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane. Full Article text
or Crystal structure and Hirshfeld surface analysis of trichlorido(1,10-phenanthroline-κ2N,N')phenyltin(IV) By journals.iucr.org Published On :: 2024-09-24 The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyltin trichloride in methanol, exhibits intramolecular hydrogen-bonding interactions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by intermolecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking interactions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) interactions make smaller contributions. Full Article text
or Crystal structure and Hirshfeld surface analysis of {2-[bis(pyridin-2-ylmethyl)amino]ethane-1-thiolato}chloridocadmium(II) By journals.iucr.org Published On :: 2024-09-30 The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis(pyridin-2-ylmethyl)amino]ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supramolecular interactions in 1 include parallel offset face-to-face interactions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyridyl–pyridyl interactions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) interactions are dominant in the solid state. Full Article text
or Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-dimethylpyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-dimethylpyrazine) network By journals.iucr.org Published On :: 2024-09-24 Reaction of copper(I)chloride with 2,3-dimethylpyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-dimethylpyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-dimethylpyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-dimethylpyrazine ligands as well as one ethanol solvate molecule in general positions. The ethanol molecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-dimethylpyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetrahedrally coordinated by two N atoms of two bridging 2,3-dimethylpyrazine ligands and two μ-1,1-bridging chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-dimethylpyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent molecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-dimethylpyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase. Full Article text
or 8-Hydroxyquinolinium trichlorido(pyridine-2,6-dicarboxylic acid-κ3O,N,O')copper(II) dihydrate By journals.iucr.org Published On :: 2024-09-24 The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hydroxyquinoline (8-HQ), and solid pyridine-2,6-dicarboxylic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydrochloric acid. The CuII atom exhibits a distorted CuO2NCl3 octahedral geometry, coordinating two oxygen atoms and one nitrogen atom from the tridentate H2pydc ligand and three chloride atoms; the nitrogen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The asymmetric unit contains 8-HQ+ as a counter-ion and two uncoordinated water molecules. The crystal structure features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak interactions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and π–π, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H interactions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion. Full Article text
or Crystal structure and Hirshfeld surface analyses, crystal voids, intermolecular interaction energies and energy frameworks of 3-benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione By journals.iucr.org Published On :: 2024-10-04 The title molecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions form helical chains of molecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) interactions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy. Full Article text
or Synthesis, crystal structure and properties of μ-tetrathioantimonato-bis[(cyclam)zinc(II)] perchlorate 0.8-hydrate By journals.iucr.org Published On :: 2024-10-11 The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/acetonitrile mixture leads to the formation of the title compound, (μ-tetrathioantimonato-κ2S:S')bis[(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water molecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water molecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water molecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water molecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties. Full Article text
or Structure of 2,3,5-triphenyltetrazol-3-ium chloride hemipentahydrate By journals.iucr.org Published On :: 2024-09-30 The title hydrated molecular salt, C19H15N4+·Cl−·2.5H2O, has two triphenyltetrazolium cations, two chloride anions and five water molecules in the asymmetric unit. The cations differ in the conformations of the phenyl rings with respect to the heterocyclic core, most notably for the C-bonded phenyl ring, for which the N—C—C—C torsion angles differ by 36.4 (3)°. This is likely a result of one cation accepting an O—H⋯N hydrogen bond from a water molecule [O⋯N = 3.1605 (15) Å], while the other cation accepts no hydrogen bonds. In the extended structure, the water molecules are involved in centrosymmetric (H2O)2Cl2 rings as well as (H2O)4 chains. An unusual O—H⋯π interaction and weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed. Full Article text
or N,N'-Dibenzylethylenediammonium dichloride By journals.iucr.org Published On :: 2024-10-04 The isolation and crystalline structure of N,N'-dibenzylethylenediammonium dichloride, C16H22N22+·2Cl−, is reported. This was obtained as an unintended product of an attempted Curtius rearrangement that involved benzylamine as one of the reagents and 1,2-dichloroethane as the solvent. Part of a series of reactions of a course-based undergraduate research experience (CURE), this was not the intended reaction outcome. The goal of the course was to engage students as active participants in a laboratory experience which applies the foundational techniques of a synthetic organic laboratory, using the Curtius rearrangement as a tool for the assembly of medicinally significant scaffolds. The isolation of the title compound, N,N'-dibenzylethylenediammonium dichloride, the result of the 1,2-dichloroethane solvent outcompeting the Curtius isocyanate intermediate in the reaction with the nucleophilic amine, confirms the importance of conducting research at the undergraduate level where the outcome is not predetermined. The solid-state structure of N,N'-dibenzylethylenediammonium dichloride was found to feature an all-trans methylene-ammonium backbone. Strong N—H⋯Cl hydrogen bonds and C—H⋯Cl interactions lead to a layered structure with pseudo-translational symmetry emulating a C-centered setting. Different phenyl torsion angles at each end of the molecule enable a more stable packing by allowing stronger hydrogen-bonding interactions, leading to a more ordered but lower symmetry and modulated structure in P21/n. Full Article text
or Triclinic polymorph of bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetrachloridocadmium(II) By journals.iucr.org Published On :: 2024-10-04 The crystal structure of the title organic–inorganic hybrid salt, (C13H12N3)2[CdCl4], (I), has been reported with four molecules in the asymmetric unit in a monoclinic cell [Vassilyeva et al. (2021). RSC Advances, 11, 7713–7722]. While using two different aldehydes in the oxidative cyclization–condensation involving CH3NH2·HCl to prepare a new monovalent cation with the imidazo[1,5-a]pyridinium skeleton, a new polymorph was obtained for (I) in space group P1 and a unit cell with approximately half the volume of the monoclinic form. The structural configurations of the two crystallographically non-equivalent organic cations as well as the geometry of the moderately distorted tetrahedral CdCl42– dianion show minor changes. In the crystal, identically stacked cations and tetrachlorocadmate anions form separate columns parallel to the a axis. The loose packing of the anions leads to a minimal separation of approximately 9.53 Å between the metal atoms in the triclinic form versus 7.51 Å in the monoclinic one, indicating that the latter is packed slightly more densely. The two forms also differ by aromatic stacking motifs. Similar to the monoclinic polymorph, the triclinic one excited at 364 nm shows an intense unsymmetrical photoluminescent band with maximum at 403 nm and a full width at half maximum of 51 nm in the solid state. Full Article text
or Crystal structure of (μ2-7-{[bis(pyridin-2-ylmethyl)amino-1κ3N,N',N'']methyl}-5-chloroquinolin-8-olato-2κN;1:2κ2O)trichlorido-1κCl,2κ2Cl-dizinc(II) By journals.iucr.org Published On :: 2024-10-15 The title compound, [Zn2(C22H18ClN4O)Cl3], is a dinuclear zinc(II) complex with three chlorido ligands and one pentadentate ligand containing quinolin-8-olato and bis(pyridin-2-ylmethyl)amine groups. One of the two ZnII atom adopts a tetrahedral geometry and coordinates two chlorido ligands with chelate coordination of the N and O atoms of the quinolin-8-olato group in the ligand. The other ZnII atom adopts a distorted trigonal–bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis(pyridin-2-ylmethyl)amine unit. In the crystal, two molecules are associated through a pair of intermolecular C—H⋯Cl hydrogen bonds, forming a dimer with an R22(12) ring motif. Another intermolecular C—H⋯Cl hydrogen bond forms a spiral C(8) chain running parallel to the [010] direction. The dimers are linked by these two intermolecular C—H⋯Cl hydrogen bonds, generating a ribbon sheet structure in ac plane. Two other intermolecular C—H⋯Cl hydrogen bonds form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane. The molecules are cross-linked through the four intermolecular C—H⋯Cl hydrogen bonds to form a three-dimensional network. Full Article text
or Structural multiplicity in a solvated hydrate of the antiretroviral protease inhibitor Lopinavir By journals.iucr.org Published On :: 2024-10-24 Lopinavir is a potent protease inhibitor that is used as a first-line pharmaceutical drug for the treatment of HIV. The multi-component solvated Lopinavir crystal, systematic name (2S)-N-[(2S,4S,5S)-5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide–ethane-1,2-diol–water (8/3/7) 8C37H48N4O5·3C2H6O2·7H2O, was prepared using evaporative methods. The crystalline material obtained from this experimental synthesis was characterized and elucidated by single-crystal X-ray diffraction (SC-XRD). The crystal structure is unusual in that the unit cell contains 18 molecules. The stoichiometric ratio of this crystal is eight Lopinavir molecules [8(C37H48N4O5)], three ethane-1,2-diol molecules [3(C2H6O2)] and seven water molecules [7(H2O)]. The crystal packing features both bi- and trifurcated hydrogen bonds between atoms. Full Article text
or Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chlorophenyl)methyl]-3-methyl-6-oxopyridazin-1-yl}-N-phenylacetamide By journals.iucr.org Published On :: 2024-10-31 In the title molecule, C20H18ClN3O2, the 2-chlorophenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenylacetamide moiety is nearly planar due to a weak, intramolecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking interactions between pyridazine and phenyl rings form helical chains of molecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions to dominate the intermolecular contacts in the crystal. Full Article text
or Crystal structure of bis{5-(4-chlorophenyl)-3-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate By journals.iucr.org Published On :: 2024-10-31 The unit cell of the title compound, [Ni(C16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol molecules. In the complex, the two tridentate 2-(3-(4-chlorophenyl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudooctahedral coordination sphere. Neighbouring tapered molecules are linked through weak C—H(pz)⋯π(ph) interactions into monoperiodic chains, which are further linked through weak C—H⋯N/C interactions into diperiodic layers. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni—N bond distance is 2.095 Å. Energy framework analysis at the HF/3–21 G theory level was performed to quantify the interaction energies in the crystal structure. Full Article text
or Multi-segment cooling design of a reflection mirror based on the finite-element method By journals.iucr.org Published On :: Through numerical optimization of cooling lengths and cooling groove positions for the first reflection mirror of a free-electron laser [OK?], the root mean square of the height error of the mirror's thermal deformation was minimized. The optimized mirror design effectively mitigated stray light and enhanced the peak intensity of the focus spot at the sample, thereby enhancing the optical performance of the high-heat-load mirror under high repetition rates at beamline FEL-II of the SHINE facility. Full Article text
or Reducing heat load density with asymmetric and inclined double-crystal monochromators: principles and requirements revisited By journals.iucr.org Published On :: The major principles and requirements of asymmetric and inclined double-crystal monochromators are re-examined and presented to guide their design and development for significantly reducing heat load density and gradient on the monochromators of fourth-generation synchrotron light sources and X-ray free-electron lasers. Full Article text
or Review and experimental comparison of speckle-tracking algorithms for X-ray phase contrast imaging By journals.iucr.org Published On :: This review focuses on low-dose near-field X-ray speckle phase imaging in the differential mode introducing the existing algorithms with their specifications and comparing their performances under various experimental conditions. Full Article text
or The use of ethanol as contrast enhancer in Synchrotron X-ray phase-contrast imaging leads to heterogeneous myocardial tissue shrinkage: a case report By journals.iucr.org Published On :: In this work, we showed that the use of ethanol to increase image contrast when imaging cardiac tissue with synchrotron X-ray phase-contrast imaging (X-PCI) leads to heterogeneous tissue shrinkage, which has an impact on the 3D organization of the myocardium. Full Article text
or Development and testing of a dual-frequency, real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF By journals.iucr.org Published On :: we introduce a novel approach for a real-time dual-frequency feedback system, which has been firstly used at the hard X-ray nanoprobe beamline of SSRF. The BiBEST can then efficiently stabilize X-ray beam position and stability in parallel, making use of different optical systems in the beamline. Full Article text
or Form factor of helical structures and twisted fibres By journals.iucr.org Published On :: 2023-11-07 A general formalism is presented for the isotropically averaged single-chain scattering function (form factor) of single, double, triple and higher-order helices, as well as twisted fibres consisting of concentric layers of strands. Form factors for double and triple helices with differently sized grooves have also been derived. The formulas include the longitudinal and transverse interference over the pitch and radius of the helices, respectively. The results may be useful for the analysis of small-angle scattering data of (bio)macromolecules or molecular assemblies exhibiting a helical arrangement. Full Article text
or (U)SAXS characterization of porous microstructure of chert: insights into organic matter preservation By journals.iucr.org Published On :: 2023-11-15 This study characterizes the microstructure and mineralogy of 132 (ODP sample), 1000 and 1880 million-year-old chert samples. By using ultra-small-angle X-ray scattering (USAXS), wide-angle X-ray scattering and other techniques, the preservation of organic matter (OM) in these samples is studied. The scarce microstructural data reported on chert contrast with many studies addressing porosity evolution in other sedimentary rocks. The aim of this work is to solve the distribution of OM and silica in chert by characterizing samples before and after combustion to pinpoint the OM distribution inside the porous silica matrix. The samples are predominantly composed of alpha quartz and show increasing crystallite sizes up to 33 ± 5 nm (1σ standard deviation or SD). In older samples, low water abundances (∼0.03%) suggest progressive dehydration. (U)SAXS data reveal a porous matrix that evolves over geological time, including, from younger to older samples, (1) a decreasing pore volume down to 1%, (2) greater pore sizes hosting OM, (3) decreasing specific surface area values from younger (9.3 ± 0.1 m2 g−1) to older samples (0.63 ± 0.07 m2 g−1, 1σ SD) and (4) a lower background intensity correlated to decreasing hydrogen abundances. The pore-volume distributions (PVDs) show that pores ranging from 4 to 100 nm accumulate the greater volume fraction of OM. Raman data show aromatic organic clusters up to 20 nm in older samples. Raman and PVD data suggest that OM is located mostly in mesopores. Observed structural changes, silica–OM interactions and the hydrophobicity of the OM could explain the OM preservation in chert. Full Article text
or Texture measurements on quartz single crystals to validate coordinate systems for neutron time-of-flight texture analysis By journals.iucr.org Published On :: 2023-11-24 In crystallographic texture analysis, ensuring that sample directions are preserved from experiment to the resulting orientation distribution is crucial to obtain physical meaning from diffraction data. This work details a procedure to ensure instrument and sample coordinates are consistent when analyzing diffraction data with a Rietveld refinement using the texture analysis software MAUD. A quartz crystal is measured on the HIPPO diffractometer at Los Alamos National Laboratory for this purpose. The methods described here can be applied to any diffraction instrument measuring orientation distributions in polycrystalline materials. Full Article text
or An electropneumatic cleaning device for piezo-actuator-driven picolitre-droplet dispensers By journals.iucr.org Published On :: 2024-02-01 Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows. Full Article text
or Van Vleck analysis of angularly distorted octahedra using VanVleckCalculator By journals.iucr.org Published On :: 2024-02-01 Van Vleck modes describe all possible displacements of octahedrally coordinated ligands about a core atom. They are a useful analytical tool for analysing the distortion of octahedra, particularly for first-order Jahn–Teller distortions, but determination of the Van Vleck modes of an octahedron is complicated by the presence of angular distortion of the octahedron. This problem is most commonly resolved by calculating the bond distortion modes (Q2, Q3) along the bond axes of the octahedron, disregarding the angular distortion and losing information on the octahedral shear modes (Q4, Q5 and Q6) in the process. In this paper, the validity of assuming bond lengths to be orthogonal in order to calculate the Van Vleck modes is discussed, and a method is described for calculating Van Vleck modes without disregarding the angular distortion. A Python package for doing this, VanVleckCalculator, is introduced and some examples of its use are given. Finally, it is shown that octahedral shear and angular distortion are often, but not always, correlated, and a parameter η is proposed as the shear fraction. It is demonstrated that η can be used to predict whether the values will be correlated when varying a tuning parameter such as temperature or pressure. Full Article text
or ProLEED Studio: software for modeling low-energy electron diffraction patterns By journals.iucr.org Published On :: 2024-02-01 Low-energy electron diffraction patterns contain precise information about the structure of the surface studied. However, retrieving the real space lattice periodicity from complex diffraction patterns is challenging, especially when the modeled patterns originate from superlattices with large unit cells composed of several symmetry-equivalent domains without a simple relation to the substrate. This work presents ProLEED Studio software, built to provide simple, intuitive and precise modeling of low-energy electron diffraction patterns. The interactive graphical user interface allows real-time modeling of experimental diffraction patterns, change of depicted diffraction spot intensities, visualization of different diffraction domains, and manipulation of any lattice points or diffraction spots. The visualization of unit cells, lattice vectors, grids and scale bars as well as the possibility of exporting ready-to-publish models in bitmap and vector formats significantly simplifies the modeling process and publishing of results. Full Article text
or Using XAS to monitor radiation damage in real time and post-analysis, and investigation of systematic errors of fluorescence XAS for Cu-bound amyloid-β By journals.iucr.org Published On :: 2024-02-01 X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing. Full Article text
or BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis By journals.iucr.org Published On :: 2024-02-01 BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program. Full Article text
or Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2 By journals.iucr.org Published On :: 2024-02-01 An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure. Full Article text
or INSIGHT: in situ heuristic tool for the efficient reduction of grazing-incidence X-ray scattering data By journals.iucr.org Published On :: 2024-02-12 INSIGHT is a Python-based software tool for processing and reducing 2D grazing-incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixel-wise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time-resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/GISAXS studies of thin films. It processes data acquired with arbitrarily rotated detectors and performs vertical, horizontal, azimuthal and radial cuts in reciprocal space. It further allows crystallographic indexing and GIWAXS pattern simulation, and provides various plotting and export functionalities. Customized scripting offers a one-step solution to reduce, process, analyze and export findings of large in situ and operando data sets. Full Article text
or The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches By journals.iucr.org Published On :: 2024-02-12 Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code. Full Article text
or Visualizing the fibre texture of satin spar using laboratory 2D X-ray diffraction By journals.iucr.org Published On :: 2024-02-12 The suitability of point focus X-ray beam and area detector techniques for the determination of the uniaxial symmetry axis (fibre texture) of the natural mineral satin spar is demonstrated. Among the various diffraction techniques used in this report, including powder diffraction, 2D pole figures, rocking curves looped on φ and 2D X-ray diffraction, a single simple symmetric 2D scan collecting the reciprocal plane perpendicular to the apparent fibre axis provided sufficient information to determine the crystallographic orientation of the fibre axis. A geometrical explanation of the `wing' feature formed by diffraction spots from the fibre-textured satin spar in 2D scans is provided. The technique of wide-range reciprocal space mapping restores the `wing' featured diffraction spots on the 2D detector back to reciprocal space layers, revealing the nature of the fibre-textured samples. Full Article text
or Revisiting the hydrogenation behavior of NdGa and its hydride phases By journals.iucr.org Published On :: 2024-02-16 NdGa hydride and deuteride phases were prepared from high-quality NdGa samples and their structures characterized by powder and single-crystal X-ray diffraction and neutron powder diffraction. NdGa with the orthorhombic CrB-type structure absorbs hydrogen at hydrogen pressures ≤ 1 bar until reaching the composition NdGaH(D)1.1, which maintains a CrB-type structure. At elevated hydrogen pressure additional hydrogen is absorbed and the maximum composition recovered under standard temperature and pressure conditions is NdGaH(D)1.6 with the Cmcm LaGaH1.66-type structure. This structure is a threefold superstructure with respect to the CrB-type structure. The hydrogen atoms are ordered and distributed on three fully occupied Wyckoff positions corresponding to tetrahedral (4c, 8g) and trigonal–bipyramidal (8g) voids in the parent structure. The threefold superstructure is maintained in the H-deficient phases NaGaH(D)x until 1.6 ≥ x ≥ 1.2. At lower H concentrations, coinciding with the composition of the hydride obtained from hydrogenation at atmospheric pressure, the unit cell of the CrB-type structure is resumed. This phase can also display H deficiency, NdGaH(D)y (1.1 ≥ y ≥ 0.9), with H(D) exclusively situated in partially empty tetrahedral voids. The phase boundary between the threefold superstructure (LaGaH1.66 type) and the onefold structure (NdGaH1.1 type) is estimated on the basis of phase–composition isotherms and neutron powder diffraction to be x = 1.15. Full Article text
or Convolutional neural network approach for the automated identification of in cellulo crystals By journals.iucr.org Published On :: 2024-02-23 In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach. Full Article text